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1.INTRODUCTION

In recent years a number of authors have considered error analyses for
known and new quadrature rules. For example see [1]-[8]. They have ob-
tained many new results on this topic - new quadrature rules and new kind of
estimations of errors.

In this paper we give a new approach to the problem of approximate
quadratures. A new kind of error bounds for some quadrature rules are
derived. We start from the well-known trapezoidal quadrature rule and de-
rive a new quadrature rule. We also establish error bounds for this new rule
and show that this new rule can be much better than the trapezoidal rule.
The main general idea is to find a quadrature formula for a class of practical
problems. In the present case we have in mind approximate calculations of
some special functions: Dawson integral ([ exp(#?)dt), Exponential integral
([.7exp(—t)/tdt = v+ Inx + [ (exp(t) — 1)/tdt, where v = 0.5772156649 is
the Euler constant), Sine integral ([ sint/tdt), Cosine integral ([.° cost/tdt =
y+Inz+ [y (cost—1)/tdt), Hyperbolic cosine integral, Hyperbolic sine integral,
Error function, Fresnel integrals, etc.

In Section 2 we give a general procedure for deriving of such a rule. In
Section 3 we give a particular rule and obtain the error bounds. In Section 4
we demonstrate the above assertion of the effectiveness of the new rule. We
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apply this rule to obtain approximate values of only few of the mentioned
special integrals (Dawson integral, Exponential integral) which is sufficient
to demonstrate the effectiveness of the new rule. We also demonstrate the
applicability of this new rule to arbitrary functions.

2. A GENERAL PROCEDURE

We consider the trapezoidal quadrature rule

[ £t =" [ra) + £0) + RS ()

Rip=-[ (t e b) 7ty )

R()= [ [; (t— a§b>2 - (b;“)2] 7 ()t (3)

Of course, the functions

where

or

and

are the Peano kernels.
We now define

Tr —a

R) = [ 0= "2 [f(@) + f@), € [a,l]. @

Let g(x) be an integrable function. Then we have

[ Rt 7

T —a

= [Cot) [ foyatdr — [ o)™ [7(a) + f(@)] dr
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/ab R(z)g(x)dx
- /abf(t)/tbg(x)dxdt—/abg(@ g [f(a) +

From (1), (2) and (6) we see that we can write

/abR(x)g(x)dx _ —/abg(x)dx / (t _ ; x) F(t)dt

what can be written in the form

[ ot = [t e (-5

In a similar way, from (1), (3) and (6) we get
/ab R(z)g(x)dx
— /abg(ac)da: /: B (t S —g $>2 @ _SCL)Q] f(t)dt

what can be written in the form

[ R@)gw)da

N R T R

From (8)-(10) we get the next two formulas

/ / dxdt/ 2 |
Ry T

/ / z)dadt — /
s
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and

f(z)]dx

f(z)] de.

(10)

(11)
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We can choose the function g(z) in different ways, depending of the un-
derlying problem. The different choices give different rules. Here we choose
g(x) = 1 since it is sufficient to show the effectiveness of the new rule. Note
also that for all integrals mentioned in Section 1 we can exactly calculate the
integral

/ab g(x)xf(x)dr = /b xf(z)dz, (g(z)=1).

a

3.A PARTICULAR RULE AND ERROR BOUNDS

If we choose g(x) =1 in (11) then we have

/ ”f(t)(b—t)dt - “‘4‘” - [ e

or

e [ swa =2 [ipwin - O

24/[ (t=a)’ (b—a)3_8<t_a—2kb>3

Hence, we get

F7(t)dt.

/abf(t)dt_ °
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where

12 b . . a+b\’
h= 242b+a/ [2<t_a) —(b—a) _8<t_ 2 )

Now it is not difficult to find that

1" (t)dt.

D, "
‘R 48‘2b+ ‘ ’Is o
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Of course, we supposed that 2b + a # 0.
The usual estimations of errors for quadrature rules (see for example [2],
[7]) are given by
(Rl <Cb—a)™ | (13)

where m = n+ 1. Note that for the above rule we have m = n+2. If a is close
to b, h = b— a, then this rule is of order O(h?), while the usual estimation (for
the trapezoidal rule) gives the order O(h?). Thus we can expect that this rule
will give better results than the trapezoidal rule. This will be demonstrated
in the next section.

We now formulate a formal result.

Theorem 1 Let f € C?*(a,b) and 2b+ a # 0. Then

/abf(t)dt: Qbia [‘;’/@btf(t)dtju (b;a) fla)| + R,

where
D 1
‘R 24 ‘2b+ ’ Hf H

If we choose g(x) =1 in (12) then we have

[ st~ = pay - [

= —Lbf’(t)dt/tb(t—a;x)dx

or

v @ [ rwar=2 [Mpwm - g

/f [t—a 4<t—a;b>2

Hence, we get

/abf(t)dt Qbia[ / f()dt+(b_4a) f(a)]nz
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where

po_1t

a+b\’
4%+a/ f [t_a 4@_ 2 )

Now it is not difficult to find that

dt.

_ _
A< o | | 6= a1
Note that for the above rule we have m = n + 2, where m and n are defined
n (13). If a is close to b, h = b — a, then this rule is of order O(h?), while
the usual estimation (for the trapezoidal rule) gives the order O(h?), when the
estimation contains the first derivative f'(z).

Finally, we formulate a corresponding formal result.

Theorem 2 Let f € C'(a,b) and 2b+ a # 0. Then

[/ = g2 |5 [ entoas O )] +

where

—a)* | 'l

s"(
27 12b+ a

4.NUMERICAL RESULTS

Since this new rule is obtained using the trapezoidal rule it is natural to
compare these two rules.
We now write the known compound trapezoidal formula

[ pttye = nf = +2f(xi+l)h i "

where ;.1 =x;+h, h=(b—a)/n,1=0,1,2,....n — 1.
We also write the compound formula

’ K 3 [Tit1 B2
/“ z:: 2001+ l2/x tf(t)dt"’zf(i’?i) + Ry, (15)

where ;.1 =x;+h, h=(b—a)/m,i=0,1,2,....m — 1.
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Example 1 We choose f(t) = exp(t?) and a =0, b= 1. Then

/texp(tQ)dt = ;exp(tQ) +C

such that i
Tit1

| 0t = S(exp(ay) - exp(a?)). (16)
If we apply the trapezoidal rule (14) with the above data and n = 1000 then we
get the approrimate result fol exp(t?)dt =~ 1.46265219895. If we apply the rule
(15) with (16) and m = 100 then we get [} exp(t?)dt ~ 1.46265197603. Since
the "exact” result is [ exp(t?)dt = 1.46265172958 we see that the errors are
4.69EF — 07 and 2.46 E — 07, respectively.

Remark 1 Note that we have to calculate the functions values f(x;) 1001
times if we apply the trapezoidal rule to obtain the error of order E — 07 and
we have to calculate the functions values f(x;) 101 times if we apply the new
rule to obtain the error of the same order EE— 07. Hence, we can say that the
improved rule is “ten times better” than the trapezoidal rule. This leave no
doubt which rule would be applied for this example.

Example 2 We choose f(t) = 22U r(0) =1 anda =0, b= 1. Then

t
1
/te}(p(?dt:exp(t)—t+0

such that it
/ tf(t)dt = exp(@it1) — Tiy1 — exp(z;) + ;. (17)

If we apply the trapezoidal rule (14) with the above data and n = 1000 then
we get the approrimate result fol f(t)dt ~ 1.31790219312. If we apply the rule
(15) with (17) and m = 100 then we get [y f(t)dt ~ 1.31790218314. Since
the "exact” result is [, f(t)dt = 1.317902151454404 we see that the errors are
1.42F — 08 and 2.42F — 08, respectively.

Remark 2 In the last example we got results similar to those of the first
example. Thus the observations from Remark 1 are valid in this case, too. Now
one can conclude that this new rule is effective only for examples of integrals
giwen in Section 1. It is not so. For that purpose we give the next example.
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Example 3 We choose f(t) = sin(t) and a = 10000, b = 10001. Then
/tsin(t)dt = —tcos(t) +sin(t) + C
such that
| 0t =~y cos(wign) + wscos(a) + sin(aig) — sin(@). (18)

If we apply the trapezoidal rule (14) with the above data and n = 1000 then we
get the approximate result ff sin(t)dt ~ —0.6948692101.. If we apply the rule
(15) with (18) and m = 5 then we get [’ sin(t)dt ~ —0.6948692604. Since the
exact result is [”sin(t)dt = — cos(1)+1 = —0.694869268 we see that the errors
are 5.81FE —08 and 7.5E — 09, respectively. Hence, we obtain ”200 times better
result” if we apply the new rule.

Remark 3 In fact, the last example shows that the new quadrature rule de-
pends on the interval of integration. This is a direct consequence of the esti-
mations of errors given in the theorems 1 and 2.

5.CONCLUSION REMARKS

The new quadrature rule is obtained as it is presented. We have to observe
that we can seek similar rules, for example, by considering integrals of the
form [° Py(t)f'(t)dt or generally of the form [’ P (t)f'(t)dt, where Py(t) and
Py (t) are polynomials of degree 2 and k > 2, respectively. Few examples with
these kinds of integrals were done but didn’t give significantly better results.
Thus they are not mentioned in this paper. It is also interesting fact that
the results can depend on the interval of integration and this can be used in
many practical situations. Here we have emphasized one of them. Finally, the
obtained rule is exact for polynomials of degree < 1 but its "order” is ~ O(h?).
This is also an interesting fact which deserves to be mentioned.
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