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ON THE RELATION BETWEEN ORDERED SETS AND
LORENTZ-MINKOWSKI DISTANCES IN REAL INNER PRODUCT
SPACES

OGUZHAN DEMIREL, EMINE SOYTURK SEYRANTEPE

ABSTRACT. Let X be a real inner product space of arbitrary finite or infinite
dimension > 2. In [Adv. Geom. 2003, suppl., S1-S12], Benz proved the following
statement for x,y € X with x < y: The Lorentz-Minkowski distance between x and
y is zero (i.e., [(z,y) = 0) if and only if [z, y] is ordered. In [Appl. Sci. 10 (2008), 66—
72], Demirel and Soytiirk presented necessary and sufficient conditions for Lorentz-
Minkowski distances I(x,y) > 0, I(z,y) < 0 and {(z,y) = 0 in n-dimensional real
inner product spaces by the means of ordered sets and it’s an orthonormal basis.

In this paper, we shall present necessary and sufficient conditions for Lorentz-
Minkowski distances with the help of ordered sets in an arbitrary dimensional real
inner product spaces. Furthermore, we prove that all the linear Lorentz transforma-
tions of X are continuous.
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1. INTRODUCTION

Let X be a real inner product space of arbitrary finite or infinite dimension > 2,
i.e., a real vector space furnished with an inner product

g: X xX —R, gx,y)=uzy

satisfying zy = yz, x(y + 2) = zy + 22, a(xy) = (ax)y, 22 > 0 (for all z # 0 in X)
for all z,y,z € X, a € R. For a fixed t € X satisfying t* = 1, define

tt:={reX: tx=0}.
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Then, clearly t+ ® Rt = X. For any x € X, there are uniquely determined
elements T = = — zot € t+ and z¢ = tr € R with

T =T + xot.

Definition 1. The Lorentz-Minkowski distance of x,y € X defined by the
expression

Wz,y) = (T —79)* — (z0 — y0)*-

Definition 2. If the mapping ¢ : X — X preserving the Lorentz-Minkowski
distance for each z,y € X, then ¢ is called Lorentz transformation.

Under all translations, Lorentz-Minkowski distances remain invariant and it
might be noticed that the theory does not seriously depend on the chosen t, for
more details we refer readers to [1].

Let p be an element of ¢+ with p? < 1, and let & # —1 be a real number satisfying

k(1 —p%) = 1.
Define
Ap(x) == zop + (zTp)t.
for all x € X. Let E denote the identity mapping of X and define
£2
By p(x) := E+ kA, + k‘i—i-lAg.

Since A, is a linear mapping, B, is also linear. B, is called a Lorentz boost a
proper one for k£ > 1, an improper one for £ < —1. For the characterization of
Lorentz boost, we refer readers to [3].

Theorem 1 (W. Benz [1]).All Lorentz transformations A of X are ezactly
given by
Az) = (Bpw)(z) +d

with a boost By, an orthogonal and linear mapping w from X into X satisfying
w(t) =t, and with an element d of X.

Notice that a Lorentz transformation A of X need not be linear.

Theorem 2 (W. Benz [1]).Let B, and By be Lorentz boosts of X. Then
By o By must be a bijective Lorentz transformation of X fizing 0. Moreover,

Bp,k o Bq,K = Br,m cow,
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where
i — 1+ pq
V1—p3/1—¢>
and )
_.._DPtg k  (pq)p —pq
prqi=1= )

1+pg k+1 1+pg

2. BOUNDEDNESS OF LINEAR LORENTZ TRANSFORMATIONS

Definition 2. Let X and Y be normed linear spaces and let T': X — Y be
a linear transformation. T will be called a bounded linear transformation if there
exist a real number K > 0 such that

IT(@)] < K]lal
holds for all z € X.
If we take || T'|| = inf{ K} in the above definition, we immediately obtain that
IT@) < 1Tl

The norm of the linear transformation 1" defined by the expression

T
1T = sup{H”(mH)| rreX — {0}}
x
There are numbers of alternate expressions for ||7'|| in the classical setting as follows:
1T =sup {1 T ()| [l=]] <1}
1T =sup {IT (@)l : [l] =1}
T(x
1Tl :sup{” ||:(EH)H o< |z < 1}

|IT|| =inf{K : |T(x)| < K||z|| for all z € X'}

The last statement is always valid, but the other statements is not if the under-
lying field is not equal to real or complex numbers field, see [6]. The following two
theorems are well known and fundamental in functional analysis.

Theorem 3.Let E and F be normed linear spaces and let T : E — F be a
linear transformation. The followings are equivalent:
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(i) T is continuous at 0,
(i) T is continuous,
(iii) There exists ¢ > 0 such that ||T'z|| < ¢||x|| for all x € E,
(iv) sup{||Tz||: =z € E, |z]| <1} < c.
Theorem 4. Let C(X, X) denote the all continuous linear transformations space.
For ollT,G € C(X, X) the followings hold:
(i) ToG e C(X,X),
(i) |T o G| < TG
Theorem 5.All Lorentz boosts of X are bounded.

Proof. Let B, be a Lorentz boost of X. Clearly E is bounded and ||E| = 1.
For all p € t+ with p? < 1, Ap is bounded. In fact,

|4y ()[[> =(zop + (Tp)t)?
=agp” + (zp)?
=xgp” + [zp[?
<agp® + 7%’
=(az5 +7%)|p||?

and we get ||Ap(z)|| < |[pl/l|z|], i-e., Ap is a bounded transformation of X. Conversely,

Ip* =p?
=[lp*t|
=1/ (4p(p))?
=14, (Pl
<[l AplllIl
and this implies || 4, = [|p. Clearly, A2 is a bounded transformation of X and we
get
1A @) < (ol ]])-
Conversely,
Pllpll =145 (@)
<[IA3llpll
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and then obtain

IAZ]| = [lpl|>.
Finally, for k > 1, we get
Il =sup { 122 0 < o <1}
2
<L+ Elpl + 7= Ip|?
=k(llpll +1).

A simple calculation shows that || By, || < 2+|k|(||p||+1) holds for & < —1. Obviously
all the Lorentz boosts are bounded.

Corollary 1.All the linear Lorentz transformations are continuous.

3. ON THE RELATION BETWEEN ORDERED SETS AND LORENTZ-MINKOWSKI
DISTANCES IN REAL INNER PRODUCT SPACES

Let X be a real inner product space of arbitrary finite or infinite dimension > 2
and take x,y € X. Define a relation on X by

r<y<&l(zy) <0and z9 <y

Observe that an element of X that need not be comparable to another element of
X, for example neither e < 0 nor 0 < e if we take e from t+. For the properties
of “<” we refer readers to [2]. For the two elements of z,y € X satisfying z < y
(x <y, z #y) and define
[z,y ={z€ X: z<z<y}.
[x,y] is called ordered if and only if,
u<vorv<u
is true for all u,v € [z,y].
W. Benz proved the following result:

Theorem 6 (W. Benz [2]).Let x,y € X with x < y, then l(xz,y) = 0 if and
only if [z,y] is ordered.

In this section, we present necessary and sufficient conditions for Lorentz-Minkowski
distances by the means of ordered sets in a real inner product space of arbitrary finite
or infinite dimension > 2.

Theorem 7.Let X be a real inner product space of dimension > 2 and x,y be
elements of X with x # y and xg < yo. Then the followings are equivalent:
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(1) Uz, y) >0,

(ii) There exists at least one s € X —{x,y} such that [z, s], [y, s] are ordered while
[x,y] is not ordered.

Proof. By the terminology of “[z,y] is not ordered”, we mean that z < y and
[x,y] = ¢ or £ y. Since all Lorentz-Minkowski distances remains invariant under
translations, see [1], instead of considering  and y, we may prove the theorem with
respect to 0 and y — x.

(1) = (ui) . Let us put

z:=y—x and u:=Z + [|Z||t.
Obviously, ||y — Z|| > yo — zo, i.e., ||Z|| > |20] and 1(0,u) = 0. Since ug = ||Z|| > 0
we get [0,u] is ordered. In addition to this, [z,u] is not ordered since I(z,u) =
—((yo — x0) — |7 — Z||)? < 0. Now define

1
w = ——(z0 + ||Z]))u.
2||z]]
It is easy to see that [(0,w) = 0 and wy = 3(zo + [|Z]|) > 0, and thus, we get [0, w]
is ordered. Now, we have

= —Lz z 222— z—lz z 2—
1) = (1= g Go-+ D) 1P = (30— 5 G+ J3ID) =0

and
< 70 + |12 _

0=
Therefore, we immediately obtain that [z, w] is ordered.
(73) = (7). Assume that [z, s], [y, s] are ordered while [z,y] is not ordered. In this
way, we get

l(.%', y) :l(—l', _y)

=l(s—z,8—1)
=2((-=(3—7)(5—1)) + (s0 — 20) (50 — %0))
>0.

Notice that
E-7)E-9)<|c-7)E-7)
<[s-z| 5 -9l

= (50 - SUO) (80 - yo) ,
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by Cauchy-Schwarz inequality, i.e., we get (so — o) (So — o) — (s — ) (s —g) > 0.

The following theorem can be easily proved when using —y, —x instead of x,y in
previous theorem.

Theorem 8.Let X be a real inner product space of dimension > 2 and x,y be
elements of X with © # y and xg < yg. Then followings are equivalent:

(1) Uz, y) >0,

(ii) There exists at least one k € X —{z,y} such that [k, z], [k,y] are ordered while
[x,y] is not ordered.

Theorem 9.Let X be a real inner product space of dimension > 2 and x,y be
elements of X with x # y and xg < yo. Then followings are equivalent:

(i) l(l‘,y) =0,

(ii) There exists at least m,s € X — {x,y} such that the [m,s| is ordered and
x,y € [m,s].

Proof. (i) = (it). Let us set

s=n(y—z)+z

for a real number 7 > 1. Obviously, we get [ (x,s) = 0 and 0 < yo—x0 < 1 (Yo — o),
ie, zg < n(yo— o) + o = S0, i.e., [z,s] is ordered. Likewise, [ (y,s) = 0 and
Yo — xo < 1 (Yo — xo), i.e., yo < n (yo — xo) + xo = So, i.e., [y, s] is ordered.
Now, define

m:=Ay—zx)+zx

for a real number A < 0. It is easy to see that [ (m,z) = [ (m,y) = 0 and mg =
A (yo — wo) + mo since A (yo — xg) < 0, i.e., [m,z], [m,y] are ordered sets. Finally,
[m, s] is ordered.

(13) = (7). Demirel and Soytiirk, in [5], proved this result for finite dimensional real
inner product spaces and it follows verbatimly same as in the proof of them.

Theorem 10.Let X be a real inner product space of dimension > 2 and x, y be
elements of X with x # y and xg < yo. Then followings are equivalent.

(i) Wz,y) <0,

(i) There exists at least s € X such that [z, s], [s,y] are ordered but [z,y] is not
ordered.
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Proof. (i) = (it). Let us set
z:=y—xand u:=Zz+ ||Z| t.
Clearly, [0, u] is ordered since { (0,u) = 0 and 0 < ||Z|| = ug, but [z, u] is not ordered
since [ (z,u) = — (20 — ||Z]))? < 0. Put

1
w = = (20 + [[2]) w,
21|
and this yields [ (0,w) = 0 and wo = 5 (20 + [|Z]|) > 0, i.e., [0, w] is ordered. Finally,
we get [ (z,w) = 0, wo = % (20 + ||Z]|) < 20 and this implies [w, 2] is ordered.
(17) = (7). Using the Cauchy-Schwarz inequality,

~E-2)5-9) <IG-7)(E-7)
<[s =zl ls -9l

= (50 — o) (50 — ¥0)

we get
— (50— o) (yo — 50) — (5 —7) (5 —7) <0,
ie.,
(so —zo)(so —wo) —(5—7T)(5s—7) <0
and this inequality yields

Wz, y) =l(s —x, s —y)
=2(—(5—Z)(5 —7) + (s0 — z0)(s0 — %0))
<0.
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