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Abstract.Let χ2 denote the space of all double gai sequences. Let Λ2

denote the space of all double analytic sequences. This paper is to introduce a
new class of sequence spaces namely the semi difference Orlicz space of Λ2. It
is shown that the intersection of all semi difference Orlicz space of Λ2 is I ⊂ η2

and Λ2 ⊂ I.
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1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar
valued single sequences, respectively.
We write w2 for the set of all complex sequences (xmn), where m, n ∈ N, the
set of positive integers. Then, w2 is a linear space under the coordinate wise
addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich[4].
Later on, they were investigated by Hardy[8], Moricz[12], Moricz and Rhoades[13],
Basarir and Solankan[2], Tripathy[20], Colak and Turkmenoglu[6], Turkmenoglu[22],
and many others.

Let us define the following sets of double sequences:

Mu (t) :=
{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn < ∞

}
,

Cp (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn − l|tmn = 1for somel ∈ C

}
,

C0p (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1

}
,

Lu (t) :=
{
(xmn) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xmn|tmn < ∞

}
,
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Cbp (t) := Cp (t)
⋂

Mu (t) and C0bp (t) = C0p (t)
⋂

Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m, n ∈ N
and p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case
tmn = 1 for all m, n ∈ N; Mu (t) , Cp (t) , C0p (t) , Lu (t) , Cbp (t) and C0bp (t) re-
duce to the sets Mu, Cp, C0p, Lu, Cbp and C0bp, respectively. Now, we may sum-
marize the knowledge given in some document related to the double sequence
spaces. Gökhan and Colak [27,28] have proved that Mu (t) and Cp (t) , Cbp (t)
are complete paranormed spaces of double sequences and gave the α−, β−, γ−
duals of the spaces Mu (t) and Cbp (t) . Quite recently, in her PhD thesis, Zel-
ter [29] has essentially studied both the theory of topological double sequence
spaces and the theory of summability of double sequences. Mursaleen and
Edely [30] have recently introduced the statistical convergence and Cauchy
for double sequences and given the relation between statistical convergent and
strongly Cesàro summable double sequences. Nextly, Mursaleen [31] and Mur-
saleen and Edely [32] have defined the almost strong regularity of matrices
for double sequences and applied these matrices to establish a core theorem
and introduced the M−core for double sequences and determined those four
dimensional matrices transforming every bounded double sequences x = (xjk)
into one whose core is a subset of the M−core of x. More recently, Altay and
Basar [33] have defined the spaces BS, BS (t) , CSp, CSbp, CSr and BV of double
sequences consisting of all double series whose sequence of partial sums are in
the spaces Mu, Mu (t) , Cp, Cbp, Cr and Lu, respectively, and also examined some
properties of those sequence spaces and determined the α− duals of the spaces
BS, BV, CSbp and the β (ϑ)− duals of the spaces CSbp and CSr of double series.
Quite recently Basar and Sever [34] have introduced the Banach space Lq of
double sequences corresponding to the well-known space `q of single sequences
and examined some properties of the space Lq. Quite recently Subramanian
and Misra [35] have studied the space χ2

M (p, q, u) of double sequences and gave
some inclusion relations.
We need the following inequality in the sequel of the paper. For a, b,≥ 0 and
0 < p < 1, we have

(a + b)p ≤ ap + bp (1)

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double
sequence (smn) is convergent, where smn =

∑m,n
i,j=1 xij(m,n ∈ N) (see[1]).
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A sequence x = (xmn)is said to be double analytic if supmn |xmn|1/m+n < ∞.
The vector space of all double analytic sequences will be denoted by Λ2. A
sequence x = (xmn) is called double gai sequence if ((m + n)! |xmn|)1/m+n → 0
as m,n → ∞. The double gai sequences will be denoted by χ2. Let φ =
{allfinitesequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the se-
quence is defined by x[m,n] =

∑ m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes

the double sequence whose only non zero term is a 1
(i+j)!

in the (i, j)th place
for each i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (=mn)
is a Schauder basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metriz-
able; locally convex topology under which the coordinate mappings x = (xk) →
(xmn)(m, n ∈ N) are also continuous.

Orlicz[16] used the idea of Orlicz function to construct the space
(
LM

)
.

Lindenstrauss and Tzafriri [10] investigated Orlicz sequence spaces in more
detail, and they proved that every Orlicz sequence space `M contains a sub-
space isomorphic to `p (1 ≤ p < ∞) . subsequently, different classes of sequence
spaces were defined by Parashar and Choudhary [17], Mursaleen et al. [14],
Bektas and Altin [3], Tripathy et al. [21], Rao and Subramanian [18], and
many others. The Orlicz sequence spaces are the special cases of Orlicz spaces
studied in [9].

Recalling [16] and [9], an Orlicz function is a function M : [0,∞) → [0,∞)
which is continuous, non-decreasing, and convex with M (0) = 0, M (x) > 0,
for x > 0 and M (x) → ∞ as x → ∞. If convexity of Orlicz function M is
replaced by subadditivity of M, then this function is called modulus function,
defined by Nakano [15] and further discussed by Ruckle [19] and Maddox [11],
and many others.

An Orlicz function M is said to satisfy the ∆2− condition for all values of
u if there exists a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0) . The
∆2− condition is equivalent to M (`u) ≤ K`M (u) , for all values of u and for
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` > 1.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to con-
struct Orlicz sequence space

`M =
{

x ∈ w :
∑∞

k=1 M
(
|xk|
ρ

)
< ∞, for someρ > 0

}
,

The space `M with the norm

‖x‖ = inf
{

ρ > 0 :
∑∞

k=1 M
(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
tp (1 ≤ p < ∞) , the spaces `M coincide with the classical sequence space `p.
If X is a sequence space, we give the following definitions:

(i)X
′
= the continuous dual of X;

(ii)Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| < ∞, for eachx ∈ X

}
;

(iii)Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn isconvegent, foreachx ∈ X

}
;

(iv)Xγ =
{

a = (amn) : supmn ≥ 1
∣∣∣∑M,N

m,n=1 amnxmn

∣∣∣ < ∞, foreachx ∈ X
}

;

(v)letX beanFK − space ⊃ φ; thenXf =
{
f(=mn) : f ∈ X

′}
;

(vi)Xδ =
{

a = (amn) : supmn |amnxmn|1/m+n < ∞, foreachx ∈ X
}

;

Xα.Xβ, Xγ are called α− (orKöthe−Toeplitz)dual of X, β−(or generalized−
Köthe − Toeplitz)dual ofX, γ − dual of X, δ − dual ofX respectively.Xα is
defined by Gupta and Kamptan [24]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ,
but Xα ⊂ Xγ does not hold, since the sequence of partial sums of a double
convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was intro-
duced by Kizmaz [36] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk−xk+1 for all k ∈ N. Here w, c, c0 and
`∞ denote the classes of all, convergent,null and bounded sclar valued single
sequences respectively. The above spaces are Banach spaces normed by
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‖x‖ = |x1|+ supk≥1 |∆xk|

Later on the notion was further investigated by many others. We now
introduce the following difference double sequence spaces defined by

Z (∆) = {x = (xmn) ∈ w2 : (∆xmn) ∈ Z}

where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) =
xmn − xmn+1 − xm+1n + xm+1n+1 for all m, n ∈ N.
As in single sequences (see [23, Theorem7.2.7])
(i) Xγ ⊂ Xf (ii)If X has AD, Xβ = Xf ; (iii) If X has AD, Xβ = Xf .

2. Definitions and Preliminaries

Let w2 denote the set of all complex double sequences x = (xmn)∞m,n=1 and
M : [0,∞) → [0,∞) be an Orlicz function, or a modulus function.

χ2
M =

{
x ∈ w2 :

(
M

(
((m+n)!|xmn|)1/m+n

ρ

))
→ 0asm, n →∞for someρ > 0

}
and

Λ2
M =

{
x ∈ w2 : supm,n≥1

(
M

(
|xmn|1/m+n

ρ

))
< ∞for someρ > 0

}
.

Define the sets χ2
M (∆) = {x ∈ w2 : ∆x ∈ χ2

M} and Λ2
M (∆) = {x ∈ w2 : ∆x ∈ Λ2

M} ,

The space Λ2
M (∆) is a metric space with the metric

d (x, y) = inf

{
ρ > 0 : supm,n≥1

(
M

(
|∆xmn −∆ymn|

ρ

))1/m+n

≤ 1

}
(2)

The space χ2
M (∆) is a metric space with the metric

d (x, y) = inf

{
ρ > 0 : supm,n≥1

(
M

(
(m + n)! |∆xmn −∆ymn|

ρ

))1/m+n

≤ 1

}
(3)

Because of the historical roots of summability in convergence, conservative
space and matrices play a special role in its theory. However, the results seem
mainly to depend on a weaker assumption, that the spaces be semi conserva-
tive. (See [23]). Snyder and Wilansky [37] introduced the concept of semi con-
servative spaces. Snyder [38] studied the properties of semi conservative spaces.
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In the year 1996 the semi replete spaces were introduced by Chandrasekhara
Rao and Srinivasalu [39]. K.Chandrasekhara Rao and N.Subramanian [40] and
[41] introduced the concept of semi analytic spaces and the semi Orlicz space of
analytic sequences. Recently N.Subramanian, B.C.Tripathy and C.Murugesan
has [42] introduced the concept of the semi Orlicz space of cs

⋂
d1.

In a similar way, in this paper we define semi difference Orlicz spaces of
Λ2, and show that semi difference Orlicz space of Λ2 is I ⊂ η2 and Λ2 ⊂ I.

3. Main Results

Proposition 1. χ2
M(∆) has AK-property

Proof: Let x = (xmn) ∈ χ2
M(∆) and take x[m,n] =

∑ m,n
i,j=0xij=ij for all m, n ∈ N.

Hence
d

(
x, x[r, s]

)
= inf

{
supmn

{
((m + n)! |∆xmn|)1/m+n : m ≥ r + 1, n ≥ s + 1

}
≤ 1

}
→

0 as m, n → ∞. Therefore, x[r, s] → x as r, s → ∞ in χ2
M(∆). Thus χ2

M(∆)
has AK. This completes the proof.
Proposition 2.χ2

M ⊂ χ2
M(∆)

Proof: Let x ∈ χ2
M . Then we have the following implications(

M
(

((m+n)!|xmn|)1/m+n

ρ

))
→ 0 as m, n →∞.

⇒
(
M

(
((m+n)!|(xmn−xmn+1)−(xm+1n−xm+1n+1)|)1/m+n

ρ

))
≤

(
M

(
((m+n)!|xmn|)1/m+n

ρ

))
+(

M
(

((m+n+1)!|xmn+1|)1/m+n+1

ρ

))
+

(
M

(
((m+n+1)!|xm+1n|)1/m+n+1

ρ

))
+

(
M

(
((m+n+2)!|xm+1n+1|)1/m+n+2

ρ

))
→ 0 as m,n →∞
⇒

(
M

(
((m+n)!|∆xmn|)1/m+n

ρ

))
→ 0 as m, n →∞.

⇒ x ∈ χ2
M(∆) ⇒ χ2

M ⊂ χ2
M(∆)

Now take

If
(
M

(
(m+n)!xmn

ρ

))
= 1∗ =


1, 1, ...1
1, 1, ...1
.
.
.
1, 1, ...1


Then 1∗ ∈ χ2

M(∆). but 1∗ /∈ χ2
M . Hence the inclusion χ2

M ⊂ χ2
M(∆) is strict.

This completes the proof.
Proposition 3.(χ2

M(∆))
β

= Λ2
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Proof:Step 1. χ2
M ⊂ χ2

M(∆), by Proposition 4.2

⇒ (χ2
M(∆))

β ⊂ (χ2
M)

β
. But (χ2

M)
β

= Λ2(
χ2

M(∆)
)β ⊂ Λ2 (4)

Step2. We observe that χ2
M(∆) ⊂ Γ2

M(∆).

⇒ (Γ2
M(∆))

β ⊂ (χ2
M(∆))

β
. But (Γ2

M(∆))
β
⊂
6= Λ2,

Λ2 ⊂
(
χ2

M(∆)
)β

(5)

From (4) and (5) we get (χ2
M(∆))

β
= Λ2. This completes the proof.

Proposition 4.χ2
M (∆) is solid

Proof:Let |xmn| ≤ |ymn| and y = (ymn) ∈ χ2
M (∆) .

Then
{

M
(

((m+n)!|∆xmn|)1/m+n

ρ

)}
≤

{
M

(
((m+n)!|∆ymn|)1/m+n

ρ

)}
, becuase M is

non-decreasing.

But
{

M
(

(k!|∆ymn|)1/m+n

ρ

)}
∈ χ2, because y ∈ χ2

M (∆) .

That is
{

M
(

((m+n)!|∆ymn|)1/m+n

ρ

)}
→ 0asmn →∞, and

{
M

(
((m+n)!|∆xmn|)1/m+n

ρ

)}
→

0asmn →∞. Therefore x = {xmn} ∈ χ2
M (∆) . This completes the proof.

Proposition 5.(χ2
M (∆))

µ
= Λ2 for µ = α, β, γ, f

Step 1: (χ2
M (∆)) has AK by Proposition 4.1. Hence by Lemma 2 (i) we get

(χ2
M (∆))

β
= (χ2

M (∆))
f
. But (χM (∆))β = Λ2 Hence(

χ2
M (∆)

)f
= Λ2. (6)

Step 2: Since AK implies AD. Hence by Lemma 2(iii) we get (χ2
M (∆))

β
=

(χ2
M (∆))

γ
. Therefore (

χ2
M (∆)

)γ
= Λ2. (7)

Step 3:(χ2
M (∆)) is normal by Proposition 4.4. Hence by Proposition 2.7 [24].

We get (
χ2

M (∆)
)α

=
(
χ2

M (∆)
)β

= Λ2 (8)

From (6),(7) and (8) we have (χ2
M (∆))

α
= (χ2

M (∆))
β

= (χ2
M (∆))

γ
= (χ2

M (∆))
f

=
Λ2.
Lemma 1.[23, Theorem 8.6.1] Y ⊃ X ⇔ Y f ⊂ Xf where X is an AD-space
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and Y an FK-space.
Proposition 6.Let Y be any FK-space ⊃ φ. Then Y ⊃ χ2

M (∆) if and only if
the sequence =(mn) is weakly Λ2.
Proof: The following implications establish the result Y ⊃ χ2

M (∆) ⇔ Y f ⊂
(χ2

M (∆))
f
, since χ2

M (∆) has AD by Lemma 4.6.

⇔ Y f ⊂ Λ2, since (χ2
M (∆))

f
= Λ2.

⇔ for each f ∈ Y
′
, the topological dual of Y.f

(
=(mn)

)
∈ Λ2.

⇔ f
(
=(mn)

)
is Λ2.

⇔ =(mn) is weakly Λ2. This completes the proof.
Proposition 7.For every p = (pmn) , [Λ2

M (p)]
β

= [Λ2
M (p)]

α
= [Λ2

M (p)]
γ

=
η2

M (p) ,

where η2
M (p) =

⋂
N∈N−{1}

{
x = xmn :

∑
m,n

(
M

(
|xmn|Nm+n/pmn

ρ

))
< ∞

}
.

Proof: (1) First we show that η2
M (p) ⊂ [Λ2

M (p)]
β
.

Let x ∈ η2
M (p) and y ∈ Λ2

M (p) . Then we can find a positive integer N such

that
(
|ymn|1/m+n

)pmn

< max
(
1, supm,n≥1

(
|ymn|1/m+n

)pmn
)

< N, for all m, n.

Hence we may write∣∣∣∑m,n xmnymn

∣∣∣ ≤ ∑
m,n |xmnymn| ≤

∑
mn

(
M

(
|xmnymn|

ρ

))
≤

∑
m,n

(
M

(
|xmn|Nm+n/pmn

ρ

))
.

Since x ∈ η2
M (p) . the series on the right side of the above inequality is conver-

gent, whence x ∈ [Λ2
M (p)]

β
. Hence η2

M (p) ⊂ [Λ2
M (p)]

β
.

Now we show that [Λ2
M (p)]

β ⊂ η2
M (p) .

For this, let x ∈ [Λ2
M (p)]

β
, and suppose that x /∈ Λ2

M (p) . Then there

exists a positive integer N > 1 such that
∑

m,n

(
M

(
|xmn|Nm+n/pmn

ρ

))
= ∞.

If we define ymn = Nm+n/pmnSgnxmn m, n = 1, 2, · · · , then y ∈ Λ2
M (p) .

But, since∣∣∣∑m,n xmnymn

∣∣∣ =
∑

mn

(
M

(
|xmnymn|

ρ

))
=

∑
m,n

(
M

(
|xmn|Nm+n/pmn

ρ

))
= ∞,

we get x /∈ [Λ2
M (p)]

β
, which contradicts to the assumption x ∈ [Λ2

M (p)]
β
.

Therefore x ∈ η2
M (p) . Therefore [Λ2

M (p)]
β

= η2
M (p) .
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(ii)and (iii) can be shown in a similar way of (i). Therefore we omit it.

4. Properties of semi difference Orlicz space of Λ2

Definition 1. An FK-space ∆X is called ”semi difference Orlicz space of Λ2”
if its dual (∆X)f ⊂ Λ2. In other words ∆X is semi difference Orlicz space of

Λ2 if f
(
=(mn)

)
∈ Λ2∀f ∈ (∆X)

′
for each fixed m,n

Example:χ2
M (∆) is semi difference Orlicz space of Λ2 . Indeed, if χ2

M (∆)
is the space of all difference Orlicz sequence of double gai sequences, then by
Lemma 5.3 (χ2

M (∆))
f

= Λ2.

Lemma 1.(χ2
M (∆))

f
= Λ2.

Proof: (χ2
M (∆))

β
= Λ2 by Proposition 4.3. But (χ2

M (∆)) has AK by Propo-

sition 4.1. Hence (χ2
M (∆))

β
= (χ2

M (∆))
f
. Therefore (χ2

M (∆))
f

= Λ2 This
completes the proof. We recall
Lemma 2. (See 23, Theorem 4.3.7)Let z be a sequence. Then

(
zβ, P

)
is an AK

space with P = (Pk : k = 0, 1, 2, . . .) , where P0 (x) =
sup
m |

∑m
k=1 zkxk| , Pn (x) =

|xn| . For any k such that zk 6= 0, Pk may be omitted. If z ∈ φ, P0 may be
omitted.
Proposition 1. Let z be a sequence zβ is semi difference Orlicz space of Λ2

if and only if z is Λ2.
Proof: Step 1. Suppose that zβ is semi difference Orlicz space of Λ2. zβ has

AK by Lemma 5.4. Therefore Zββ =
(
zβ

)f
by Theorem 7.2.7 of Wilansky [23].

So Zβ is semi difference Orlicz space of Λ2 if and only if zββ ⊂ Λ2. But then
z ∈ zββ ⊂ Λ2. Hence z is Λ2.
Step2: Conversely, suppose that z is Λ2. Then zβ ⊃ {Λ2}β

and

zββ ⊂ {Λ2}ββ
= Λ2. But

(
zβ

)f
= zββ. Hence

(
zβ

)f ⊂ Λ2. Therefore zβ is semi
difference Orlicz space of Λ2. This completes the proof.
Proposition 2. Every semi difference Orlicz space of Λ2 contains χ2

M

Proof: Let ∆X be any semi difference Orlicz space of Λ2. Hence (∆X)f ⊂ Λ2.

Therefore f
(
=(mn)

)
∈ Λ2∀f ∈ (∆X)

′
. So,

{
=(mn)

}
is weakly Λ2 with respect

to ∆X. Hence ∆X ⊃ χ2
M (∆) by Proposition 4.7. But χ2

M (∆) ⊃ χ2
M . Hence

∆X ⊃ χ2
M . This completes the proof.

Proposition 3. The intersection of all semi difference Orlicz space of Λ2.
{∆Xmn : m, n = 1, 2, . . .} is semi differene Orlicz space of Λ2.
Proof: Let ∆X =

⋂∞
m,n=1 ∆Xmn. Then ∆X is an FK-space which contains
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φ. Also every f ∈ (∆X)
′

can be written as f = g11 + . . . + gmn, where

gmn ∈ (∆Xmn)
′

for some mn and for 1 ≤ mn ≤ i, j. But then f (=mn) =
g1 (=mn) + . . . + gmn (=mn) . Since ∆Xmn (m, n = 1, 2, . . .) are semi difference
Orlicz space of Λ2, it follows that gii (=mn) ∈ Λ2.. for all i = 1, 2, . . . mn.
Therefore f (=mn) ∈ Λ2∀mnand∀f. Hence ∆X is semi difference Orlicz space
of Λ2.This completes the proof.
Proposition 4. The intersection of all semi difference Orlicz space Λ2 is
I ⊂ η2 and Λ2 ⊂ I.
Proof: Let I be the intersection of all semi difference Orlicz space of Λ2. By
Proposition 5.5 we see that the intersection

I ⊂
⋂ {

zβ : z ∈ Λ2
}

=
{
Λ2

}β
= η2. (9)

By Proposition 5.7 it follows that I is semi difference Orlicz space of Λ2. By
Proposition 5.6 consequently

χ2
M (∆) = Λ2 ⊂ I (10)

From (9) and (10) we get I ⊂ η2 and Λ2 ⊂ I. This completes the proof.
Corollary: The smallest semi difference Orlicz space of Λ2 is I ⊂ η2 and
Λ2 ⊂ I.
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