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Abstract. We obtain in this paper the form of the solutions of the following
difference equations

xn+1 =
xn−7

±1± αxn−1xn−3xn−5xn−7
, n = 0, 1, ...,

where the initial conditions are arbitrary nonzero real numbers and α is constant.
Also we study the behavior of the solutions.
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1. Introduction

In this paper we get the form of the solutions of the following difference equations

xn+1 =
xn−7

±1± αxn−1xn−3xn−5xn−7
, n = 0, 1, ..., (1)

where the initial conditions are arbitrary nonzero real numbers and α is constant.
Also we study the behavior of the solutions.

Recently there has been a great interest in studying the qualitative properties
of rational difference equations. For the systematical studies of rational and nonra-
tional difference equations, one can refer to the papers [1–43] and references therein.

The study of difference equations has been growing continuously for the last
decade. This is largely due to the fact that difference equations manifest themselves
as mathematical models describing real life situations in probability theory, queuing
theory, statistical problems, stochastic time series, combinatorial analysis, number
theory, geometry, electrical network, quanta in radiation, genetics in biology, eco-
nomics, psychology, sociology, etc. In fact, now it occupies a central position in
applicable analysis and will no doubt continue to play an important role in mathe-
matics as a whole.
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E. M. Elsayed - Solution and behavior of a rational difference equations

The study of rational difference equations of order greater than one is quite
challenging and rewarding because some prototypes for the development of the basic
theory of the global behavior of nonlinear difference equations of order greater than
one come from the results for rational difference equations. However, there have
not been any effective general methods to deal with the global behavior of rational
difference equations of order greater than one so far. Therefore, the study of rational
difference equations of order greater than one is worth further consideration.

Recently there has been a lot of interest in studying the global attractivity,
boundedness character, periodicity and the solution form of nonlinear difference
equations. For some results in this area, for example: Aloqeili [5] has obtained the
solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Cinar [6]-[8] investigated the solutions of the following difference equations

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1

−1 + axnxn−1
, xn+1 =

axn−1

1 + bxnxn−1
.

Cinar et al. [9] studied the solutions and attractivity of the difference equation

xn+1 =
xn−3

−1 + xnxn−1xn−2xn−3
.

Elabbasy et al. [11]-[13] investigated the global stability, periodicity character and
gave the solution of special case of the following recursive sequences

xn+1 = axn −
bxn

cxn − dxn−1
, xn+1 =

dxn−lxn−k

cxn−s − b
+ a, xn+1 =

αxn−k

β + γ
∏k

i=0 xn−i

.

Elabbasy et al. [15] gave the solution of the following difference equations

xn+1 =
xn−7

±1± xn−3xn−7
.

Ibrahim [20] obtained the solution of the third order rational difference equation

xn+1 =
xnxn−2

xn−1(a + bxnxn−2)

Karatas et al. [21-22] get the form of the solution of the difference equations

xn+1 =
xn−5

1 + xn−2xn−5
, xn+1 =

axn−(2k+2)

−a +
∏2k+2

i=0 xn−i

.
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Simsek et al. [29] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

In [30] Stevic solved the following problem

xn+1 =
xn−1

1 + xn
.

In [36] Yalcinkaya get the solution of the difference equation

xn+1 =
xn−(2k+1)

1 + xn−kxn−(2k+1)
.

Here, we recall some notations and results which will be useful in our investigation.
Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions
x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (2)

has a unique solution {xn}∞n=−k [25].
Definition 1. (Equilibrium Point)

A point x ∈ I is called an equilibrium point of Eq.(2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(2), or equivalently, x is a fixed point
of f .

Definition 2. (Stability)
(i) The equilibrium point x of Eq.(2) is locally stable if for every ε > 0, there exists
δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ... + |x0 − x| < δ,

we have
|xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of Eq.(2) is locally asymptotically stable if x is locally
stable solution of Eq.(2) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈
I with

|x−k − x|+ |x−k+1 − x|+ ... + |x0 − x| < γ,
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we have
lim

n→∞
xn = x.

(iii) The equilibrium point x of Eq.(2) is global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈
I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq.(2) is globally asymptotically stable if x is locally
stable, and x is also a global attractor of Eq.(2).
(v) The equilibrium point x of Eq.(2) is unstable if x is not locally stable.

The linearized equation of Eq.(2) about the equilibrium x is the linear difference
equation

yn+1 =
k∑

i=0

∂f(x, x, ..., x)
∂xn−i

yn−i.

Definition 3. (Periodicity)
A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all

n ≥ −k.
Theorem A [25]: Assume that pi ∈ R, i = 1, 2, ..., k and k ∈ {0, 1, 2, ...}. Then

k∑
i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + ... + pkxn = 0, n = 0, 1, ... . (3)

2.The Main Results
2.1. The First Difference Equation xn+1 =

xn−7

1 + αxn−1xn−3xn−5xn−7

In this section we give a specific form of the solutions of the difference equation

xn+1 =
xn−7

1 + αxn−1xn−3xn−5xn−7
, n = 0, 1, ..., (4)

where the initial conditions are arbitrary nonzero positive real numbers.
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Theorem 1. Let {xn}∞n=−7 be a solution of Eq.(4). Then for n = 0, 1, ...

x8n−7 = h
n−1∏
i=0

(
(1 + 4iαbdfh)

(1 + (4i + 1)αbdfh)

)
, x8n−3 = d

n−1∏
i=0

(
(1 + (4i + 2)αbdfh)
(1 + (4i + 3)αbdfh)

)
,

x8n−6 = g
n−1∏
i=0

(
(1 + 4iαaceg)

(1 + (4i + 1)αaceg)

)
, x8n−2 = c

n−1∏
i=0

(
(1 + (4i + 2)αaceg)
(1 + (4i + 3)αaceg)

)
,

x8n−5 = f

n−1∏
i=0

(
(1 + (4i + 1)αbdfh)
(1 + (4i + 2)αbdfh)

)
, x8n−1 = b

n−1∏
i=0

(
(1 + (4i + 3)αbdfh)
(1 + (4i + 4)αbdfh)

)
,

x8n−4 = e

n−1∏
i=0

(
(1 + (4i + 1)αaceg)
(1 + (4i + 2)αaceg)

)
, x8n = a

n−1∏
i=0

(
(1 + (4i + 3)αaceg)
(1 + (4i + 4)αaceg)

)
,

where x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x−0 =

a,
−1∏
i=0

Ai = 1.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1. That is;

x8n−15 = h
n−2∏
i=0

(
(1 + 4iαbdfh)

(1 + (4i + 1)αbdfh)

)
, x8n−11 = d

n−2∏
i=0

(
(1 + (4i + 2)αbdfh)
(1 + (4i + 3)αbdfh)

)
,

x8n−14 = g
n−2∏
i=0

(
(1 + 4iαaceg)

(1 + (4i + 1)αaceg)

)
, x8n−10 = c

n−2∏
i=0

(
(1 + (4i + 2)αaceg)
(1 + (4i + 3)αaceg)

)
,

x8n−13 = f
n−2∏
i=0

(
(1 + (4i + 1)αbdfh)
(1 + (4i + 2)αbdfh)

)
, x8n−9 = b

n−2∏
i=0

(
(1 + (4i + 3)αbdfh)
(1 + (4i + 4)αbdfh)

)
,

x8n−12 = e
n−2∏
i=0

(
(1 + (4i + 1)αaceg)
(1 + (4i + 2)αaceg)

)
, x8n−8 = a

n−2∏
i=0

(
(1 + (4i + 3)αaceg)
(1 + (4i + 4)αaceg)

)
.

Now, it follows from Eq.(4) that

x8n−7 =
x8n−15

1 + αx8n−9x8n−11x8n−13x8n−15

=
h

n−2∏
i=0

 (1 + 4iαbdfh)
(1 + (4i + 1)αbdfh)


1 + αb

n−2∏
i=0

(
(1 + (4i + 3)αbdfh)
(1 + (4i + 4)αbdfh)

)
d

n−2∏
i=0

(
(1 + (4i + 2)αbdfh)
(1 + (4i + 3)αbdfh)

)
f

n−2∏
i=0

(
(1 + (4i + 1)αbdfh)
(1 + (4i + 2)αbdfh)

)
h

n−2∏
i=0

(
(1 + 4iαbdfh)

(1 + (4i + 1)αbdfh)

)
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=
h

n−2∏
i=0

(1 + 4ibdfh)

n−2∏
i=0

(1 + (4i + 1)αbdfh)


1

1 +
αbdfh

n−2∏
i=0

(1 + (4i + 4)αbdfh)

n−2∏
i=0

(1 + 4iαbdfh)



= h

n−2∏
i=0

(
(1 + 4ibdfh)

(1 + (4i + 1)αbdfh)

)  1

1 +
αbdfh

(1 + (4n− 4)αbdfh)

{
(1 + (4n− 4)αbdfh)
(1 + (4n− 4)αbdfh)

}

= h
n−2∏
i=0

(
(1 + 4ibdfh)

(1 + (4i + 1)αbdfh)

) (
1 + (4n− 4)αbdfh

1 + (4n− 4)αbdfh + αbdfh

)

= h
n−2∏
i=0

(
(1 + 4ibdfh)

(1 + (4i + 1)αbdfh)

) (
1 + (4n− 4)αbdfh

1 + (4n− 3)αbdfh

)
.

Hence, we have

x8n−7 = h
n−1∏
i=0

(
(1 + 4ibdfh)

(1 + (4i + 1)αbdfh)

)
.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.
Theorem 2. Eq.(4) has a unique equilibrium point which is the number zero

and this equilibrium point is not locally asymptotically stable.
Proof. For the equilibrium points of Eq.(4), we can write

x =
x

1 + αx4 .

Then
x + αx5 = x,

or
αx5 = 0.

Thus the equilibrium point of Eq.(4) is x = 0. Let f : (0,∞)4 −→ (0,∞) be a
function defined by

f(u, v, w, t) =
u

1 + αuvwt
.
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Therefore it follows that

fu(u, v, w, t) =
1

(1 + αuvwt)2
, fv(u, v, w, t) =

−αu2wt

(1 + αuvwt)2
,

fw(u, v, w, t) =
−αu2vt

(1 + αuvwt)2
, ft(u, v, w, t) =

−αu2vw

(1 + αuvwt)2
,

we see that

fu(x, x, x, x) = 1, fv(x, x, x, xx) = 0, fw(x, x, x, x) = 0, ft(x, x, x, x) = 0.

The proof follows by using Theorem A.
Theorem 3. Every positive solution of Eq.(4) is bounded and lim

n→∞
xn = 0.

Proof. It follows from Eq.(4) that

xn+1 =
xn−7

1 + αxn−1xn−3xn−5xn−7
≤ xn−7.

Then the subsequences {x8n−7}∞n=0, {x8n−6}∞n=0, {x8n−5}∞n=0, {x8n−4}∞n=0, {x8n−3}∞n=0,
{x8n−2}∞n=0, {x8n−1}∞n=0, {x8n}∞n=0 are decreasing and so are bounded from above
by M = max{x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0}.

Numerical examples
For confirming the results of this section, we consider numerical examples which

represent different types of solutions to Eq. (4).
Example 1. Consider α = 2, x−7 = 2, x−6 = 4, x−5 = 11, x−4 = 2, x−3 =

6, x−2 = 5, x−1 = 9, x0 = 1. See Fig. 1.

Figure 1.

Example 2. See Fig. 2, since α = 2, x−7 = 5, x−6 = 2, x−5 = 11, x−4 =
0.7, x−3 = 6, x−2 = 4, x−1 = 0.3, x0 = 7.
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Figure 2.

2.2. The Second Difference Equation xn+1 =
xn−7

1− αxn−1xn−3xn−5xn−7

In this section we give a specific form of the solutions of the difference equation

xn+1 =
xn−7

1− αxn−1xn−3xn−5xn−7
, n = 0, 1, ..., (5)

where the initial conditions are arbitrary nonzero real numbers.
Theorem 4. Let {xn}∞n=−7 be a solution of Eq.(5). Then for n = 0, 1, ...

x8n−7 = h
n−1∏
i=0

(
(1− 4iαbdfh)

(1− (4i + 1)αbdfh)

)
, x8n−3 = d

n−1∏
i=0

(
(1− (4i + 2)αbdfh)
(1− (4i + 3)αbdfh)

)
,

x8n−6 = g
n−1∏
i=0

(
(1− 4iαaceg)

(1− (4i + 1)αaceg)

)
, x8n−2 = c

n−1∏
i=0

(
(1− (4i + 2)αaceg)
(1− (4i + 3)αaceg)

)
,

x8n−5 = f

n−1∏
i=0

(
(1− (4i + 1)αbdfh)
(1− (4i + 2)αbdfh)

)
, x8n−1 = b

n−1∏
i=0

(
(1− (4i + 3)αbdfh)
(1− (4i + 4)αbdfh)

)
,

x8n−4 = e

n−1∏
i=0

(
(1− (4i + 1)αaceg)
(1− (4i + 2)αaceg)

)
, x8n = a

n−1∏
i=0

(
(1− (4i + 3)αaceg)
(1− (4i + 4)αaceg)

)
,

where jαbdfh 6= 1, jαaceg 6= 1 for j = 1, 2, 3, ... .
Proof. As the proof of Theorem 1 and will be omitted.
Theorem 5. Eq.(5) has a unique equilibrium point which is the number zero

and this equilibrium point is not locally asymptotically stable.
Numerical examples:-
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Example 3. Consider α = 4, x−7 = 0.5, x−6 = 2, x−5 = 11, x−4 = 7, x−3 = 16,
x−2 = 8, x−1 = 3, x0 = 0.7. See Fig. 3.

Figure 3.

Example 4. See Fig. 4, since α = 1, x−7 = 0.5, x−6 = 0.1, x−5 = 0.8, x−4 =
0.7, x−3 = 0.4, x−2 = 0.9, x−1 = 0.2, x0 = 1.3.

Figure 4.

2.3. The Third Difference Equation xn+1 =
xn−7

−1 + αxn−1xn−3xn−5xn−7

In this section we investigate the solutions of the following difference equation

xn+1 =
xn−7

−1 + αxn−1xn−3xn−5xn−7
, n = 0, 1, ..., (6)
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where the initial conditions are arbitrary nonzero real numbers with αx−7x−5x−3x−1 6=
1, αx−6x−4x−2x0 6= 1.

Theorem 6. Let {xn}∞n=−7 be a solution of Eq.(6). Then Eq.(6) has unbounded
solutions and for n = 0, 1, ...

x8n−7 =
h

(−1 + αbdfh)n , x8n−3 =
d

(−1 + αbdfh)n ,

x8n−6 =
g

(−1 + αaceg)n
, x8n−2 =

c

(−1 + αaceg)n
,

x8n−5 = f (−1 + αbdfh)n , x8n−1 = b (−1 + αbdfh)n ,

x8n−4 = e (−1 + αaceg)n , x8n = a (−1 + αaceg)n .

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n− 1. That is;

x8n−15 =
h

(−1 + αbdfh)n−1 , x8n−11 =
d

(−1 + αbdfh)n−1 ,

x8n−14 =
g

(−1 + αaceg)n−1
, x8n−10 =

c

(−1 + αaceg)n−1
,

x8n−13 = f (−1 + αbdfh)n−1 , x8n−9 = b (−1 + αbdfh)n−1 ,

x8n−12 = e (−1 + αaceg)n−1 , x8n−8 = a (−1 + αaceg)n−1 .

Now, it follows from Eq.(6) that

x8n−7 =
x8n−15

−1 + αx8n−9x8n−11x8n−13x8n−15

=

h

(−1 + αbdfh)n−1

−1 + αb (−1 + αbdfh)n−1 d

(−1 + αbdfh)n−1 f (−1 + αbdfh)n−1 h

(−1 + αbdfh)n−1

=

h

(−1 + αbdfh)n−1

−1 + αbdfh
.

Hence, we have

x8n−7 =
h

(−1 + αbdfh)n−1 .
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Similarly

x8n−2 =
x8n−10

−1 + αx8n−4x8n−6x8n−8x8n−10

=

c

(−1 + αaceg)n−1

−1 + αe (−1 + αaceg)n g

(−1 + αaceg)n
a (−1 + αaceg)n−1 c

(−1 + αaceg)n−1

=

c

(−1 + αaceg)n−1

−1 + αaceg
.

Hence, we have
x8n−2 =

c

(−1 + αaceg)n
.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 7. Eq.(6) has three equilibrium points which are 0,± 4

√
2
α

and these

equilibrium points are not locally asymptotically stable.
Proof. The proof as in Theorem 2.
Theorem 8. Eq.(6) has a periodic solutions of period eight iff αaceg = αbdfh =

2 and will be take the form {h, g, f, e, d, c, b, a, h, g, f, e, d, c, b, a, ...}.
Proof. First suppose that there exists a prime period eight solution

h, g, f, e, d, c, b, a, h, g, f, e, d, c, b, a, ...,

of Eq.(6), we see from Eq.(6) that

h =
h

(−1 + αbdfh)n , d =
d

(−1 + αbdfh)n ,

g =
g

(−1 + αaceg)n
, c =

c

(−1 + αaceg)n
,

f = f (−1 + αbdfh)n , b = b (−1 + αbdfh)n ,

e = e (−1 + αaceg)n , a = a (−1 + αaceg)n .

or
(−1 + αbdfh)n = 1, (−1 + αaceg)n = 1.

Then
αbdfh = 2, αaceg = 2.
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Second suppose αaceg = 2, αbdfh = 2. Then we see from Eq.(6) that

x8n−7 = h, x8n−6 = g, x8n−5 = f, x8n−4 = e,

x8n−3 = d, x8n−2 = c, x8n−1 = b, x8n = a.

Thus we have a periodic solution with period eight solution and the proof is complete.
Numerical examples:-

Example 5. We consider α = 2, x−7 = 0.5, x−6 = 0.1, x−5 = 0.7, x−4 =
0.8, x−3 = 0.4, x−2 = 0.6, x−1 = 0.2, x0 = 1.3. See Fig. 5.

Figure 5.

Example 6. See Fig. 6, since α = 2, x−7 = 5, x−6 = 0.1, x−5 = 7, x−4 =
10, x−3 = 1/35, x−2 = 6, x−1 = 1, x0 = 1/6.

Figure 6.
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2.4. The Fourth Difference Equation xn+1 =
xn−7

−1− αxn−1xn−3xn−5xn−7

In this section we investigate the solutions of the following difference equation

xn+1 =
xn−7

−1− αxn−1xn−3xn−5xn−7
, n = 0, 1, ..., (7)

where the initial conditions are arbitrary nonzero real numbers with αx−5x−3x−1 6=
−1, αx−4x−2x0 6= −1.

Theorem 9. Let {xn}∞n=−7 be a solution of Eq.(7). Then Eq.(7) has unbounded
solutions and for n = 0, 1, ...

x8n−7 =
(−1)n h

(1 + αbdfh)n , x8n−3 =
(−1)n d

(1 + αbdfh)n ,

x8n−6 =
(−1)n g

(1 + αaceg)n
, x8n−2 =

(−1)n c

(1 + αaceg)n
,

x8n−5 = f (−1)n (1 + αbdfh)n , x8n−1 = b (−1)n (1 + αbdfh)n ,

x8n−4 = e (−1)n (1 + αaceg)n , x8n = a (−1)n (1 + αaceg)n .

Theorem 10. Eq.(7) has one equilibrium point which is number zero and this
equilibrium point is not locally asymptotically stable.

Theorem 11. Eq.(7) has a periodic solutions of period eight iff αaceg =
αbdfh = −2 and will be take the form {h, g, f, e, d, c, b, a, h, g, f, e, d, c, b, a, ...}.
Numerical examples:-

Example 7. Fig. 7 shows the solution when α = 0.1, x−7 = 0.5, x−6 = 1,
x−5 = −0.4, x−4 = 0.3, x−3 = 1.3, x−2 = 0.6, x−1 = −1.9, x0 = 0.8.

Figure 7.

Example 8. See Fig. 8, since α = −2, x−7 = 5, x−6 = 10, x−5 = 1/40, x−4 =
0.1, x−3 = 8, x−2 = 1/6, x−1 = 1, x0 = 6.
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Figure 8.
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