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CHARACTERISTIC
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Abstract. In this paper, we quickly review some basic facts from dis-
crete Morse theory, we introduce the Morse-Smale characteristic for a finite
simplicial complex and we give few examples of exact discrete Morse func-
tions on Möbius band, Klein bottle and torus.
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1. Introduction

Let K be a finite simplicial complex. A function f : K → R is a discrete
Morse function if for every simplex α(p) ∈ K we have:

(1) #{β(p+1) > α(p) | f(β) ≤ f(α)} ≤ 1 and
(2) #{γ(p+1) < α(p) | f(γ) ≥ f(α)} ≤ 1.

Example 1.1. One considers two simplicial complexes. We indicate
functions by writing next to each simplex the value of the function on that
simplex. The function (i) from the figure from below is not a discrete Morse
function as edge f−1(0) violates rule (2), since it has two lower dimensional
neighbors on which f takes on higher values. Moreover, the vertex f−1(5)
violates rule (1), since it has two higher dimensional neighbors on which f
takes on lower values. The function (ii) from the Figure 1 is a discrete Morse
function. Note that a discrete Morse function is not a continuous function
on K since we have not considered any topology on K. Rather, it is an
assignment of a single number to each simplex.
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Figure 1:

The other main ingredient in discrete Morse theory is the notion of a
critical point. A p-dimensional simplex α(p) is critical if the following relations
hold:

(1) #{β(p+1) > α(p) | f(β) ≤ f(α)} = 0 and
(2) #{γ(p+1) < α(p) | f(γ) ≥ f(α)} = 0.

For example, in Figure 1(ii), the vertex f−1(0) and the edge f−1(5) are
critical and there are no other critical simplices.

If K is a m-dimensional simplicial complex with a discrete Morse function,
then let µj denote the number of critical simplices of dimension j. For any
field F , let βj = dim Hj(K,F ) be the j-th Betti number with respect to F ,
j = 0, 1, . . . ,m.

Then the following relations also hold in this context:
(1) The weak discrete Morse’s inequalities.

(i) For each j = 0, 1, . . . ,m (where m is the dimension of K), µj ≥ βj;
(ii) µ0−µ1 +µ2−· · ·+(−1)mµm = β0−β1 +β2−· · ·+(−1)mβm = χ(K)

(Euler’s relation).
(2) Also, the strong discrete Morse’s inequalities are valid:

For each j = 0, 1, . . . ,m,

µj − µj−1 + · · ·+ (−1)jµ0 ≥ βj − βj−i + · · ·+ (−1)jβ0.

Let K be a simplicial complex containing exactly cj simplices of dimension
j, for each j = 0, 1, . . . ,m, where m = dim K. Let Cj(K, Z) denote the space
Zcj . More precisely, Cj(K, Z) denotes the free abelian group generated by the
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j-simplices of K, each endowed with an orientation. Then for each j, there
are boundary maps ∂j : Cj(K, Z) → Cj−1(K, Z), such that ∂j−1 ◦ ∂j = 0.

The resulting differential complex

0 −→ Cm(K, Z)
∂m−→ Cm−1(K, Z)

∂m−1−→ . . .
∂1−→ C0(K, Z) −→ 0

calculates the homology of K. That is, if we define the quotient space

Hj(C, ∂) = Ker (∂j)/Im (∂j+1),

then for each j we have the isomorphism

Hj(C, ∂) ∼= Hj(K, Z),

where Hj(K, Z) denotes the singular homology of K.
The discrete Morse theory is the main tool in studying the curvature

properties of a finite simplicial complex (see [3] and [4]).

2. The discrete Morse-Smale characteristic

Consider Km a m-dimensional finite simplicial complex.
The discrete Morse-Smale characteristic of K was considered in paper [7]

and it is a natural extension of the well-known Morse-Smale characteristic of
a manifold (see [2]).

Let Ω(K) be the set of all discrete Morse functions defined on K. It is
clear that Ω(K) 6= 0. Consider, for instance, the trivial example f(σ) =
dim σ, σ ∈ K.

For f ∈ Ω(K), let µj(f) be the number of j-dimensional critical simplices
of K, j = 0, 1, . . . ,m.

Let µ(f) be the number defined as follows:

µ(f) =
m∑

j=0

µj(f),

i.e. µ(f) is the total number of critical simplices of K. The number

γ(K) = min{µ(f) : f ∈ Ω(K)}

is called the discrete Morse Smale characteristic of K.
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So, the discrete Morse-Smale characteristic represents the minimal num-
ber of critical simplices for all discrete Morse functions defined on K.

In analogous way, one can define the numbers γj(K), for all j = 0, 1, . . . ,m,
by

γj(K) = min{µj(f) : f ∈ Ω(K)}
which represent the minimal numbers of critical simplices of j-th dimension
for all discrete Morse functions defined on K.

An extremely complicated problem in combinatorial topology represents
the effective computation of these numbers associated to a finite simplicial
complex. A finite algorithm for the determination of these numbers for any
simplicial complex is not yet known.

3. Exact discrete Morse functions and
F -perfect Morse functions on some

2-dimensional complexes

Consider Km a m-dimensional finite simplicial complex.
Let Hj(K, F ), j = 0, 1, . . . ,m be the singular homology groups with the

coefficients in the field F and let βj(K, F ) = rank Hj(K, F ) = dimF Hj(K, F ),
j = 0, 1, . . . ,m be the Betti numbers with respect to F .

For any f ∈ Ω(K), the following relations hold:

µj(f) ≥ βj(K, F ), j = 0, 1, . . . ,m

(the discrete weak Morse inequalities).

Definition 3.1. The discrete Morse function f ∈ Ω(K) is called exact
(or minimal) if µj(f) = γj(K), for all j = 0, 1, . . . ,m.

So, an exact discrete Morse function has a minimal number of critical
simplices for each dimension.

Definition 3.2. The discrete Morse function f ∈ Ω(K) is called F -
perfect if

µj(f) = βj(K, F ), j = 0, 1, . . . ,m.

Using the discrete weak Morse inequalities and the definition of the dis-
crete Morse-Smale characteristic, we obtain the inequalities:

µj(f) ≥ min{µj(f) : f ∈ Ω(K)} = γj(K) ≥ βj(K, F ).
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Theorem 3.3. The simplicial complex K has F -perfect discrete Morse
functions if and only if γ(K) = β(K,F ), where

β(K, F ) =
m∑

j=0

βj(K,F )

is the total Betti number of K with respect to the field F .

Proof. The direct implication follows in this way.
Let f ∈ Ω(K) be a fixed F -perfect discrete Morse function. Using the

weak Morse inequalities, it follows:

µ(f) =
m∑

j=0

µj(f) ≥
m∑

j=0

βj(K, F ) = β(K, F ).

So, µ(f) ≥ β(K, F ).
Using the definition of the Morse-Smale characteristic of K, we get:

γ(K) = min{µ(f) : f ∈ Ω(K)} ≥ β(K, F ).

Because f is a discrete F -perfect Morse function on K, we have: µ(f) =
β(K, F ).

On the other hand, we have the inequality:

γ(K) = min{µ(f) : f ∈ (K)} ≤ β(K, F ).

So, we get γ(K) ≤ β(K, F ) hence the desired relation follows.
For the converse implication, let f ∈ Ω(K) be a discrete Morse function.

We have that:

µ(f) =
m∑

j=0

µj(f) and β(K,F ) =
m∑

j=0

βj(K, F ).

Using the relation γ(K) = β(K, F ), it follows

m∑
j=0

[µj(f)− βj(K, F )] = 0.

From the discrete weak Morse inequalities, we get:

µj(f)− βj(K, F ) ≥ 0, j = 0, 1, . . . ,m.
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All in all, the following relation holds:

µj(f) = βj(K, F ), j = 0, 1, . . . ,m.

So, f is a discrete F -perfect Morse function. �

If K is a simplicial complex of dimension m, one knows that Cj(K, Z),
j = 0, 1, . . . ,m, is a finitely generated free abelian group on as many gener-
ators as there are j-simplices in K. Since subgroups and quotient groups of
finitely generated groups are again finitely generated, it follows that Hj(K, Z)
is finitely generated. Therefore, by the fundamental theorem about such
groups, we can write

Hj(K, Z) ' Aj ⊕Bj,

where Aj is a free group and Bj is the torsion subgroup of Hj(K, Z).
So, the singular homology groups Hj(K, Z), j = 0, 1, . . . ,m, are finitely

generated. For any j = 0, 1, . . . ,m one obtains

Hj(K, Z) ' (Z⊕ · · ·⊕)⊕ (Znj1
⊕ · · · ⊕ Znjβ(j)

)

where Z is taken βj times in the free group and j = 0, 1, . . . ,m, represent
the Betti numbers of K with respect to the group (Z, +), i.e. βj(K, Z) =
rank Hj(K, Z), for j = 0, 1, . . . ,m.

Example 3.4. One considers the Mobius band M . The singular homol-
ogy of M over Z is:

Hj(M, Z) = Z, for 0, 1 and H2(M, Z) = 0.

From the universal coefficients formula for homology (see [2] p. 118) it
follows

Hk(M, Z) ' (Hk(M, Z)⊗ Zp)⊕ Tor(Zp, Hk−1(M, Z)), k ∈ Z,

where Tor(Zp, Hk−1(M, Z)) is the torsion product of the groups (Zp, +) and
Hk−1(M, Z).

Then we have:

H0(M, Z2) ' Z2, H1(M, Z2) ' Z2, H2(M, Z2) ' {0}

and it follows

β0(M, Z2) = 1, β1(M, Z2) = 1, β2(M, Z2) = 0.
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Then the total Betti number is

β(M, Z2) =
2∑

j=0

βj(M, Z2) = 1 + 1 + 0 = 2.

According to our Theorem 3.3, we have the relation: γ(M) = β(M, Z2) =
2. This means that one can build on the Mobius band M a discrete Morse
function with exactly two critical simplices. A such function is, according to
the definition, Z2-exact and it is defined in Figure 2. One has encircled the
critical simplices.

Figure 2: A Morse function with two critical simplices on Mobius band M

Example 3.5. One considers the Klein bottle K with the triangulation
given in Figure 3.
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Figure 3: A Morse function with four critical simplices on Klein bottle K
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The singular homology of K over Z is:

H0(K, Z) = Z, H1(K, Z) = Z2 ⊕ Z and H2(K, Z) = 0.

Then we have:

H0(K, Z2) ' Z2, H1(K, Z2) ' Z2 ⊕ Z2, H2(K, Z2) ' Z2.

It follows

β0(K, Z2) = 1, β1(K, Z2) = 2, β2(M, Z2) = 1.

Then the total Betti number is

β(K, Z2) =
2∑

j=0

βj(K, Z2) = 1 + 2 + 1 = 4.

According to our Theorem 3.3, we have the relation:

γ(K) = β(K, Z2) = 4.

This means that one can build on the Klein bottle K a discrete Morse
function with exactly four critical simplices. A such function is, according to
the definition, Z2-exact and it is defined in Figure 3. Again one has encircled
the critical simplices.

Example 3.6. One considers the torus S1 × S1 with the triangulation
given in Figure 4.

The singular homology of S1 × S1 over Z is:

H0(S
1 × S1, Z) = Z, H1(S

1 × S1, Z) = Z⊕ Z and H2(S
1 × S1, Z) = Z.

Then we have:

H0(S
1 × S1, Z2) ' Z2, H1(S

1 × S1, Z2) = Z2 ⊕ Z2, H2(S
1 × S1, Z2) ' Z2.

It follows

β0(S
1 × S1, Z2) = 1, β1(S

1 × S1, Z2) = 2, β2(S
1 × S1, Z2) = 1.

Then the total Betti number is

β(S1 × S1, Z2) =
2∑

j=0

βj(S
1 × S1, Z2) = 1 + 2 + 1 = 4.
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Figure 4: A Morse function with four critical simplices on the torus S1 × S1
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According to our Theorem 3.3, we have the relation:

γ(S1 × S1) = β(S1 × S1, Z2) = 4.

This means that one can build on the torus S1 × S1 a discrete Morse
function with exactly four critical simplices. A such function is, according to
the definition, Z2-exact and it is defined in Figure 4. One has again encircled
the critical simplices.

References

[1] M. Agoston, Algebraic topology, Marcel Dekker Inc., New York and
Basel, 1976.

[2] D. Andrica, Critical point theory and some applications, Cluj Univer-
sity Press, 2005.
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