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Abstract. In this paper, we consider some properties such as growth and
distortion theorem, coefficient problems, radii of convexity and starlikeness and con-
vex linear combinations for certain subclass of meromorphic p-valent functions with
positive coefficients.

2000 Mathematics Subject Classification: 30C45.

Key words: p-valent functions, meromorphic function, meromorphically convex
and starlike functions.
∗-corresponding author

1. Introduction

Let Ap denote Let denote the class of functions f(z) normalized by

f(z) = z−p +
∞∑

n=0

anzn (p ∈ N := 1, 2, 3, ...), , (1)

which are analytic and p-valent in the punctured unit disk U = {z : 0 < |z| < 1}.

The functions f in Ap is said to be meromorphically starlike functions of order
β if and only if

Re

{
−zf ′(z)

f(z)

}
> β (z ∈ U), p ∈ N. (2)

for some β(0 ≤ β < p). We denote by S∗p(β) the class of all meromorphically starlike
functions of order β. Similarly, a function f in Ap is said to be meromorphically
convex of order β if and only if

Re

{
−1− zf ′′(z)

f ′(z)

}
> β (z ∈ U), p ∈ N. (3)
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for some β(0 ≤ β < p). We denote by Cp(β) the class of all meromorphically convex
functions of order β.

The functions of the form (1) was considered by Liu and Srivastava [10], and
Raina and Srivastava [13].

Let Sp denote the subclass of Ap consisting of functions of the form

f(z) = z−p +
∞∑

n=p

|an| zn (4)

as studied by Mogra [11] and Liu and Srivastava [10].

For functions f in the class Ap, we define a linear operator Dn by

D0f(z) = f(z),

D1f(z) = z−p +
∞∑

k=0

(k + p + 1) akz
k =

(
zp+1f(z)

)′
zp

,

and generally

Dnf(z) = D
(
Dn−1f(z)

)
= z−p +

∞∑
k=0

(k + p + 1)n akz
k, (5)

(f ∈ Ap, k ∈ N).
Then it is easily verified that

z (Dnf(z))′ = Dn+1f(z)− (p + 1) Dnf(z), (6)

(f ∈ Ap, k ∈ N0, p ∈ N).

The linear operator Dn was considered, when p = 1, by Uralegaddi and So-
manatha [18]. More recently, Aouf and Hossen [1], Liu and Srivastava [10], Mo-
grac[11] and Srivastava and Patel [14] presented several results involving the opera-
tor Dn for p ∈ N .

Making use of the operator Dn, we say that a function f ∈ Ap is in the class
S∗p (k, β) if it satisfies the following inequality:∣∣∣∣∣z

(
Dkf(z)

)′
Dkf(z)

+ p

∣∣∣∣∣ ≤
∣∣∣∣∣z
(
Dkf(z)

)′
Dkf(z)

+ 2β − p

∣∣∣∣∣ , (k ∈ N0 = N ∪ 0) . (7)
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for some β(0 ≤ β < p) and for all z in U .

It is easy to check that S∗p(0, β) is the class of meromorphically starlike functions
of order β and S∗p(0, 0) gives the meromorphically starlike functions for all z ∈ U .
Many important properties and characteristics of various interesting subclasses of
the class Ap of meromorphically p-valent functions were investigated extensively by
(among others) Aouf and Srivastava [2], Aouf and Hossen [2], Chen and Owa [3],
Cho and Owa [4], Joshi and Srivastava [6], Kulkarni, Naik and Srivastava [7], Liu
and Srivastava [8],[9], Mogra [11], Owa, Darwish and Aouf [12], Srivastava, Hossen
and Aouf [15], Uralegaddi and Somanatha [17], [18], and Yang [19], (see also [16],
[5]).
Let us write

S∗p [k, β] = S∗p (k, β) ∩ Sp (8)

where Sp is the class of functions of the form (4) that are analytic and p-valent in
U .

Next , we obtain the coefficient estimates for the classes S∗p (k, β) and S∗p [k, β].

2. Coefficient estimates

Here we provide a sufficient condition for a function, analytic in U to be in
S∗p (k, β).

Theorem 1. Let the function f be defined by (1). If

∞∑
n=0

(n + p + 1)k (n + p + 1 + β) |an| ≤ p− β (k ∈ N0) (9)

where (0 ≤ β < p), then f ∈ S∗p(k, β).

Proof. Suppose that (9) holds true for 0 ≤ β < p. Consider the expression

M
(
f, f ′

)
=
∣∣∣∣z (Dkf(z)

)′
+ pDkf(z)

∣∣∣∣ ≤ ∣∣∣∣z (Dkf(z)
)′

+ (2β − p) Dkf(z)
∣∣∣∣ .

Then for 0 < |z| = r < 1, we have

M
(
f, f ′

)
=

∣∣∣∣∣
∞∑

n=0

(n + p + 1)k (n + 2p + 1) anzn

∣∣∣∣∣
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−

∣∣∣∣∣2 (β − p)
zp

+
∞∑

n=0

(n + p + 1)k (n + 1 + 2β) anzn

∣∣∣∣∣ ,
M
(
f, f ′

)
≤

∞∑
n=0

(n + p + 1)k (n + 2p + 1) |an| rn

−

(
2 (p− β)

rp
−

∞∑
n=0

(n + p + 1)k (n + 1 + 2β) |an| rn

)

≤
∞∑

n=0

2 (n + p + 1)k (n + p + 1 + β) |an| rn − 2 (p− β)
rp

that is,

rpM
(
f, f ′

)
≤

∞∑
n=0

2 (n + p + 1)k (n + p + 1 + β) |an| rn+p − 2 (p− β) (10)

The inequality in (10) holds true for all r(0 ≤ r < 1). Therefore, letting r → 1 in
(10), we obtain

M
(
f, f ′

)
≤

∞∑
n=0

2 (n + p + 1)k (n + p + 1 + β) |an| − 2 (p− β) ≤ 0,

by the hypothesis (9). Hence it follows that∣∣∣∣ z(Dkf(z))′

Dkf(z)
+ p

∣∣∣∣ ≤ ∣∣∣∣ z(Dkf(z))′

Dkf(z)
+ 2β − p

∣∣∣∣, so that f ∈ S∗p(k, β). The result is sharp.

Hence the theorem.

Corollary 1. Let k = β = 0 in the Theorem 1, then we have
∞∑

n=0

(n + p + 1) |an| ≤ p.

Corollary 2. Let k = 1 and β = 0 in the Theorem 1, then we have
∞∑

n=0

(n + p + 1)2 |an| ≤ p.
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Next we give a necessary and sufficient condition for a function f ∈ SP to be in
the class S∗p [k, β].

Theorem 2. Let the function f be defined by (4) and let f ∈ Sp. Then
f ∈ S∗p [k, β] if and only if

∞∑
n=p

(n + p + 1)k (n + p + 1 + β) |an| ≤ p− β, (11)

(k ∈ N0, n = p, p + 1, p + 2, ..., 0 ≤ β < 1).

Proof. In view of Theorem 1, it suffices to show that the ’only if ’part. Assume
that f ∈ S∗p [k, β]. Then ∣∣∣∣∣∣∣

z(Dkf(z))′

Dkf(z)
+ p

z(Dkf(z))′

Dkf(z)
+ 2β − p

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

∞∑
n=p

(n + p + 1)k (n + 2p + 1) anzn

2(p−β)
zp −

∞∑
n=p

(n + p + 1)k (n + 1 + 2β) anzn

∣∣∣∣∣∣∣∣ ≤ 1, (z ∈ U) . (12)

Since Re(z) ≤ |z| for all z, it follows from (12) that

Re


∞∑

n=p
(n + p + 1)k (n + 2p + 1) anzn

2(p−β)
zp −

∞∑
n=p

(n + p + 1)k (n + 1 + 2β) anzn

 < 1 (z ∈ U) . (13)

We now choose the values z on the real axis so that
z(Dkf(z))′

Dkf(z)
is real. Upon clearing

the denominator in (13) and letting z → 1 through real values, we obtain
∞∑

n=p

(n + p + 1)k (n + 2p + 1) an

≤ 2 (p− β)−
∞∑

n=p

(n + p + 1)k (n + 1 + 2β) an, (14)
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which immediately yields the required condition (9).

Our assertion in Theorem 2 is sharp for functions of the form:

fn (z) = z−p +
p− β

(n + p + 1)k (n + p + 1 + β)
zn, (15)

(n = p, p + 1, p + 2, ..., k ∈ N0).

Corollary 5. Let the function f be defined by (4) and let f ∈ Sp If f ∈ S∗p [k, β].
Then for fixed n, we have

|an| ≤
p− β

(n + p + 1)k (n + p + 1 + β)
, (16)

(n = p, p + 1, p + 2, ..., k ∈ N0).
The result (16) is sharp for functions f given by (15).

3.Covering theorem

A growth and distortion property for functions in the class S∗p [k, β] is contained
in

Theorem 3. If the function f be defined by (4) is in the class S∗p [k, β] then for
0 < |z| = r < 1, we have(

(p + m− 1)!
(p− 1)!

− p! (p− β)

(p−m)! (2p + 1)k (2p + 1 + β)
r2p

)
r−(p+m) ≤ |fm(z)|

≤

(
(p + m− 1)!

(p− 1)!
+

p! (p− β)

(p−m)! (2p + 1)k (2p + 1 + β)
r2p

)
r−(p+m) (17)

(m = 0, 1, 2, 3, ..., p− 1) .
These inequalities are sharp for the function f given by

f (z) = z−p +
p− β

(2p + 1)k (2p + 1 + β)
zp. (18)
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Proof. Let f ∈ S∗p [k, β]. Then we find from Theorem 2 that

(2p + 1)k (2p + 1 + β)
p!

∞∑
n=p

n! |an| ≤

∞∑
n=p

(n + p + 1)k (n + p + 1 + β) |an| ≤ p− β

which yields

∞∑
n=p

n! |an| ≤
p! (p− β)

(2p + 1)k (2p + 1 + β)
. (19)

Now, by differentiating f in (4) m times, we have

f (m) (z) = (−1)m (p + m− 1)!
(p− 1)!

z−p−m +
∞∑

n=p

n!
(n−m)!

|an| zn−m. (20)

Theorem 3 would readily follow from (19) and (20).

Next, we determine the radii of meromorphically p-valent starlikeness and mero-
morphically p-valent convexity for functions in the class S∗p [k, β].

4. Radii of Starlikeness and Convexity

Theorem 4. If the function f be defined by (4) is in the class S∗p [k, β] then f
is meromorphically starlike of order δ(0 ≤ δ < 1) in |z| < r, where

r1 = r1 (k, β, δ) = inf
n≥p

{
(n + p + 1)k (n + p + 1 + β) (p− δ)

(n + 2p− γ) (p− β)

} 1
(n+p)

(21)

The result is sharp for the functions f given by (15).

Proof. It sufficient to prove that∣∣∣∣zf ′(z)
f(z)

+ p

∣∣∣∣ ≤ p− δ, (22)
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for |z| < r1. We have

∣∣∣∣zf ′(z)
f(z)

+ p

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∞∑

n=p
(n + p) anzn

1
zp +

∞∑
n=p

anzn

∣∣∣∣∣∣∣∣ ≤
∞∑

n=p
(n + p) an |z|n+p

1−
∞∑

n=p
an |z|n+p

. (23)

Hence (23) holds true if

∞∑
n=p

(n + p) an |z|n+p ≤ (p− δ)

(
1−

∞∑
n=p

an |z|n+p

)
, (24)

or
∞∑

n=p

(n + 2p− δ)
(p− δ)

an |z|n+p ≤ 1 (25)

with the aid of (11) and (25) is true if

(n + 2p− δ)
(p− δ)

|z|n+p ≤ (n + p + 1)k (n + p + 1 + β)
(p− β)

, (n ≥ p) . (26)

Solving (26) for |z|, we obtain

|z| ≤

{
(n + p + 1)k (n + p + 1 + β) (p− δ)

(n + 2p− γ) (p− β)

} 1
n+p

, (n ≥ p) . (27)

This completes the proof of Theorem 4.

Theorem 5. If the function f be defined by (4) is in the class S∗p [k, β] then f
is meromorphically convex of order δ(0 ≤ δ < 1) in |z| < r2, where

r2 = r2 (k, β, δ) = inf
n≥p

{
p (n + p + 1)k−1 (n + p + 1 + β) (p− δ)

(n + 2p− γ) (p− β)

} 1
(n+p)

. (28)

The result is sharp for the function f given by (15).

Proof. By using the technique employed in the proof of Theorem 4, we can show
that ∣∣∣∣zf ′′(z)

f ′(z)
+ p + 1

∣∣∣∣ ≤ (1− δ) (29)

for |z| < r2, with the aid of Theorem 2. Thus we have the assertion of Theorem 5.
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5.Convex Linear Combinations

Our next result involves convex linear combinations of the functions f of the
type (15).

Theorem 6. Let

fp−1(z) = z−p (30)

and

fn+p−1(z) = z−p +
(p− β)

(n + p + 1)k (n + p + 1 + β)
zn+p−1, (31)

(n ≥ p, k ∈ N0) .
Then f ∈ S∗p [k, β] if and only if it can be expressed in the form

f (z) =
∞∑

n=p

λn+p−1fn+p−1(z) (32)

where λn+p−1 ≥ 0 and
∞∑

n=p
λn+p−1 = 1.

Proof: From (32) it is easy to see that

f (z) =
∞∑

n=p

λn+p−1fn+p−1(z)

=
1
zp

+
∞∑

n=p

(p− β)

(n + p + 1)k (n + p + 1 + β)
λn+pz

n+p. (33)

Since
∞∑

n=p

(n + p + 1)k (n + p + 1 + β)
(p− β)

λn+p.
(p− β)

(n + p + 1)k (n + p + 1 + β)

=
∞∑

n=p

λn+p = 1− λp−1 ≤ 1,

it follows from Theorem 2 that the function f ∈ S∗p [k, β].

209



F. Ghanim, M.Darus - Subclasses of meromorphically multivalent functions

Conversely, let us suppose that f ∈ S∗p [k, β]. Since

|an+p| ≤
(p− β)

(n + p + 1)k (n + p + 1 + β)
, (n ≥ p, k ∈ N0) ,

Setting

λn+p =
(n + p− 1)k (n + p + 1 + β)

(p− β)
|an+p−1| , (n ≥ p, k ∈ N0) ,

and λp−1 = 1−
∞∑

n=p
λn+p,

it follows that f(z) =
∞∑

n=p
λn+p−1fn+p−1(z).

This completes the proof of the theorem.

Finally, we prove the following:

Theorem 7. The class S∗p [k, β] is closed under convex linear combinations.

Proof: Suppose that the function f1(z) and f2(z) defined by

fj (z) = z−p +
∞∑

n=p

|an,j |zn, (j = 1, 2; z ∈ U) , (34)

are in the class S∗p [k, β]. Setting

f (z) = µf1 (z) + (1− µ) f2 (z) (0 ≤ µ ≤ 1) , (35)

we find from (35) that

f (z) = z−p +
∞∑

n=p

{µ |an,1|+ (1− µ) |an,2|}zn, (0 ≤ µ ≤ 1; z ∈ U) . (36)

In view of Theorem 2, we have

= µ

∞∑
n=p

[
(n + p− 1)k (n + p + 1 + β)

]
|an,1|

+(1− µ)
∞∑

n=p

[
(n + p− 1)k (n + p + 1 + β)

]
|an,2|
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≤ µ (p− β) + (1− µ) (p− β) = (p− β) .

which shows that f ∈ S∗p [k, β]. Hence the theorem.
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