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Abstract. In this paper we have explained one parameter Dual Lorentzian
Spherical Motions in three dimensional dual Lorentzian Space and given rela-
tions which are concerned with velocities and accelerations of this motion. In
the original part of this paper relations have been obtained related to acceler-
ation and acceleration axes of one parameter Dual Lorentzian Motion.
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1. Introduction

Dual numbers were introduced in the 19th century by Clifford [1] and
quickly found application in description of movements of rigid bodies in three
dimensions [2], [3] and in description of geometrical objects also in three di-
mensional space [4]. The relevant formalism was developed. It has contempo-
rary application within the curve design methods in computer aided geometric
design and computer modeling of rigid bodies, linkages, robots, mechanism
design, modeling human body dynamics etc. [5], [8]. For several decades there
were attempts to apply dual numbers to rigid body dynamics. Investigators
showed that the momentum of a rigid body can be described as a motor that
obeys the motor transformation rule; hence, its derivative with respect to time
yields the dual force. However, in those investigations, while going from the
velocity motor to the momentum motor, there was always a need to expand
the equation to six dimensions and to treat the velocity motor as two separate
real vector.

E. Study devoted special attention to the representation of directed lines by
dual unit vectors and defined the mapping that is known by his name. There
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exists one-to-one correspondence between the vectors of dual unit sphere S2

and the directed lines of space of lines IR3 , [3].
Considering one and two parameters spherical motions in Euclidean space,

Muller [9] has given the relations for absolute, sliding, relative velocities and
pole curves of these motions. Also, one parameter dual motions in three di-
mensional dual space ID3, the relations about the velocities and accelerations
of these motions have been investigated. Moreover relations have been given
related to acceleration and acceleration axes of one parameter dual motions,
[10]. If we take Minkowski 3-space IR3

1 instead of E3 the E. Study mapping
can be stated as follows: The dual time-like and space-like unit vectors of
dual hyperbolic and Lorentzian unit spheres H̃2

0 and S̃2
1 at the dual Lorentzian

space ID3
1 are in one-to-one correspondence with the directed time-like and

space-like lines of the space of Lorentzian lines IR3
1 , respectively, [11].

One parameter dual Lorentzian motions in three dimensional Minkowski
space IR3

1 and the relations concerning the velocities, accelerations and accel-
eration axes of these motions have been given by [12]. Moreover, theorems and
corollaries about velocities (absolute, sliding, relative velocities) and accelera-
tions (absolute, sliding, relative, Coriolis accelerations) of one parameter dual
Lorentzian motions in three dimensional dual Lorentzian space ID3

1 have been
obtained in [12].

We hope that these results will contribute to the study of space kinematics
and physics applications.

2.Basic Concepts

If a and a∗ are real numbers and ε2 = 0, the combination ã = a + εa∗ is
called a dual number, where ε is dual unit. The set of all dual numbers forms
a commutative ring over the real number field and denoted by ID. Then the
set

ID3 =
{
~̃a = (A1, A2, A3)|Ai ∈ ID, 1 ≤ i ≤ 3

}
is a module over the ring which is called a ID-Module or dual space and
denoted by ID3. The elements of ID3 are called dual vectors. Thus, a dual

vector
−→̃
a can be written −→̃

a = −→a + ε
−→
a∗

where −→a and
−→
a∗ are real vectors at IR3.
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The Lorentzian inner product of dual vectors
−→̃
a and

−→̃
b in ID3 is defined

by 〈
−→̃
a ,
−→̃
b

〉
=

〈
~a,~b

〉
+ ε

(〈
~a,
−→
b∗

〉
+

〈−→
a∗ ,~b

〉)
with the lorentzian inner product ~a and ~b〈

~a,~b
〉

= −a1b1 + a2b2 + a3b3

where −→a = (a1, a2, a3) ,
−→
b = (b1, b2, b3). Therefore, ID3 with the Lorentzian

inner product

〈
−→̃
a ,
−→̃
b

〉
is called three dimensional dual Lorentzian space and

denoted by of ID3
1 , [11]. A dual vector

−→̃
a is said to be time-like if −→a is

time-like (〈−→a ,−→a 〉 < 0), space-like if −→a is space-like (〈−→a ,−→a 〉 > 0 or −→a = 0)
and light-like (or null) if −→a is light-like (or null) (〈−→a ,−→a 〉 = 0,−→a 6= 0 ). The

set of all dual vectors such that
〈−→̃
a ,
−→̃
a

〉
= 0 is called the dual light-like (or

null) cone and denoted by Γ. The norm of a dual vector is defined to be

∥∥∥−→̃a ∥∥∥ = ‖−→a ‖+ ε

〈−→a ,−→a∗〉
‖−→a ‖

, −→a 6= 0.

Let
−→̃
a and

−→̃
b be two future-pointing (respectively, past-pointing) unit dual

time-like vectors in ID3
1. Then we have〈

−→̃
a ,
−→̃
b

〉
= − cosh Θ.

If
−→̃
a and

−→̃
b are two space-like unit vector and Sp

{
−→̃
a ,
−→̃
b

}
is time-like (i.e.,

the space spanned by
−→̃
a and

−→̃
b is time-like), and Sp

{
−→̃
a ,
−→̃
b

}
is space-like

(i.e., the space spanned by
−→̃
a and

−→̃
b is space-like) then〈

−→̃
a ,
−→̃
b

〉
= cosh Θ
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and 〈
−→̃
a ,
−→̃
b

〉
= cos Θ

respectively, where Θ = θ + εθ∗ is dual angle between
−→̃
a and

−→̃
b unit dual

vectors [11]. The angle Θ is formed with angle θ between directed lines ~a, ~b
and θ∗ is the shortest Lorentzian distance between these lines.
The dual Lorentzian and dual hyperbolic unit spheres in ID3

1 are given by

S̃2
1 =

{−→̃
a = −→a + ε

−→
a∗ ∈ ID3

1

∣∣∣ 〈−→̃
a ,
−→̃
a

〉
= 1,−→a ,

−→
a∗ ∈ IR3

1

}
and

H̃2
0 =

{−→̃
a = −→a + ε

−→
a∗ ∈ ID3

1

∣∣∣ 〈−→̃
a ,
−→̃
a

〉
= −1,−→a ,

−→
a∗ ∈ IR3

1

}
respectively. These are two components of H̃2

0 . We call the components of H̃2
0

passing through (1, 0, 0) and (−1, 0, 0) a future-pointing dual hyperbolic unit
sphere, and denote them by H̃2+

0 and H̃2−
0 respectively. With respect to this

definition, we can write

H̃2+
0 =

{−→̃
a = −→a + ε

−→
a∗ ∈ H̃2

0

∣∣∣−→a is a future− pointing time− like unit vector
}

and

H̃2−
0 =

{−→̃
a = −→a + ε

−→
a∗ ∈ H̃2

0

∣∣∣−→a is a past− pointing time− like unit vector
}

The dual Lorentzian cross-product of
−→̃
a and

−→̃
b in ID3

1 is defined as

−→̃
a ∧

−→̃
b = −→a ∧

−→
b + ε

(−→a ∧
−→
b∗ +

−→
a∗ ∧

−→
b

)
with the Lorentzian cross-product of ~a and ~b

−→a ∧
−→
b = (a3b2 − a2b3, a3b1 − a1b3, a1b2 − a2b1)

where −→a = (a1, a2, a3),
−→
b = (b1, b2, b3), [11].
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Let f be a differentiable dual function. Thus, Taylor expansion of the dual
function f is given by

f (x+ εx∗) = f (x) + εx∗f ′ (x)

where f ′ (x) is the first derivatives of f , [10].

3.Dual Lorentzian Spatial Motions

The two coordinate systems which represent the moving space IL and the
fixed space IL′ in IR3

1, respectively. Let us express the displacements (IL/IL′)
of IL with respect to IL′ in a third orthonormal right-handed system (or

relative system)
{
Q;
−→̃
r1 ,

−→̃
r2 ,

−→̃
r3

}
.

Considering E. Study theorem, it is obvious that the dual points of the unit
dual Lorentz spheres K̃ ′, K̃ and K̃1 with common centre M̃ correspond one to

one −→ei ,
−→
e′i and −→ri (1 ≤ i ≤ 3) axes in dual Lorentzian space ID3

1, respectively.
Therefore, IL1/IL, IL1/IL

′ and hence IL/IL′ Lorentzian motions can be

considered as dual Lorentzian spherical motions K̃1

/
K̃, K̃1

/
K̃

′
and K̃

/
K̃ ′,

respectively.
Let K̃, K̃ ′ and K̃1 be unit Lorentzian dual spheres with common centre M̃

and
{
M̃ ;

−→̃
e1 ,

−→̃
e2 ,

−→̃
e3

}
,
{
M̃ ;

−→
ẽ′1 ,

−→
ẽ′2 ,

−→
ẽ′3

}
and

{
M̃ ;

−→̃
r1 ,

−→̃
r2 ,

−→̃
r3

}
be the orthonormal

coordinate systems, respectively, which are rigidly linked to these spheres.
Here

−→̃
ei = −→ei + ε

−→
e∗i ,

−→
ẽ′i =

−→
e′i + ε

−→
e′i

∗,
−→̃
ri = −→ri + ε

−→
r∗i , 1 ≤ i ≤ 3

and
−→
e∗i =

−−→
M̃O ∧ −→ei ,

−→
e′i

∗ =
−−→
M̃O′ ∧

−→
e′i ,

−→
r∗i =

−−→
M̃Q ∧ −→ri , 1 ≤ i ≤ 3.

Since each of these systems are oriented to the same direction, one can write

R̃ = ÃẼ, R̃ = Ã′Ẽ ′ (3.1)

where Ã and Ã′ represent a special dual orthogonal matrices. Here

R̃ =


−→̃
r1−→̃
r 2−→̃
r 3

 , Ẽ =


−→̃
e1−→̃
e2−→̃
e3

 , Ẽ ′ =


−→
ẽ′1−→
ẽ′2−→
ẽ′3

 .
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The elements of positive dual orthogonal matrices Ã and Ã′ are differentiable
functions of dual parameter t̃ = t+εt∗. Throughout this paper we will take t∗ =
0, unless otherwise mentioned. Hence one-parameter motion is determined by
the matrix Ã (orÃ′) and called as one-parameter dual Lorentzian spherical
motion.
If we consider equation (3.1), then differential of the relative orthonormal
coordinate system R̃ with respect to K̃ and K̃ ′ are

dR̃ = Ω̃R̃, d′R̃ = Ω̃′R̃ (3.2)

where Ω̃ = dÃÃ−1 and Ω̃′ = dÃ′
(
Ã′

)−1

, respectively, [12]. The matrices Ω̃

and Ω̃′ are anti-symmetric matrices in the sense of Lorentzian. Let us denote
the permutations of the indices i, j, k = 1, 2, 3; 2, 3, 1; 3, 1, 2; by Ω̃ij = Ω̃k. Then
we can get that

Ω̃ =

 0 Ω̃3 −Ω̃2

Ω̃3 0 −Ω̃1

−Ω̃2 Ω̃1 0

 , Ω̃i = Ωi + εΩ∗
i , 1 ≤ i ≤ 3.

In the similar way, the matrix Ω̃′ is obtained to be

Ω̃′ =

 0 Ω̃′
3 −Ω̃′

2

Ω̃′
3 0 −Ω̃′

1

−Ω̃′
2 Ω̃′

1 0

 , Ω̃′
i = Ω′

i + εΩ′
i
∗, 1 ≤ i ≤ 3.

where Ω̃i = Ωi + εΩ∗
i and Ω̃′

i = Ω′
i + εΩ′

i
∗ (1 ≤ i ≤ 3) are dual Pfaffian forms.

Let us consider a point X̃ on unit dual Lorentz sphere K̃1. The coordinates
of the point X̃ is X̃i = xi + εx∗i (1 ≤ i ≤ 3). Thus differential of the vector
−−→
OX̃ =

−→̃
X = X̃T R̃ with respect to moving unit dual Lorentz sphere K̃ is

d
−→̃
X =

(
dX̃T + X̃T Ω̃

)
R̃. (3.3)

Therefore, the relative velocity vector of X̃ becomes
−→̃
Vr = d

−→̃
x
/
dt. Similarly

the differential of point X̃ with respect to fixed unit dual Lorentz sphere K̃ ′ is

d′
−→̃
X =

(
dX̃T + X̃T Ω̃′

)
R̃. (3.4)
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So, the absolute velocity vector is expressed to be
−→̃
Va = d′

−→̃
X

/
dt. If the point

X̃ is fixed on moving unit dual Lorentz sphere K̃, since
−→̃
Vr = 0, we reach

dX̃T = −X̃T Ω̃. (3.5)

Substituting equation (3.5) into equation (3.4) we find for the sliding velocity
of X̃ that −→̃

Vf = df
−→̃
X = X̃T

(
Ω̃′ − Ω̃

)
R̃. (3.6)

If, at this point, we consider the dual vector

−→̃
Ψ = −Ψ̃1

−→̃
r1 + Ψ̃2

−→̃
r2 + Ψ̃3

−→̃
r3

in which the components are Ψ̃i = Ω̃′
i − Ω̃i (1 ≤ i ≤ 3), then equation (3.6)

reduces to

df
−→̃
X =

−→̃
Vf =

−→̃
Ψ ∧

−→̃
X, (3.7)

where
−→̃
Ψ =

−→
ψ +ε

−→
ψ∗ is a dual Lorentzian Pfaffian vector. The real part

−→
ψ and

the dual part
−→
ψ∗ of

−→̃
Ψ correspond to the rotation motions and the translation

motions of the spatial motion.

4.Acceleration and Acceleration Axes

From equation (3.7) it is easily seen that the sliding acceleration of dual

vector
−→̃
X is obtained as follows.

−→̃
J = d

(
df
−→̃
X

)
=

.−→̃
Ψ ∧

−→̃
X +

〈−→̃
Ψ ,

−→̃
Ψ

〉−→̃
X −

〈−→̃
Ψ ,

−→̃
X

〉−→̃
Ψ (4.1)

where

.−→̃
Ψ = d

−→̃
Ψ is the instantaneous dual angular acceleration vector. Taking

equation (3.6) and (4.1) into consideration, we find sliding velocity and sliding
acceleration in matrix form as follows

dfX̃ = M̃X̃ (4.2)

and
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J̃ =

( .

M̃ +M̃2

)
X̃ (4.3)

respectively. Here M̃ =
(
Ω̃′ − Ω̃

)T
. From equation (4.3) it is clear that the

components of dual Lorentzian acceleration J̃ are homogenous linear functions

such that the coordinates of
−→̃
X are X̃i (1 ≤ i ≤ 3). Hence the determinant D̃

of coefficients matrix of equation (4.3) is

D̃ = det

( .

M̃ +M̃2

)
=

∥∥∥∥∥−→̃Ψ ∧
.−→̃
Ψ

∥∥∥∥∥
2

=

∥∥∥∥−→̃Ψ∥∥∥∥2
∥∥∥∥∥

.−→̃
Ψ

∥∥∥∥∥
2

sinh2 ∇̃ = Ψ̃2
.

Ψ̃ 2 sinh2 ∇̃

(4.4)
where

∇̃ = α̃+ εα̃∗ (4.5)

is a dual Lorentz angle between the dual space-like vectors such that the space

spanned by these two dual space-like vectors is time-like.

∥∥∥∥−→̃Ψ∥∥∥∥ = ψ+εψ∗ = Ψ̃

is called instantaneous dual Lorentzian rotation angle, where ψ =
∥∥∥~ψ∥∥∥ and

ψ∗ =
〈~ψ,~ψ∗〉
‖~ψ‖ . If both vectors

−→̃
Ψ and

.−→̃
Ψ correspond to the same line, then this

line has no acceleration. It is very clear that in this case D̃ = 0.

Definition 1. If a unit dual vector X̃ of the unit dual Lorentz sphere

and its dual acceleration vector
−→̃
J are linearly dependent, then the point X̃ is

called dual acceleration pole and line
−→̃
X is called acceleration axis for the dual

Lorentzian motion.

If we denote the dual Lorentzian acceleration vector
−→̃
X as

−→̃
V and consider

equation (4.1) then we obtain〈−→̃
Ψ ,

−→̃
V

〉−→̃
Ψ −

.−→̃
Ψ ∧

−→̃
V = ΛΨ̃2

−→̃
V (4.6)

where
Λ̃ = λ+ ελ∗ (4.7)
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is a dual scalar. Equation (4.6) correspond to three homogeneous linear equa-

tions depend on the coordinates X̃1, X̃2, X̃3 of
−→̃
V . Thus, the determinant of

the coefficients matrix must be zero for non-zero solutions. So

Λ̃3 − Λ̃2 − K̃Λ̃ + K̃ cosh2 ∇̃ = 0 (4.8)

where

K̃ = k + εk∗ =

.

Ψ̃ 2

Ψ̃4
=

.

ψ2

ψ4
− ε

2
.

ψ
(
2ψ∗

.

ψ−
.

ψ∗ ψ
)

ψ5
(4.9)

Considering

Λ̃ = λ+ ελ∗ , Λ̃2 = λ2 + 2ελλ∗ , Λ̃3 = λ3 + 3ελ2λ∗

cosh ∇̃ = coshα+ εα∗ sinhα , cosh2 ∇̃ = cosh2 α+ εα∗ sinh 2α
(4.10)

then equation (4.8) reduces to the following equations:

λ3 − λ2 − kλ+ k cosh2 α = 0 (Real part)

λ∗ = −k∗ cosh2 α+k∗λ−kα∗ sinh 2α
3λ2−2λ−k (Dual part).

(4.11)

Since equation (4.8) or equation (4.11) have generally three roots as Λ̃1, Λ̃2,
Λ̃3 so there are three lines `1, `2 and `3 which are called instantaneous dual
Lorentzian acceleration axes.
These three axes are skew lines in space ID3

1.
The special case of k∗ = 0 is of importance. From equation (4.9) we see that
there are three distinct situation:

i)
.

ψ = 0,

ii) 2ψ∗
.

ψ−
.

ψ∗ ψ = 0,
iii) ψ∗ = 0.
Now let us investigate these special cases individually.

i) If
.

ψ = dψ = 0 then ψ = constant and k = 0. Therefore, the roots of
equation (4.8) find to be Λ̃1 = Λ̃2 = 0 and Λ̃3 = 1. So, considering equation
(4.8), we find the acceleration axes of one-parameter dual Lorentzian motion
as

`1 = `2 =

〈−→̃
Ψ ,

−→
Ṽ1,2

〉−→̃
Ψ −

.−→̃
Ψ ∧

−→
Ṽ1,2 = 0
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and

`3 =

〈−→̃
Ψ ,

−→̃
V3

〉−→̃
Ψ −

.−→̃
Ψ ∧

−→̃
V3 − Ψ̃2

−→̃
V3 = 0

ii) If 2ψ∗
.

ψ−
.

ψ∗ ψ = 0 then ψ∗ = c1ψ
2. Therefore, the pitch of the instan-

taneous helicoidal motion is ψ∗

ψ
= c1ψ, where c1 is a constant. So the orbit of

a point during instantaneous motion is a circular helix.

iii) If ψ∗ = 0 then dψ∗ =
.

ψ∗ = 0, i.e. k∗ = 0. In this case, there is a fixed

point on instantaneous dual axis
−→̃
Ψ. As ψ∗ corresponds to the translational

part of the dual Lorentzian motion, this special case is a Lorentzian spherical
motion. Thus, acceleration axes form a pencil of lines whose vertex is the
centre of the sphere.
Now we consider equation (4.11) . From equation (4.11) we see that the three
λi (and also three λ∗i ) are either all real or two of them are imaginary. To
discuss the roots we define a new unknown S̃ as follows:

Λ̃ = S̃ + 1
3
. (4.12)

Therefore, substituting the last equation into equation (4.8), we find

S̃3 − B̃S̃ − C̃ = 0 (4.13)

where

S̃ = µ+ εµ∗, B̃ = b+ εb∗ = K̃ + 1
3
, C̃ = c+ εc∗ =

(
1
3
− cosh2 ∇̃

)
K̃ + 2

27
,

b = k + 1
3
, b = k + 1

3
, b∗ = k∗

c = 1
3
k − cosh2 αk + 2

27
, c∗ =

(
1
3
− cosh2 α

)
k∗ − kα∗ sinh 2α.

(4.14)
If we separate the real and imaginary parts of equation (4.13), we reach

µ3 − bµ− c = 0

and
µ∗ = b∗µ+c∗

3µ2−b (4.15)

respectively. The roots of the cubic equation of µ are real and the values of µ∗

are also real iff
4b3 + 27c2 ≤ 0
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or, from equation (4.14)

k

(
4k2 + 7k +

8

3
− 18k cosh2 α− 4 cosh2 α+ 27 cosh4 α

)
+

8

27
≤ 0.

Therefore, the following theorem can be given.

Theorem 1. In three dimensional dual Lorentzian space ID3
1, three accel-

eration axes of one-parameter dual Lorentzian motion is real iff

k

(
4k2 + 7k +

8

3
− 18k cosh2 α− 4 cosh2 α+ 27 cosh4 α

)
+

8

27
≤ 0.
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