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Introduction

The immersions of a Riemannian n−manifold M into a Euclidean space have a
great research field almost in all branches of mathematics and physics and has been
extensively studied. Gauss map x is one of the special type of these. In general, it
assigns to a point p of M the n-plane through the origin of EN and parallel to the
tangent plane of x (M) at x (p) and is a map of M into the Grassmann manifold
Gn,N = O (N) /O (n) × O (N − n) . According to Obata [1] , the Gauss map of an
immersion x into SN is meant a map of M into the Grassmann manifold Gn+1,N+1

which assigns to each point p of M the great n− sphere tangent to x (M) at x (p), or
the (n+ 1)− plane spanned by the tangent space of x (M) at x (p) and the normal
to SN at x (p) in EN+1. More generally, with an immersion x of M into a simply
connected complete N− space V of constant curvature there is associated a map
which assigns to each point p of M the totally geodesic n− subspace tangent to
x (M) at x (p) . Such a map is called the (generalized) Gauss map. Thus the Gauss
map in our generalized sense is a map: M → Q, where Q stands for the space of all
the totally geodesic n− subspaces in V.

The purpose of his paper; first to obtain a relationship among the Ricci form
of the immersed manifold and the second and third fundamental forms of the im-
mersion, and then to give a geometric interpretation of the third fundamental form
in this case by using the notion of Gauss map. Also he showed that the Gauss
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map associated with a minimal immersion is conformal if and only if the manifold
is Einsteinian.

On the other hand, the geometry of Hessian manifold is new and fruitful area
for scientists because of having close analogy with Kaehlerian manifolds, affine dif-
ferential geometry and statistics.[3− 7] Inspite of its importance a little is known
about its geometric structures.

In the present work, first we give the basic notations for Hessian manifolds then
construct the Gauss map of Hessian manifolds in a classical point of view. Also giving
the relations between Kaehlerian and Hessian structures we obtain new results in
terms of Kozsul forms[2].

1. Hessian structures [3]

Definition 1.1. A Riemannian metric g on a flat manifold (M,D) is called a
Hessian metric if g can be locally expressed by

g = Ddϕ

that is

gij =
∂2ϕ

∂xi∂xj

where
{
x1, ..., xn

}
is an affine coordiante system withrespect to D. Then the pair

(D, g) is called a Hessian structure on M, and ϕ is said to be a potential of (D, g).
A manifold M with a Hessian structure (D, g) is called a Hessian manifold and is
denoted by (M,D, g) .

A Riemannian metric on a flat manifold is a Hessian metric if it can be locally
expressed by the Hessian with respect to an affine coordinate system. On the other
hand, a Riemannian metric on a complex manifold is said to be Kaehlerian metric
if it can be locally given by the complex Hessian with respect to a holomorphic
coordinate system.

The tangent bundle over a Hessian manifold admits a Kaehlerian metric induced
by the Hessian metric.

Definition 1.2. A Riemannian metric g on a complex manifold is said to be a
Hermitian metric if

gij = gij = 0

We denote the Hermitian metric by

g =
∑

gijdz
idzj .
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Definition 1.3. A Hermitian metric g on a complex manifold (M,J) is said
to be Kaehlerian metric if g can be locally expressed by the complex Hessian of a
function ϕ

gij =
∂2ϕ

∂zi∂zj

where
{
z1, ..., zn

}
is a holomorphic coordinate system. The pair (J, g) is called a

Kaehlerian structure on M . A complex manifold M with a Kaehlerian structure
(J, g) is said to be a Kaehlerian manifold and is denoted by (M,J, g) .

Proposition 1.1. Let g be a Hermitian metric on a complex manifold M. Then
the following conditions are equivalent

(1) g is Kaehlerian metric
(2) The Kaehlerian form ρ is closed.

Let us introduce the Kaehlerian form for (J, g) .

Definition 1.4. For a Hermitian metric g we set

ρ (X,Y ) = g (JX, Y )

Then the skew-symmetric bilinear form ρ is called a Kaehlerian form for (J, g) and
using a holomorphic coordiante system we have

ρ =
√
−1
∑

gijdz
i ∧ dzj

Proposition 1.2. Let (M,D) be a flat manifold and g a Riemannian metric on
M. Then the following conditions are equivalent

(1) g is a Hessian metric on (M,D) .
(2) gT is a Kaehlerian metric on (TM, JD) .

2. Hessian curvature tensors

Definition 2.1. Let (D, g) be a Hessian structure and let γ = ∇ − D be the
difference tensor between the Levi-Civita connection ∇ for g and D. a tensor field
Q of type (1, 3) defined by the covariant differential

Q = Dγ

of γ is said to be the Hessian curvature tensor for (D, g) .The components Qi
jkl of Q

with respect to an affine coordinate system
{
x1, ..., xn

}
are given by

Qi
jkl =

∂γi
jl

∂xk
, [3] .
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[3] .

Proposition 2.1. Let gij = ∂2ϕ
∂xi∂xj . Then we have

(1) Qi
jkl = 1

2
∂4ϕ

∂xi∂xj∂xk∂xl − 1
2g

rs ∂3ϕ
∂xi∂xk∂xr

∂3ϕ
∂xj∂xl∂xs .

(2) Qijkl = Qkjil = Qilkj = Qjilk. [3] .

Proposition 2.2. Let R be the Riemannian curvature tensor for g. Then

Rijkl =
1
2

(Qijkl −Qjikl) , [3] .

Proposition 2.3. Let RT be the Riemannian curvature tensor on the Kaehlerian
manifold

(
TM, J, gT

)
. Then we have

RT
ijkl

=
1
2
Qijkl ◦ π, [3] .

3.Hessian sectional curvature

Definition 3.1. Let Q be a Hessian curvature tensor on a Hessian manifold
(M,D, g) . We define an endomorphism Q̂ on the space of symmetric contravariant
tensor fields of degree 2 by

Q̂ (ξ)ik = Qik
jl ξ

jl.

The endomorphism Q̂ is symmetric with respect to the inner prouct 〈, 〉 induced
by the Hessian metric g. In fact, by Proposition 2.1 we have

〈Q̂ (ξ) , η〉 = 〈ξ, Q̂(η)〉, [3] .

Definition 3.2. Let ξx 6= 0 be a symmetric contravariant tensor field of degree
2. We put

q(ξx) =
〈Q̂ (ξx) , ξx〉
〈ξx, ξx〉

,

and call it the Hessian sectional curvature for ξx, [3] .

Definition 3.3. If q(ξx) is a constant c for all symmetric contravariant tensor
field ξx 6= 0 of degree 2 and for all x ∈ M, then (M,D, g) is said to be a Hessian
manifold of constant Hessian sectional curvature c, [3] .
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M. Yildirim Yilmaz, M. Bektaş - The Gauss map of Hessian manifolds in...

Proposition 3.1. The Hessian sectional curvature of (M,D, g) is a constant c
if and only if

Qijkl =
c

2
(gijgkl + gilgkj) , [3] .

Proposition 3.2. The following condition (1) and (2) are equivalent
(1) The Hessian sectional curvature of (M,D, g) is a constant c.
(2) The holomorphic sectional curvature of

(
TM, J, gT

)
is a constant −c, [3] .

Corollary 3.1. Suppose that a Hessian manifold (M,D, g) is a space of constant
Hessian sectional curvature c. Then the Riemannian manifold (M, g) is a space form
of constant sectional curvature − c

4 . [3] .

Now let us consider a Hessian domain (Ω, D, g = Ddϕ) in Rn of constant Hessian
sectional curvature c as indicated [3].

Proposition 3.3. The following Hessian domains are examples of spaces of
constant Hessian sectional curvature 0.

(1) Euclidean space
(

Rn, D, g = Dd

(
1/2

n∑
i=1

(
xi
)2))

.

(2)
(

Rn, D, g = Dd

(
n∑

i=1
ex

i

))
.

Proposition 3.4. Let c be positive real number and let

Ω =

{(
x1, ..., xn

)
∈ Rn

∣∣∣∣∣xn >
c

2

n−1∑
i=1

(
xi
)2}

,

and let ϕ be a smooth function on Ω defined by

ϕ = −1
c

log

{
xn − 1

2

n−1∑
i=1

(
xi
)2}

.

Then
(
Ω, D, g = D2ϕ

)
is a simply connected Hessian manifold of positive constant

Hessian sectional curvature c.

Hence the following theorem can be proved as a consequence of the properties
above.

It is really surprising that (Ω, g) is isometric to hyperbolic space form(
H
(
− c

4

)
, g
)

of constant sectional curvature −c/4;

H =
{(
ξ1, ..., ξn−1, ξn

)
∈ Rn |ξn > 0

}
,

g =
1

(ξn)2

{
n∑

i=1

(
dξi
)2 +

4
c

(dξn)2
}
.
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Proposition 3.5. Let ϕ be a smooth function on Rn defined by

ϕ = −1
c

log

(
n∑

A=1

e−cxA
+ 1

)
,

where c is a negative constant. Then
(
Rn, D̃, g = D̃2ϕ

)
is a simply connected Hes-

sian manifold of negative constant Hessian sectional curvature c. The Riemannian

manifold (Rn, g) is isometric a domain of the sphere
n+1∑
i=1

ξ2A = −4
c defined by ξA > 0

for all A. [3] .

From now on let V denote one of the following simply-connected complete Hes-
sian manifold of dimension N.

According to the fact that the tangent bundle over a Hessian manifold admits
a Kaehlerian metric and using Proposition 1.2. , the bundle F (V ) on V can be
identified one of the following due to the type of V.

i) The complex Euclidean space CN , (c = 0),
ii) The complex hyperbolic space HN (C) , (−c < 0),
iii) The complex projective space PN (C) , (−c > 0) .
The bundle F (V ) of the orthonormal frames V can be identified with the group

G (n) as follows according to the type of V
i) The unitary group U (N + 1) ,
ii) The special unitary group SU(1, N),
iii) The projective unitary group PU (N + 1) , [8],[9] , [10] .
Let F (V ) be a complex N− dimensional Kaehlerian manifold with complex

structure J. We can choose a local field of orthonormal frames e1, ..., eN , e
∗
1 =

Je1, ..., e
∗
N = JeN in F (V ) with respect to the frame field of F (V ) chosen above,

let w1, ..., wN , w1∗, ..., wN∗. be the field of dual frames .
Let w =

(
wi

j

)
i, j = 1, ..., 2N be the connection form of M. Then we have

wa
b = wa∗

b∗ , wa
b∗ = −wa∗

b , wa
b = −wb

a, wa
b∗ = wb

a∗

where a, b = 1, ..., N. We denote by Ω =
(
Ωi

j

)
the curvature form and write

Ωi
j =

1
2

∑
k,l

Ri
jklw

k ∧ wl.

We set

ξa =
1
2

(ea − iea∗) ξa =
1
2

(ea − iea∗) ,

θq = wa + iwa∗ , θa = wa − iwa∗
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Then {ξa} form a complex basis of T 1,0
X (F (V )) and {ξa} form a complex basis

of T 1,0
X (F (V )) . Then Kaehlerian metric gT is given by

gT =
∑

a

θa ⊗ θ
a

Moreover we set

θa
b = wa

b + iwa∗
b , θa

b
= wa

b − iwa∗
b

Ψa
b = Ωa

b + iΩa∗
b , Ψa

b = Ωa
b − iΩa∗

b

Then we obtain

dθa = −
∑

θa
b ∧ θb , θa

b + θb
a = 0 (1)

dθa
b = −

∑
θa

c ∧ θc
b + Ψa

b , Ψa
b =

∑
c,d

Ka
bcd
θc ∧ θd

Ka
bcd

=
1
2

[Ra
bcd +Ra

b∗c∗d∗ + i (Ra
bcd∗ −Ra

b∗cd)] .

We know that F (V ) is constant holomorphic sectional curvature c if and only if

Ka
bcd

=
c

4
(δacδbd + δabδcd)

or
ψa

b =
c

4

(
θq ∧ θb + δab

∑
θc ∧ θτ

)
(2)

[11] .
Let M be a Hessian manifold isometrically immersed into the space V by a

mapping x : M → V, F (M) denote the bundle M and B the set of elements b =
(p, e1, ..., eN , e∗1, ..., e

∗
N ) that b = (p, e1, ..., eN , e∗1, ..., e

∗
n) ∈ F (M) and

(x (p) , e1, ..., eN , e∗1, ..., e
∗
N ) ∈ F (V ) where ei, e

∗
i ,1 ≤ i ≤ N are identified with

dx (ei) .
Then Φ : B →M can be viewed as a principal bundle U (n)×U (N − n) and x̃ :

B → F (V ) = G (N) is the natural immersion defined by
x̃ (b) = (x (p) , e1, ..., eN , e∗1, ..., e

∗
N ) .

We know take a complex coordinate system
{
z1, ..., zn

}
in M. We set

Za =
∂

∂za
, Za = Za =

∂

∂za , a = 1, ..., n

We extend a Hermitian metric g to a complex symmetric bilinear form in T c
x (M) .

We put
gAB = g (ZA, ZB) A,B = 1, ..., N, 1, ..., N
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Then we have
gab = gab = 0

and gab is a Hermitian matrix.
We write

ds2 = 2
∑
a,b

gabdz
adzb

for the metric g.
Let wa

b and wa be the 1-forms on B induced form θa
b and θa by the map x̃. Then

we have
wr = 0 (3)

and the Hessian metric ds2 on M is given by

ds2 =
∑

i

(wi)
2

where from now on we agree on the following ranges of indices

1 ≤ i, j, k, l, ... ≤ n, n+ 1 ≤ r, s, t, ... ≤ N

Furthermore from (2) we obtain

wir =
∑

j

Arijwj , Arij = Arji .

dwi =
∑

j

wj ∧ wji.

dwij =
∑

wik ∧ wkj −
∑

r

wir ∧ wjr −
c

4
wi ∧ wj

The curvature forms Ωij of M can be written as

Ωij =
1
2

∑
k,l

Kijklwk ∧ wl.

We obtain

Kijkl = − c
4

(δikδjl − δilδjk)−
∑

r

(ArikArjl −ArilArjk) . (4)

Obviously Kijkl give the components of the curvature tensor of M.
At a point b = (p, e1, ..., en, e∗1, ..., e

∗
n) in B by forming the form

II =
∑

wirwilr =
∑
r,i,j

Arijwiwjlr.
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M. Yildirim Yilmaz, M. Bektaş - The Gauss map of Hessian manifolds in...

We know that II is independent of the choice of the point to over p and is a normal
vector valued quadratic differential form on M. II is called second fundamental
form of the immersion x where vanishing defines a totally geodesic immersion. The
normal vector

N =
∑

II (ei, ei) =
∑

Arer

where
Ar =

∑
Arii

is independent of the frame and is called the mean curvature vector of the immersion
x. If N vanishes identically then x is said to be minimal. Let X =

∑
Xrer be a

normal vector of x (M) at x (p) . Then the quadratic differential form defined by

IIX = 〈II,X〉 =
∑

ArijXrwiwj

is called the second fundamental form of the immersion x in the direction X.
Since N is uniquely determined by the immersion, the form

IIN =
∑

ArArijwiwj

has a special meaning related to the immersion x. It is easy to see that IIN = 0
if and only if N = 0. Thus the immersion is minimal if and only if IIN vanishes
identically.

If the form IIN is proportional to the Hessian metric ds2 on M , that is, if

IIN = ρds2 = ρ
∑

wiwi

the immersion is said to be pseudo-umbilical. Here we have

ρ =
1
n

∑
r

A2
r =

1
n
‖N‖2 .

Then considering the quadratic differential form

Ψ =
∑

Kjkwjwk

called the Ricci form of M, where we have put

Kjk =
∑

Kijki.

The Ricci form is independent of the choice of the frame and therefore is a quadratic
differential form on M. We have from (4)

Kjk = − (n− 1)
c

4
δjk −

∑
ArikArji +

∑
AτArjk,
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and hence
Ψ = − (n− 1)

c

4

∑
wiwi −

∑
(wir)

2 + IIN (5)

We shall next consider the meaning of the term
∑
i,r

(wir)
2 .

4. The Gauss map

Let us denote the set of all the totally geodesic n− spaces in V with Q. Then
F (V ) acts on Q transitively. Take a point in Q. The isotropy subgroup at p is
identified with G (n) × U (N − n) where G (n) is viewed as acting on the totally
geodesic n− space V0 representing the point p in Q and U (N − n) on the totally
geodesic (N − n)− space orthogonal to V0 at the point of intersection which is kept.

Therefore Q is identified with a homogeneous space

Q = F (V ) /G (n)× U (N − n)

By using Maurer-Cartan forms θa
b of F (V ) we introduce a quadratic differential

form d
∑2 on Q :

In the case F (V ) = HPn , d
∑2 is the standart pseudo-Hessian metric with

respect to which Q is a pseudo-Hessian symmetric space.
In the case F (V ) = Pn , d

∑2 coincides with the quadratic differential form
induced from the standart Hessian metric on Gn,N by the projection.

Taking the immersion x : M → V we associate the (generalized) Gauss map f :
M → Q where f (p) , p ∈M is totally geodesic n−space tangent to x (M) and x (p)
and consider the following scheme

B F−−−−→ F (V ) = G (N)
↓ Ψ ↓ π
M f

−−−−−−→
Q = F (V ) /G (n)× U (N − n)

where π is the natural projection and F is the natural identification of a frame in B
with an element of F (V ) .

The quadratic differential form III induced from d
∑2 on Q by the Gauss map

f is written as

III = f∗d
∑

2 =
∑

(wir)
2 = ArijArikwjwk (6)

The Gauss map is a constant map if and only if III vanishes identically i.e wir = 0
and therefore if and only if the immersion x is totally geodesic.

130
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Considering (5) and (6) together we obtain

Ψ− IIN + III = −(n− 1) c
4

ds2 (7)

and then we get the following

Theorem 4.1. Suppose that a Hessian manifold M is isometrically immersed
into a simply-connected complete space of constant curvature − c

4 . Then the relation
(7) holds among Ricci form Ψ on M, the second fundamental form IIN in the di-
rection of the mean curvature vector, and the third fundamental form of III of the
immersion.

Supposing M is Einsteinian and then form (7) IIN is proportional to ds2 if and
only if III is. Thus we obtain

Theorem 4.2. Let x be an isometric immersion of an Einstein space into a V.
Then x is pseudo-umbilical if and only if Gauss map is conformal.

Definition 4.1. Let v be the volume element of g. We define a closed 1-form α
and a symmetric bilinear form β by

DXv = α (x) v
β = Dα.

The forms α and β are called the first and the second Kozsul form for a Hessian
structure (D, g) , respectively, [3] .

Proposition 4.1. We have

βij =
∂αi

∂xj
=

1
2
∂2 log det [gkl]

∂xi∂xj
= Qr

rij = Qr
ijr.

By this fact we can easily see the relationship between Hessian curvature tensor
and second Kozsul form, [3] .

Definition 4.2. If a Hessian structure (D, g) satisfies the condition

β = λg, λ =
βi

i

n

then the Hessian structure is said to be Einstein-Hessian, [3] .

Taking into account of Theorem 4.2 with Definition 4.2. We conclude the fol-
lowing
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Corollary 4.1. If the second Kozsul form of a Hessian manifold holds the
relation

β =
(n+ 1) c

2
g

and x be an isometric immersion of W into V. Then x is a pseudo-umbilical if and
only if Gauss map is conformal.

Corollary 4.2. If the Hessian sectional curvature of (M,D, g) is a constant c,
then the Hessian structure (D, g) is Einstein-Hessian and

β =
(n+ 1) c

2
g.

Proof . The above assertion follows from Proposition 4.1. and Proposition 3.1.

Corollary 4.3. If the second Kozsul form of a Hessian manifold holds the
relation

β =
(n+ 1) c

2
g

and x be an isometric immersion of W into V. Then x is pseudo-umbilical if and
only if Gauss map is conformal.

Suppose that IIN is proportional to ds2. Then Ψ is proportional to ds2 if and
only if III is. In particular if IIN vanishes identically, Ψ is proportional to ds2 if
and only if III is. In this case if dim > 2 the proportional factor of Ψ is constant
and the same holds for III. Hence we get the following theorems.

Theorem 4.3. Let x be a pseudo-umbilical immersion of a Hessian manifold
M into a V. Then the Gauss map is conformal if and only if the second Kozsul
form of M holds the relation β = (n+1)c

2 g. In the case dim M > 2, the Gauss map
is homothetic if and only if the second Kozsul form of M holds the same relation
β = (n+1)c

2 g.

Theorem 4.4. Let x be an isometric immersion of a Hessian manifold into a
V. Then x is pseudo-umbilical if and only if the second Kozsul form of M holds the
relation β = (n+1)c

2 g.
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