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CONVERGENCE THEOREMS FOR UNIFORMLY L-LIPSCHITZIAN
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

Arif Rafiq

Abstract. LetK be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞
kn = 1 such that p ∈ F (T ) = {x ∈ K : Tx =

x}. Let {an}n≥0, {bn}n≥0
, {cn}n≥0

be real sequences in [0, 1] satisfying the following
conditions: (i) an + bn + cn = 1; (ii)

∑
n≥0 bn = ∞; (iii) cn = o(bn); (iv) lim

n→∞
bn = 0.

For arbitrary x0 ∈ K let {xn}n≥0 be iteratively defined by

xn+1 = anxn + bnT
nxn + cnun, n ≥ 0,

where {un}n≥0 is a bounded sequence of error terms in K. Suppose there exists a
strictly increasing function ψ : [0,∞) → [0,∞), ψ(0) = 0 such that

〈Tnx− p, j(x− p)〉 ≤ kn||x− p||2 − ψ(||x− p||), ∀x ∈ K.

Then {xn}n≥0 converges strongly to p ∈ F (T ).
The results proved in this paper significantly improve the results of Ofoedu [11].

The remark 3 is important.

2000 Mathematics Subject Classification: Primary 47H10, 47H17: Secondary
54H25.

1.Introduction

Let E be a real normed space and K be a nonempty convex subset of E. Let J
denote the normalized duality mapping from E to 2E∗

defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ||x||2 and ||f∗|| = ||x||},

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality
pairing. We shall denote the single-valued duality map by j.

Let T : D(T ) ⊂ E → E be a mapping with domain D(T ) in E.
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Definition 1 The mapping T is said to be uniformly L-Lipschitzian if there exists
L > 0 such that for all x, y ∈ D(T )

‖Tnx− Tny‖ ≤ L ‖x− y‖ .

Definition 2 T is said to be nonexpansive if for all x, y ∈ D(T ), the following
inequality holds:

‖Tx− Ty‖ ≤ ‖x− y ‖ for all x, y ∈ D(T ).

Definition 3 T is said to be asymptotically nonexpansive [6], if there exists a se-
quence {kn}n≥0 ⊂ [1,∞) with lim

n→∞
kn = 1 such that

‖Tnx− Tny‖ ≤ kn ‖x− y ‖ for all x, y ∈ D(T ), n ≥ 1.

Definition 4 T is said to be asymptotically pseudocontractive if there exists a se-
quence {kn}n≥0 ⊂ [1,∞) with lim

n→∞
kn = 1 and there exists j(x− y) ∈ J(x− y) such

that
〈Tnx− Tny, j(x− y)〉 ≤ kn ‖x− y ‖2 for all x, y ∈ D(T ), n ≥ 1.

Remark 1 1. It is easy to see that every asymptotically nonexpansive mapping is
uniformly L-Lipschitzian.

2. If T is asymptotically nonexpansive mapping then for all x, y ∈ D(T ) there
exists j(x− y) ∈ J(x− y) such that

〈Tnx− Tny, j(x− y)〉 ≤ ‖Tnx− Tny‖ ‖x− y ‖
≤ kn ‖x− y ‖2 , n ≥ 1.

Hence every asymptotically nonexpansive mapping is asymptotically pseudocontrac-
tive.

3. Rhoades in [12] showed that the class of asymptotically pseudocontractive
mappings properly contains the class of asymptotically nonexpansive mappings.

The asymptotically pseudocontractive mappings were introduced by Schu [13]
who proved the following theorem:

Theorem 1 Let K be a nonempty bounded closed convex subset of a Hilbert space H,
T : K → K a completely continuous, uniformly L-Lipschitzian and asymptotically
pseudocontractive with sequence {kn} ⊂ [1,∞); qn = 2kn − 1, ∀n ∈ N ;

∑
(q2n − 1) <

∞; {αn}, {βn} ⊂ [0, 1]; ε < αn < βn ≤ b, ∀n ∈ N, and some ε > 0 and some
b ∈ (0, L−2[(1 + L2)

1
2 − 1]); x1 ∈ K for all n ∈ N, define

xn+1 = (1− αn)xn + αnT
nxn.

Then {xn} converges to some fixed point of T .
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The recursion formula of theorem 1 is a modification of the well-known Mann
iteration process (see [9]).

Recently, Chang [1] extended Theorem 1 to real uniformly smooth Banach space;
in fact, he proved the following theorem:

Theorem 2 Let K be a nonempty bounded closed convex subset of a real uniformly
smooth Banach space E, T : K → K an asymptotically pseudocontractive mapping
with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞
kn = 1, and x∗ ∈ F (T ) = {x ∈ K : Tx = x}.

Let {αn} ⊂ [0, 1] satisfying the following conditions: lim
n→∞

αn = 0,
∑
αn = ∞. For

arbitrary x0 ∈ K let {xn} be iteratively defined by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 0.

If there exists a strictly increasing function ψ : [0,∞) → [0,∞), ψ(0) = 0 such that

〈Tnx− x∗, j(x− x∗)〉 ≤ kn||x− x∗||2 − ψ(||x− x∗||), ∀n ∈ N,

then xn → x∗ ∈ F (T ).

Remark 2 Theorem 2, as stated is a modification of Theorem 2.4 of Chang [1] who
actually included error terms in his algorithm.

In [11], E. U. Ofoedu proved the following results.

Theorem 3 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞
kn = 1 such that x∗ ∈ F (T ) = {x ∈ K :

Tx = x}. Let {αn}n≥0 ⊂ [0, 1] be such that
∑

n≥0 αn = ∞,
∑

n≥0 α
2
n < ∞ and∑

n≥0 αn(kn − 1) <∞. For arbitrary x0 ∈ K let {xn}n≥0 be iteratively defined by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 0.

Suppose there exists a strictly increasing function ψ : [0,∞) → [0,∞), ψ(0) = 0 such
that

〈Tnx− x∗, j(x− x∗)〉 ≤ kn||x− x∗||2 − ψ(||x− x∗||), ∀x ∈ K.

Then {xn}n≥0 is bounded.

Theorem 4 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞
kn = 1 such that x∗ ∈ F (T ) = {x ∈ K :
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Tx = x}. Let {αn}n≥0 ⊂ [0, 1] be such that
∑

n≥0 αn = ∞,
∑

n≥0 α
2
n < ∞ and∑

n≥0 αn(kn − 1) <∞. For arbitrary x0 ∈ K let {xn}n≥0 be iteratively defined by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 0.

Suppose there exists a strictly increasing function ψ : [0,∞) → [0,∞), ψ(0) = 0 such
that

〈Tnx− x∗, j(x− x∗)〉 ≤ kn||x− x∗||2 − ψ(||x− x∗||), ∀x ∈ K.

Then {xn}n≥0 converges strongly to x∗ ∈ F (T ).

Theorem 5 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞
kn = 1 such that x∗ ∈ F (T ) = {x ∈ K : Tx =

x}. Let {an}n≥0, {bn}n≥0
, {cn}n≥0

be real sequences in [0, 1] satisfying the following
conditions:

i) an + bn + cn = 1;

ii)
∑

n≥0(bn + cn) = ∞;

iii)
∑

n≥0(bn + cn)2 <∞;

iv)
∑

n≥0(bn + cn)(kn − 1) <∞; and

v)
∑

n≥0 cn <∞.

For arbitrary x0 ∈ K let {xn}n≥0 be iteratively defined by

xn+1 = anxn + bnT
nxn + cnun, n ≥ 0,

where {un}n≥0 is a bounded sequence of error terms in K. Suppose there exists a
strictly increasing function ψ : [0,∞) → [0,∞), ψ(0) = 0 such that

〈Tnx− x∗, j(x− x∗)〉 ≤ kn||x− x∗||2 − ψ(||x− x∗||), ∀x ∈ K.

Then {xn}n≥0 converges strongly to x∗ ∈ F (T ).

Remark 3 One can easily see that if we take in theorems 3 and 4, αn = 1
nσ ; 0 <

σ < 1, then
∑
αn = ∞, but

∑
α2

n = ∞. Hence the conclusions of theorems 3, 4 and
5 can be improved. The same argument can be applied on the results of [5].
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In this paper our purpose is to improve the results of Ofoedu [11] in a significantly
more general context by removing the conditions

∑
n≥0 α

2
n <∞ and

∑
n≥0 αn(kn −

1) < ∞ from the theorems 3 − 4. We also significantly extend theorem 2 from
uniformly smooth Banach space to arbitrary real Banach space. The boundedness
assumption imposed on K in the theorem is also dispensed with.

2.Main Results

The following lemmas are now well known.

Lemma 6 [14] Let J : E → 2E be the normalized duality mapping. Then for any
x, y ∈ E, we have

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉, ∀j(x+ y) ∈ J(x+ y).

Suppose there exists a strictly increasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0.

Lemma 7 [10] Let {θn} be a sequence of nonnegative real numbers, {λn} be a real
sequence satisfying

0 ≤ λn ≤ 1,
∞∑

n=0

λn = ∞

and let ψ ∈ Ψ. If there exists a positive integer n0 such that

θ2
n+1 ≤ θ2

n − λnψ(θn+1) + σn,

for all n ≥ n0, with σn ≥ 0, ∀n ∈ N, and σn = 0(λn), then limn→∞ θn = 0.

Theorem 8 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞
kn = 1 such that p ∈ F (T ) = {x ∈ K : Tx =

x}. Let {an}n≥0, {bn}n≥0
, {cn}n≥0

be real sequences in [0, 1] satisfying the following
conditions:

i) an + bn + cn = 1;

ii)
∑

n≥0 bn = ∞;

iii) cn = o(bn);

iv) lim
n→∞

bn = 0.
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For arbitrary x0 ∈ K let {xn}n≥0 be iteratively defined by

xn+1 = anxn + bnT
nxn + cnun, n ≥ 0, (2.1)

where {un}n≥0 is a bounded sequence of error terms in K. Suppose there exists a
strictly increasing function ψ : [0,∞) → [0,∞), ψ(0) = 0 such that

〈Tnx− p, j(x− p)〉 ≤ kn||x− p||2 − ψ(||x− p||), ∀x ∈ K. (2.2)

Then {xn}n≥0 converges strongly to p ∈ F (T ).

Proof. From the condition cn = o(bn) implies cn = tnbn, where tn → 0 as n→∞.
Since p is a fixed point of T , then the set of fixed points F (T ) of T is nonempty.

Since the sequence {un}n≥0 is bounded, we set

M = sup
n≥0

‖un − p‖ .

By lim
n→∞

bn = 0 = lim
n→∞

tn imply there exists n0 ∈ N such that ∀n ≥ n0, bn ≤ δ;

0 < δ = min
{

1
18[φ−1(a0)]2

,
φ−1(a0)

2(2 + L)φ−1(a0) +M
,

φ(2φ−1(a0))
12(1 + L)φ−1(a0)

[
2(2 + L)φ−1(a0) +M

]}
,

and

tn ≤
φ(2φ−1(a0))

12φ−1(a0)(M + 2φ−1(a0))
.

Define a0 := ‖xn0 − Tn0xn0‖‖xn0 − p‖ + (kn0 − 1)‖xn0 − p‖2. Then from (2.2), we
obtain that ‖xn0 − p‖ ≤ φ−1(a0).

CLAIM. ‖xn − p‖ ≤ 2φ−1(a0) ∀n ≥ n0.
The proof is by induction. Clearly, the claim holds for n = n0. Suppose it holds

for some n ≥ n0, i.e., ‖xn − p‖ ≤ 2φ−1(a0). We prove that ‖xn+1 − p‖ ≤ 2φ−1(a0).
Suppose that this is not true. Then ‖xn+1−p‖ > 2φ−1(a0)), so that φ(‖xn+1−p‖) >
φ(2φ−1(a0)). Using the recursion formula (2.1), we have the following estimates

‖xn − Tnxn‖ ≤ ‖xn − p‖+ ‖p− Tnxn‖
≤ (1 + L)‖xn − p‖
≤ 2(1 + L)φ−1(a0),
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‖xn+1 − p‖ = ‖anxn + bnT
nxn + cnun − p‖

= ‖xn − p− bn(xn − Tnxn) + cn(un − xn)‖
≤ ‖xn − p‖+ bn ‖xn − Tnxn‖+ cn ‖un − xn‖
≤ 2φ−1(a0) + 2(1 + L)φ−1(a0)bn + (M + 2φ−1(a0))cn
≤ 2φ−1(a0) + [2(2 + L)φ−1(a0) +M ]bn
≤ 3φ−1(a0).

With these estimates and again using the recursion formula (2.1), we obtain by
lemma 1 that

‖xn+1 − p‖2 = ‖anxn + bnT
nxn + cnun − p‖2

= ‖xn − p− bn(xn − Tnxn) + cn(un − xn)‖
≤ ‖xn − p‖2 − 2bn〈xn − Tnxn, j(xn+1 − p)〉

+2cn〈un − xn, j(xn+1 − p)〉
= ‖xn − p‖2 + 2bn〈Tnxn+1 − p, j(xn+1 − p)〉

−2bn〈xn+1 − p, j(xn+1 − p)〉
+2bn〈Tnxn − Tnxn+1, j(xn+1 − p)〉
+2bn〈xn+1 − xn, j(xn+1 − p)〉
+2cn〈un − xn, j(xn+1 − p)〉

≤ ‖xn − p‖2 + 2bn
(
kn||xn+1 − p||2 − φ(||xn+1 − p||)

)
−2bn ‖xn+1 − p‖2 + 2bn ‖Tnxn − Tnxn+1‖ ||xn+1 − p||
+2bn ‖xn+1 − xn‖ ||xn+1 − p||
+2cn(M + ‖xn − p‖) ‖xn+1 − p‖

≤ ‖xn − p‖2 + 2bn(kn − 1)||xn+1 − p||2 − 2bnφ(||xn+1 − p||)
+2bn(1 + L) ‖xn+1 − xn‖ ||xn+1 − p||
+2cn(M + ‖xn − p‖) ‖xn+1 − p‖ , (2.3)

where

‖xn+1 − xn‖ = ‖anxn + bnT
nxn + cnun − xn‖

= ‖bn(Tnxn − xn) + cn(un − xn)‖
≤ bn‖xn − Tnxn‖+ cn ‖un − xn‖
≤ 2(1 + L)φ−1(a0)bn + (M + 2φ−1(a0))cn
≤ [2(2 + L)φ−1(a0) +M ]bn. (2.4)
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Substituting (2.4) in (2.3), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − 2bnφ(2φ−1(a0))
+18[φ−1(a0)]2(kn − 1)bn
+6(1 + L)φ−1(a0)[2(2 + L)φ−1(a0) +M ]b2n
+6φ−1(a0)(M + 2φ−1(a0))cn

≤ ‖xn − p‖2 + (kn − 1)− φ(2φ−1(a0))bn.

Thus
φ(2φ−1(a0))bn ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (kn − 1),

implies

φ(2φ−1(a0))
j∑

n=n0

bn ≤
j∑

n=n0

(‖xn − p‖2 − ‖xn+1 − p‖2) +
j∑

n=n0

(kn − 1)

= ‖xn0 − p‖2 +
j∑

n=n0

(kn − 1),

so that as j →∞ we have

φ(2φ−1(a0))
∞∑

n=n0

bn ≤ ‖xn0 − p‖2 +
j∑

n=n0

(kn − 1) <∞,

which implies that
∑
bn < ∞, a contradiction. Hence, ‖xn+1 − x∗‖ ≤ 2φ−1(a0);

thus {xn} is bounded.
Now with the help (2.4) and the condition cn = o(bn), (2.3) takes the form

‖xn+1 − p‖2 ≤ ||xn − p||2 − 2bnφ(‖xn+1 − p‖)
+2bn[4[φ−1(a0)]2(kn − 1)
+2(1 + L)φ−1(a0)[2(2 + L)φ−1(a0) +M ]bn
+2φ−1(a0)(M + 2φ−1(a0))tn]. (2.5)

Denote

θn = ||xn − p||,
λn = 2bn,
σn = 2bn[4[φ−1(a0)]2(kn − 1)

+2(1 + L)φ−1(a0)[2(2 + L)φ−1(a0) +M ]bn
+2φ−1(a0)(M + 2φ−1(a0))tn].
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Condition lim
n→∞

bn = 0 assures the existence of a rank n0 ∈ N such that λn = 2bn ≤ 1,

for all n ≥ n0. Now with the help of
∑

n≥0 bn = ∞, cn = o(bn), lim
n→∞

bn = 0 and

Lemma 2, we obtain from (2.5) that

lim
n→∞

||xn − p|| = 0,

completing the proof.

Corollary 9 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn}n≥0 ⊂ [1,∞), lim

n→∞
kn = 1 such that p ∈ F (T ) = {x ∈ K : Tx =

x}. Let {αn}n≥0 ⊂ [0, 1] be such that
∑

n≥0 αn = ∞ and lim
n→∞

αn = 0. For arbitrary

x0 ∈ K let {xn}n≥0 be iteratively defined by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 0.

Suppose there exists a strictly increasing function ψ : [0,∞) → [0,∞), ψ(0) = 0 such
that

〈Tnx− p, j(x− p)〉 ≤ kn||x− p||2 − ψ(||x− p||), ∀x ∈ K.

Then {xn}n≥0 converges strongly to p ∈ F (T ).
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