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ABSTRACT. In this work, we describe a spectral method coupled with a
variational decomposition technique for solving a biharmonic equations. We
construct new spaces. Using one approximation by a spectral method we can
bring the resolution of Dirichlet problem for A2 to a finite number of Dirichlet
approach for -A. Some new theoretic spectral approaches are given, numerical
solutions and illustrations are established to prove our theoretic study.
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1. INTRODUCTION

Let 2 be a bounded domain of R? (d = 1,2, 3 in practice) of smooth bound-
ary F'r(€2). We consider the following problem:

Au=f in Q

(DP) U= g on Fr(Q);
g—;‘ =gy on Fr(Q),

where A? = A(A) is the biharmonic operator. The reduction of boundary
problems to equivalent problems is doing by several theoretic methods. We
are interested in this work to one direct method based on the Green formula.
This approach is used with success, by several authors, to resolve mathematical
modelling problems.
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The solution of biharmonic problem (DP) is studied by some authors and
by several methods, so by finite difference methods, finite element methods
and duality ...

J.W. McLaurin ([5], 1974) has given a decomposition technique for the
problem (DP). He has proved that a solution of this problem by finite differ-
ence methods is equivalent to resolve a sequence of Dirichlet problems for the
operator A.

R. Glowinski and O. Pironneau ([4], 1977) have, only, established this de-
composition method using the finite element methods correspondent to same
problem on a domain of R2. They have proved that a solution of this problem
by this method is equivalent, also, to resolve a sequence of Dirichlet problems
for the operator A and have given the error estimate:

[ = unl g1 (o) + 1 AU+ @nll o) = O ).

Our work consists to give a spectral approach to this problem and estimate
the error theoretically on new space. We illustrate our numerical approach by
numerical tests on some examples.

Indeed, if we resolve the biharmonic problem by spectral method based
on the direct variational formulation, then we can give as advantage of this
method the following :

i) we store one convergent approximation of the solution u in norm ||. | ;g
in place of the norm |[.[| g2 (q) ;

ii) We obtain a convergent approximation ¢y of —Au.

However, we will think that, in spite of the simplicity of the space Vy, the
practice problem is to compute (uy, px).

The basic idea in this case, consists to introduce a space My C Vy of
multipliers such that

Vy = V]?f e Mpy

where

Vy ={vy €Vx : vy =0on Fr(Q)}

In this paper, we prove that a resolution of Dirichlet problem for biharmonic
operator by Galerkin spectral method is equivalent to resolve a sequence of
Dirichlet problems for operator A by the same method, and to resolve well
conditioned linear system. We prove some results of convergence which are
effecient and improve previously obtained results. We illustrate these results
by numerical trials.
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2. A CONTINUOUS PROBLEM

Let © be a bounded domain of R? (d = 1,2,3 in practice) with smooth
boundary Fr(Q2). Define the following problem:

Ay =f inQ,
(DP) u=q on Fr(Q),
g—; =g, on Fr(Q),

where g1, go and f are given functions. This problem is equivalent to find
(u,w) such that

( —Aw=f in Q,
—Au=w on €,

(EP)
u=q on Fr(Q),

\ g—z =gy on Fr(Q).
We prove that if f € L%(Q), g1 € H2(Fr(Q)) and g, € H2(Fr(Q)) then (DP)

has one and only one solution in H?((2).
Theorem 1. [}/ For all reals 0 < v < p we have

||u||HM(Q) < N ||UHHV(Q) ) Vu e Vﬁ,(Q),
Theorem 2. [5/ Define the space W° as follows:

W= {(v, ¥) € Hy(Q) x L*(Q), Y € H'(Q), S((v, ¥), ) = 0},

where

S((v, ), p) :/QVUV,Lde —/QQb,udx.

Then, a mapping : (v, V) € W9 — 191 12(q is a morm on WO equivalent to the
norm:

2 2
(v, ) e W — (|U|H1(Q) + ||¢||L2(Q))1/2-
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Further
W= {(v, ¥) € Hy(Q) x L*(Q), —Av=1}.
We have
Theorem 3. [6] Let A\ € H 2(Fr(2)). The problem
A%u =0 in Q,
—Au= X\ on Fr(f), (1)

u=0 on Fr(Q),

has one and only one solution in H*(Q)NH(Q), and the linear operator A

defined by

A\ = —g—z on F'r(Q)

is an isomorphism from H=2(Fr()) into H2(Fr(RQ)). Also, the bilinear form
al(.,.) defined by
a(A, p) =< AX, p>

where < ., . > is the bilinear form of duality between H~2(Fr(Q)) and Hz (Fr(5)),
is continuous, symmetric and H~z(Fr(Q))-elliptic. Namely there ezist an
a > 0 such that

We will reduce the (DP) problem to a variational equation in H~2 (Fr(Q)).
Indeed, let wy and ug be solutions of

—Awy=f in
(2)

We have then
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Theorem 4. [/ Let u be a solution of (DP). The trace A of —Au on
Fr(8) is an unique solution of variational equation

< AN, p>=< %—‘;“ — o, >, Vupe€H I(Fr(Q), A€ H 2(Fr(Q).

Remark 1. To determine aa—“no we resolve two Dirichlet problems (2), (3), and

we resolve more again two Dirichlet problems to obtain the couple (u, w).

3. MAIN RESULTS

3.1. Approximation of (DP) by Spectral Method
We consider the following finite dimension space:

VN = SpCLTL {L07L1, ceey LN}

where L(z) are Legendre polynomials. Let
V]{)f = {UN eVy UNipr) — O}

and let My C Vi be such that Vy =V & My. We introduce the following
spaces :

(UN, Q/JN) c VN X VN, UN\FT(Q) = 01, and
Wy = )
Jo VonViuy de = [ onpy de + fFT(Q) Gapin do,  Vuy € Vi

W](\),:{(UN, ¢N)€V]8XVN7/VUNVMNdx —/¢NMNd$=07 VMNEVN}-
0 Q

3.1.1. Choice of V}) and Appropriate Basis for Galerkin Method

If we have a nonhomogenous Dirichlet problem associated to the operator
(A) and posed on the space Vi, we can define one transformation for which
this problem will be equivalent to one posed homogenous problem on V}J .

The Galerkin approach consists plainly to replace the test functions space
by polynomials space.

The effectiveness of numerical method to resolve the linear system Au = F
wich has been given in the abstract form will be subordinate to :
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i) the way from which space V() approaches the space V;
ii) steepness and the simpleness calculus of coefficients a;; and F};
iii) steepness to resolve a linear system Au = F.

To satisfy the 1st criterion i), we will consider the space V() of
enough large dimension.

To satisfy the 2nd and 3rd critera ii) and iii), it will require obtain
one sufficiently deep matrix A such that the linear system Au = F
does not enough at cost (in time and required space machine), and
such that there are not coefficients a;; to compute.

What is to be done in the choice of a basis of V3(2) such that the
linear system to resolve will be possible 7

To answer this question, we need the following lemma :
Lemma 1. [6/ Put

G o) = allale) — Lunole)
aj, = (¢ (x), ¢;(2)) bjr = (0x(2), 0(x)), k,j=0,1,..,N—=2.
Then,
Cljk ==
0 if k#j,
ckcj(ﬁ—i-ﬁ), Zf kz]’
by =bjk = ¢ —crcj, if k=j+2,
0 else,
and

V]?f(l) = Span {QSO(‘T)’ ¢1(2), ..., ¢N—2(x)} )
where (.,.) is an L*-inner product.

3.1.2. Choice of My
We select My C Vi such that Vy = V) & My, where

VJ\07 = Span {QSO’ ¢17 "'7¢N—2} .
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Let ¢_1,¢n_1 be two functions such that ¢_1, ¢n_1 € Vi and ¢_1,¢0,
O1, ..., ON_2, On_1 are linearly independent.
Proposition 1. For d =1, the space My is given by

My = Span {6 1(x), oy1(2)} .

For d = 2, the space My is given by
o1 (2)pi(y), dn_1(7)pi(y), —1<j<N-—1
Gi(x)p-1(y), di(x)dn-1(y), 0<i<N-2

For d = 3, the space My 1is given by
[ 9i(2)0;(y)d-1(2), ¢i(2)d;(Y)Pn-1(2), —1<i, j <N —1; )

My = Span 0i(2)0-1(y) ok (2), ¢i(x)Pn-1(y)Pk(2), —5 Sﬁ ]ZC é ]]\\f[: 12:

My = Span

([ 0-1(2)9;(y) ok (2), On-1(2)0;(y)Pu(2), 0<j k<N -2
Remark 2. The choice of functions ¢_1,pn_1 is not unique, then the
choice of space My 1is not unique.
Now, we give some choices of ¢_1,dn_1:

Remark 3. Z) ¢_1 = Lo, ¢N—1 = L1
i) ¢_1 = Lo, ¢n—1 = Ln_1 — Ly
i) ¢—1 = L1 — Lo, ¢n—1 = Ln—1.
Numerical tests are proofs to the good choice.
We approache then (DP) by

Find (uy,¢n) € Wy  such that
(DP)n
Jn(un, on) < jn(vw, ¥n ), Y(ow, ¥n) € W,

where

Jn(vn, ¥YN) = /I@/}NI dx —/vadx

This problem has one and only one solution.
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4. CONVERGENCE RESULTS
Consider the following problem:
Au=g in Q,
(DP)o u=20 on Fr(Q),

g—z =0 on Fr(Q),
which is equivalent to the following optimization problem:

Find u € HZ(Q) such that
(DP)

Jo(u) < Jo(v), Vv e HZ(Q),

1
Jg(v):§/Q|Av|2dx —/ngd:c.

Now, we prove some results of convergence.

Lemma 2. Let u be a solution of problem (DP)y. Then there exist a
constant ¢ > 0 independent of N such that

where

lu— UN‘Hl(Q) + [[Au + SONHL2(Q) <c( inf o (Ju = UN|H1(Q) + [[Au+ ¢NHL2(Q))
(UNwa)EWN

i W )

Proof. Let u be a solution of problem (DP)y, then

—/VUV (Au) dx:/AuAvdx:/gvdx, Vv € D(Q)
Q Q Q

but D(Q) is dense in Hj(S), then

—/VUV(Au)aM:/gvdas, Yo € Hi ().
Q Q

We have
S((v, ), ) = /Q VoVpds — /Q Ypde,
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and

S((v, ), —Au) = — /Q VoV(Auw)de + /Q Y Audz — /Q gude + /Q wAudz.
Let (vy, ¥n) € WY and uy € Vi, then
S((uny — v, o8 = Un), Au+pn) = [o V(uy — on)V(Au + py)dz
— Jolen — ¥n)(Au + py)dx
= S5((un —vn, on — ¥n), Au) + S((uv —vn, v — Un), pn)
= — [ gluy —on)dz — [,(on — ¥n)Audz
+ Jo V{uy — o) Vandz — [, (on — ¥n)pnds
= — [o(on — y)Audz — [, guydr + [, guyde

+ Jo VuyVundz — [ VonVuyde — [, onvpnds + [, onpnde.

Or

/VUNVuNdx:/goN,uNdx and /cpszNdx:/ngdx,
Q Q Q Q

then
[ ow = )@t e = =S(ux = v o = ), Aut )
By continuity of S ((.,.),.), we have
| [o(on — ¥n)(Au + pn)de| < c(juy — ON| ) 1A% + w1

+ lon = Unll 2 AU+ vl 1)

Using Theorem 2, it holds,

|U|H1(Q) < () ||¢||L2(Q)
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and

oo — ) (Au+ on)da| < c(e(Q) lon = Unll 2 1A + pnll g
+llon = Unll 2 1AU + vl 1))
< d(Q) llon = ¥l o) [AU + vl 1 gy
where d(£2) = max(cc(Q2), ¢). Thus
lon = Unlltai) = Jolon — Un)(Au+ pn)de — [o(on — ¥n)(Au + y)de
lon — ¢N’|i2(n) < d(Q) llen = Unll 2 1A + pnl 110

+llon = ¥nll o) AU+ Un | 12 -
It holds that

lon — %ZJN”LQ(Q) <d(Q) [[Au+ ,UN”Hl(Q) + [|Au + 1/JN||L2(Q) (4)
and

[u—un ) + AU+ onll12@) < [u—Onlgiq) + [y = unlmg)
+HllAu+9nll 2 ) + lon = ¥nllL20)
< Ju = onlg o) + 1AU+ Nl 20y + (14 () lon — ¥nll 2 -
Using inequality (4), we obtain

[u—un|gg) + AU+ Nl 120) < (Ju = On[grq) + |Au + Pl 2,

(L4 c(€2))) - (d() |Au + pn [l 1) + [Au + Un [l 2 (),
hence

[u—unlpi + AU+ onll 2y < [u—On[gq) + 2+ c(Q)) [[Au + Pl 20
(1 +c(2))d(Q) |Au + pin [l 1 g
< M (lu—onlmo + [Au+Un |l o) + 1AU + v [l 1 0))-
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where

¢ =max(2 + ¢(Q), (1 + ¢(2))d(Q)).
Therefore, it holds

lu—un|gq) + AU+ N2 < inf (ju—on|gq) + |Au+ Unl2q)
(VN YN )EWR

80 il )
Lemma 3. Let u € H*(Q) be a solution of optimization problem (DP)q.

If w € H*2(Q), k > 2, then there exist a constant ¢ > 0 independent of N
such that

[u— un| gy + |AU+ o 2q) < CNl_k(WHkH(Q) + |Aul i)
Proof. Let (vy, ¥n) € Wy and uy € V. Put

UN = N + YN, vy € Va.

Then, we have
S(<UN> wN)a VN):Oa (5)

/AUVN dxr = —/ VuVvy dx —I—/ @VN do
Q Q Fr(Q) on

0
Or a—z |Fr@)= 0, so one has

/AuuNdx: —/VuVuNdx. (6)
Q Q

By (5) and (6), we have

/(Au—i—iﬂN)l/N dr = / V(vy —u)Vuy dx
Q 0

< lu—onlgo) [vnlmg) -

/(Au + Yn)vy dx
Q

By Theorem 1, we obtain

|VN|H1(Q) < cN? ||VN||L2(Q)
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SO
/Q(AU +¢n)vy dr| < eN? fu — UN|H1(Q) HVN||L2(Q)
And
HI/NHiQ(Q) Jo(uny — Av)vy dz + [ (Au+ hy)vy de
< [[Au — pnll 20y 18 1| 20y + N2 [u = Un gy VNl 20
= ||VN||L2(Q) < [|Au - NNHL?(Q) +eN? Ju — UN‘Hl(Q)
Hence
AU+ Pl 2 ) = |Au + vy — pnll 2y
< [ Au = pn 2y + Vvl 29y < 211AU = pn | 12g) + eN? [u = On g
Then

lu — UN|H1(Q) + [|Au + ¢N||L2(Q) < (1+eN?)fu— UN’Hl(Q) +2[|Au — NN”LZ(Q)

Y (vn,n) € WR, Vun € Vy.
Thus

inf (ju—v + || Au+ < (14cN?) inf |u—uv
(vNﬂZ)N)EW]%(‘ N|H1(Q) H wN”LQ(Q)) - ( )UNG\/}g ’ N‘Hl(Q)

2,0, 10— il

Lemma 2 implies

lu — uN|H1(Q) + [[Au + ‘PNHL2(Q) < ¢((1+eN?) info u— UN|H1(Q)

UNEVN
+ mf HAU—MNHHl ))-

Further, we have

: —1-k
U}ig‘f/ﬁ u— UN|H1(Q) <cN |U|Hk+2(sz)

inf At o) < N Dl
MNE
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then, it holds
[u — un| gy + |AU + o 2iq) < e((1+ cN?)eN—1=F |ul ey + cN'H | Aul i)
< N ([l grsa () + 1Dt grig))-

Theorem 5. Le u € H*(Q)) be a solution of a problem (DP), then for all
integer k > 2, if uw € H*2(Q) we have

[u = unll ) + [Au+ on |20 < cN'TH [ ll grrra e
If ue H(Q), k > 3, then
1 —1—k
lu = un|l 20 + N2 AU+ @l 2q) < N [ ll g e
Proof. We will reduce the problem (PD)y to one variational problem in

My. Indeed, let ay(.,.) : My X My — R be a bilinear form defined for
/\N € MN by

/ VwnyVoydr =0, Yoy €Vy , wy — Ay € Vy; (7)

Q

/VuNVUNdx = / wyvydr , Yoy € Vy , uy € Vy; (8)
Q Q

an(An, pin) = /

wN,uNdac—/VuNV,uNdx, Yy € My. 9)
Q Q

Lemma 4. A bilinear form ay(.,.) is positive definite and symmetric on
My x My . Moreover

an(An, Aon) = / winwandz, VAN, Aoy € My,
Q

where win, way are solutions of (7) associated to Ay, Aoy -
Proof. By definition one has

GN()\1N7 )\QN) Z/

’LUlN)\QNdZL‘ —/VUlNV)\gNdiL‘, VMNGMN,
Q Q

where wyy, won are solutions of (7) and (8) respectively.
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Put )\QN = (/\QN — U)QN) + WaN, then

aN(/\lNa )\2]\[) = fQ WINWa2N dr — fQ VulNngN dx + fQ VulNV(sz — )\2]\7) dx

— fQ wlNV(ng — /\QN) dx

One has u;y € VY, using (7) one has

/ VulNV(ng — )\QN) dr = / wlNV(ng — /\QN) dz.
Q Q

Then

an(Ain, Aan) = / wiNwen dT, Y AN, Aoy € My.
Q
It is obvious that ay(.,.) is symmetric and coercive.

Theorem 6. Let (uy, wy) be a solution of (DP)y and Ay the compo-
nent of wy in My. Then Ay is an unique solution of the linear variational
problem:

an(An, pin) = fQ VuonViuy dr — fQ won N dT — fFT(Q) Gonjin do,

(10)
Vuy € My, An € My
where woy 1S a solution of
/ Vwon Vuoydx = / fondr , Yoy € VY , won € Vy (11)
Q Q
and ugn 1S a solution of
Jo Vuoy Voyde = [ won vy de , Yoy € Vy
(12)

UoN = 1 on Fr(Q).
Proof. We have

an(An, pn) = [ Onpnde — [o VanViy de
= Jo(wn —won)pundz — [, V(uy — uon)Viy da
= [o VuonVunydzr — [wonpndr — ([o VunViuy dz — [ wypy dz).
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But (uy,wy) € Wy, hence
/ VunVpy dr — / wypy dr = / Gonpindo,  Vun € My
Q Q Fr(Q)
Therefore

an(An, pn) = / VuonVuydz —/ UJONMNde—/ Ganpindo,  Vuy € My.
Q Q Fr(Q)

Existence and uniqueness of a solution of (10) is a direct consequence from Lax-
Milgram Lemma. A system is symmetric because a form ay(.,.) is symmetric.
Remak 4. The problem (10) is equivalent to a system from which associ-
ated matrix is positive definite and symmetric.
Now we prove a problem (10) is equivalent to a system from which associ-
ated matrix is positive definite.

5. NUMERICAL APPROACH

5.1. Construction of Linear System Associated to the Variational
Problem (10)

Put

In(pw) Z/VUONVMN dx —/UJONMN dx —/ Gopn do,  NVun € My
9] Q Fr(Q)

Then solve a problem (10) is equivalent to resolve the following system :

an(An, pn) = In(pn), Viun € My, Ay € My . (13)
Define the set
( (-1, N-1} it d=1

<_17j)7 (N_laj)a_lngN_l

if d=2
(i, 1), (i, N —1), 0<i<N-—2

I, =
(i7j7 _1)? (ivjaN_l)a_1§i>j§N_1a

(i, -1, k), G, N—1,k) , -1<i<N—-10<k<N-2 % if d=3,

<_17jak)7 (N_]-7.]7k)7 OSJ,]{?SN—Q
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and
gbzdngngbwgbld d= 17 27 3
where i? = (iy, iy, ..., ig). So (13) is equivalent to
an (AN, @) = In(dia), i € Iy
(14)
jiely
Namely
> Noan (b0, dpa) = In(dpa), K € I (15)
jlely
and
2, if d=1,
p = Card(l;) = dim(My) = ¢ 4N, if d=2,

6N?+2, if d=3.
5.2. Computation of the Matrix Ay

Denote By the basis of My and wjay, ujay solutions respectively of
fQ Vw]dNVUNdI' = O7 \V/UN € V]?[, U}de € VN, wde — ijd € V]?[,

Jo VujayVoyde = [ wjayvnde, Yoy € Vi, ujay € Vy,

further we have

ajiji = an(pja, pia) = /

wdeQSidda: — / Vudengiddl”, id, jd €1y
Q Q

It results that a computation of a matrix Ay requires the computation of 2p
Dirichlet problems for an operator A.

We have

Theorem 7. For all integer N > 1, we have

1

an IvoAN 72y < anOns An) < Bllvodnl ey, VAN € M,

where a and ( are independents of N and Ay .
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Proof. Let \y € My, we have

an(An, An) :/w?\, dx,
0

where wy is a solution of (7). Let wy € H'(Q) be a solution of
Awy =0 in Q,
Wy = Ay on Fr(Q),

then one has

Van(An, An) = ”wN||L2(Q)

<y =Nl 2 9) + 10N p2iq) = oy — w2 0) + V< AN, YAy >

Put |A| = ||A||EC(L2(FT(Q)),L2(FT(Q)))? it holds that
|< AN, p>[ < [A] ||>‘||L2(FT(Q)) ||N||L2(FT(Q)) , VA pe LA(Fr(Q))

= van(An, Av) < [lwy — @N||L2(Q) + V4] ||’YO)\N||L2(F7«(Q)) :

and we have \
[wn — w2 ) < N2 flay]

H%(Q) ’
and
H’JJNHH%(Q) < ANl o))
||/\N||H1(FT(Q)) < cN ||)\N||L2(F7"(Q)) :
Namely
Van(w, Av) < e [Y0AN | L2(pr(e)) -
And

2 2
‘N ||70UN||L2(FT(Q)) < ||UN||L2(Q)7 Vuy € V.

It holds that
2 1 2 1 2
an(An, An) = HwNHL2(Q) 2 CN H’YO”LUNHH(Fr(Q)) = CN H’Yo)\NHL'Z(Fr(Q))-
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Proposition 2. (Condition Number of the Matriz Ay) We have
cond(A) = O(N),

where A is a square matriz associated to the problem (10).
Proof. Let A be a square inversible matrix N x N. We have

cond(A) = [|A]| . HA’IH ,

where ||.|| is a matrix norm associated to canonical euclidean norm of RY. If
A is positive definite and symmetric then

)\max
cond(A) =

)
)\min

where .. 18 the largest eigenvalue and A, is the smallest eigenvalue of A.
By Theorem 7, there exist two constants a and 5 > 0 such that

1
O‘N ||IYOAN||%2(F7"(Q)) <an(An, An) <8 ||70/\N||iz(pr(g)) ,  VAn € My.

Put nAn)
— _an(NAN)
Pmax = SUP o ANIE,
AN EMy—{0} L2(Fr()

: an (AN, AN)
Prin = inf NN AN
o /\NGMN*{O}”FYO)\N”LQ(Fr(Q))’

then we have

1
max < d min > AT
P < B and puypn > aN

where pnay 18 the largest eigenvale and py,;, is the smallest eigenvalue of Ay.
Therefore, we have
1 S E j pmax
Pmin « Pmin
5.3. Algorithm (Conjugate Gradient Method Applied to Varia-
tional Problem (10)

< ¢eN = cond(A) = O(N)

We introduce the isomorphism 7y : My — RP defined as follows :

p
Un € My, pny = Zui%

i=1
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N = {, p2, ..., pp}y, Vun € Mn.

Then
an(An, in) = (ANTNAN, TNUN)Ns VAN, v € My

and

/ VUONVMN diﬂ—/ wON,UNdx —/ QQNNNdU = (bN, TNMN)N, VMN € My,
Q Q Fr(Q)

where (.,.)y is the inner euclidien scalar of R? and ||.||, is the associated

norm.
Algorithm :
Step 1: k=0, let \}; € My be an arbitrary initial data.

g = ANTNAy — by, dy =gy
Step 2 : If [|g% ||y < ¢ stop, else put

b = ARy
n (ANd?,,dﬁ,)N

TN)\”NH =1y — pndyy

gyt = g% — puAndy

and e
N 5 9N N

_ (g
P = (g% 9N

Ay = g+ Sy

Step 3: k<« k+ 1 and return to step 2.
Numerical Results :
Example 1. Consider the following problem :

( A%y = —1287% cos(4rx) in Q =]—1,+1[,

u=0 on Fr(Q),

— =0 on Fr(Q).
| o Q)
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|l

Figure 1: exact solution u(z) = (sin(27z))?

This problem has one and only one solution : u(x, y) = (sin(27x))>.

We have:
If we select the 3rd choice of the space My with

¢_1 =Ly — Ly,

(bel = LNfla

then we have

Figure 2: approach solution for N=12
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Figure 3: Comparison between exact and approach solutions for N=12

)

Figure 4: approach solution for N=14

-1

-1

Figure 5: Comparison between exact and approach solutions for N=14
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i

04

| " \

o -0.5 0.5 1

Figure 6: approach solution for N=16

w©

Figure 7: Comparison between exact and approach solutions for N=16
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Example 2. Consider the following problem :

(

A= 24(1 — 22)2 + 24(1 — y?)? + 32322 = 1)(3y> — 1) in Q =]—1,+1[,

) u=0 on Fr(Q),

— =0 on Fr(Q).
e Q)

This problem has one and only one solution: u(x, y) = (1—2?)*(1—y?)%. We
have

Figure 8: exact solution
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Figure 9: exact solution with contour

If we select the 1st choice of the space My with

(bfl = L07
(bel = L17

then we have

Figure 10: approach solution with line of contour for N=2
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Figure 11: approach solution with lines of contour for N=4

6. CONCLUSION

We will say that developped methods are globally interesting when we
dispose beforehand a good and well program to resolve the Dirichlet approach
problem. One generalization of this problem is given in ([2]). An other more
intersting problem is to study the evolution problem and the estimate of error
for this last.
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