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Abstract. In this paper we introduced the Orlicz space of χπ. We establish
some inclusion relations, topological results and we characterize the duals of the
Orlicz of χπ sequence spaces.
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1. Introduction

A complex sequence, whose kth terms is xk is denoted by {xk} or simply x. Let
w be the set of all sequences x = (xk) and φ be the set of all finite sequences. Let
`∞, c, c0 be the sequence spaces of bounded, convergent and null sequences x = (xk)
respectively. In respect of `∞, c, c0 we have

‖x‖ =
sup

k |xk| , where x = (xk) ∈ c0 ⊂ c ⊂ `∞. A sequence x = {xk} is said
to be analytic if supk |xk|1/k < ∞. The vector space of all analytic sequences will
be denoted by Λ. A sequence x is called entire sequence if limk→∞ |xk|1/k = 0.
The vector space of all entire sequences will be denoted by Γ.χ was discussed in
Kamthan [19]. Matrix transformation involving χ were characterized by Sridhar
[20] and Sirajiudeen [21]. Let χ be the set of all those sequences x = (xk) such that
(k! |xk|)1/k → 0 as k →∞. Then χ is a metric space with the metric

d (x, y) = supk

{
(k! |xk − yk|)1/k : k = 1, 2, 3, · · ·

}
Orlicz [4] used the idea of Orlicz function to construct the space (LM ). Linden-
strauss and Tzafriri [5] investigated Orlicz sequence spaces in more detail, and
they proved that every Orlicz sequence space `M contains a subspace isomorphic
to `p(1 ≤ p < ∞). Subsequently different classes of sequence spaces defined by
Parashar and Choudhary[6], Mursaleen et al.[7], Bektas and Altin[8], Tripathy et
al.[9], Rao and subramanian[10] and many others. The Orlicz sequence spaces are
the special cases of Orlicz spaces studied in Ref[11].
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Recall([4],[11]) an Orlicz function is a function M : [0,∞) → [0,∞) which is
continuous, non-decreasing and convex with M(0) = 0,M(x) > 0, for x > 0 and
M(x) →∞ as x →∞. If convexity of Orlicz function M is replaced by M(x + y) ≤
M(x)+M(y) then this function is called modulus function, introduced by Nakano[18]
and further discussed by Ruckle[12] and Maddox[13] and many others.

An Orlicz function M is said to satisfy ∆2− condition for all values of u, if there
exists a constant K > 0, such that M(2u) ≤ KM(u)(u ≥ 0). The ∆2− condition is
equivalent to M(`u) ≤ K`M(u), for all values of u and for ` > 1. Lindenstrauss and
Tzafriri[5] used the idea of Orlicz function to construct Orlicz sequence space

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
< ∞, forsomeρ > 0

}
. (1)

The space `M with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
(2)

becomes a Banach space which is called an Orlicz sequence space. For M(t) =
tp, 1 ≤ p < ∞, the space `M coincide with the classical sequence space `p· Given
a sequence x = {xk} its nth section is the sequence x(n) = {x1, x2, ..., xn, 0, 0, ...}
δ(n) = (0, 0, ..., 1, 0, 0, ...) , 1 in the nth place and zero’s else where; and s(k) =
(0, 0, ..., 1,−1, 0, ...) , 1 in the nth place,-1 in the (n+1)thplace and zero’s else where.
An FK-space (Frechet coordinate space) is a Frechet space which is made up of
numerical sequences and has the property that the coordinate functionals pk (x) =
xk (k = 1, 2, 3, . . .) are continuous. We recall the following definitions [see [15]].

An FK-space is a locally convex Frechet space which is made up of sequences
and has the property that coordinate projections are continuous. An metric-space
(X, d) is said to have AK (or sectional convergence) if and only if d

(
x(n), x

)
→ 0 as

n → ∞.[see[15]] The space is said to have AD (or) be an AD space if φ is dense in
X. We note that AK implies AD by [14].

If X is a sequence space, we define
(i)X

′
= the continuous dual of X.

(ii)Xα = {a = (ak) :
∑∞

k=1 |akxk| < ∞, foreachx ∈ X} ;
(iii)Xβ = {a = (ak) :

∑∞
k=1 akxk is convergent, foreachx ∈ X} ;

(iv)Xγ =
{

a = (ak) :
sup
n |
∑n

k=1 akxk| < ∞, foreachx ∈ X
}

;

(v)Let X be an FK-space⊃ φ. Then Xf =
{

f(δ(n)) : f ∈ X
′
}

.

Xα, Xβ , Xγ are called the α−(or Kö the-T öeplitz)dual of X, β− (or generalized
Kö the-T öeplitz)dual of X, γ−dual of X. Note that Xα ⊂ Xβ ⊂ Xγ . If X ⊂ Y
then Y µ ⊂ Xµ, for µ = α, β, or γ.
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Lemma 1.1. (See (15, Theorem7.27)) . Let X be an FK-space ⊃ φ. Then
(i) Xγ ⊂ Xf .
(ii) If X has AK, Xβ = Xf .
(iii) If X has AD, Xβ = Xγ .

2.Definitions and Prelimiaries

Let w denote the set of all complex double sequences x = (xk)
∞
k=1 and M :

[0,∞) → [0,∞) be an Orlicz function, or a modulus function. Let

χπ
M =

{
x ∈ w : limk→∞

(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))
= 0forsomeρ > 0

)
,

Γπ
M =

{
x ∈ w : limk→∞

(
M

(
|xk|1/k

π
1/k
k ρ

))
= 0forsomeρ > 0

)

and Λπ
M =

{
x ∈ w : supk

(
M

(
|xk|1/k

π
1/k
k ρ

))
< ∞forsomeρ > 0

)
The space χπ

M is a metric space with the metric

d (x, y) = inf

{
ρ > 0 : supk

(
M

(
(k! |xk − yk|)1/k

π
1/k
k ρ

))
≤ 1

}
(3)

The space Γπ
M and Λπ

M is a metric space with the metric

d (x, y) = inf

{
ρ > 0 : supk

(
M

(
|xk − yk|1/k

π
1/k
k ρ

))
≤ 1

}
(4)

3.Main Results

Proposition 3.1. χπ
M ⊂ Γπ

M , with the hypothesis that M

(
|xk|

π
1/k
k ρ

)
≤ M

(
(k!|xk|)1/k

π
1/k
k ρ

)
Proof. Let x ∈ χπ

M . Then we have the following implications

M

(
(k! |xk|)1/k

π
1/k
k ρ

)
→ 0ask →∞ (5)
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But M

(
|xk|

π
1/k
k ρ

)
≤ M

(
(k!|xk|)1/k

π
1/k
k ρ

)
, by our assumption, implies that

⇒ M

(
|xk|1/k

π
1/k
k ρ

)
→ 0ask →∞, by (5).

⇒ x ∈ Γπ
M

⇒ χπ
M ⊂ Γπ

M . This completes the proof.

Proposition 3.2. χπ
M has AK where M is a modulus function.

Proof. Let x = {xk} ∈ χπ
M , but then

{
M

(
(k!|xk|)1/k

π
1/k
k ρ

)}
∈ χ, and hence

supk≥n+1M

(
(k! |xk|)1/k

π
1/k
k ρ

)
→ 0asn →∞. (6)

d
(
x, x[n]

)
= supk≥n+1

(
(k!|xk|)1/k

π
1/k
k ρ

)
→ 0asn →∞, by using (6)

⇒ x[n] → xasn →∞, implying that χπ
M has AK. This completes the proof.

Proposition 3.3. χπ
M is solid.

Proof. Let |xk| ≤ |yk| and let y = (yk) ∈ χπ
M .

M

(
(k!|xk|)1/k

π
1/k
k ρ

)
≤ M

(
(k!|yk|)1/k

π
1/k
k ρ

)
, because M is non-decreasing.

But M

(
(k!|yk|)1/k

π
1/k
k ρ

)
∈ χ, because y ∈ χπ

M .

That is M

(
(k!|yk|)1/k

π
1/k
k ρ

)
→ 0ask →∞ and M

(
(k!|xk|)1/k

π
1/k
k ρ

)
→ 0ask →∞. Therefore

x = {xk} ∈ χπ
M . This completes the proof.

Proposition 3.4. Let M be an Orlicz function which satisfies ∆2− condition.
Then χ ⊂ χπ

M .

Proof.Let
x ∈ χ (7)

Then (k! |xk|)1/k ≤ ε sufficiently large k and every ε > 0. But then by taking ρ ≥ 1
2

M

(
(k!|xk|)1/k

π
1/k
k ρ

)
≤ M

(
ε
ρ

)
≤ M (2ε)(because M is non-decreasing)

M

(
(k! |xk|)1/k

π
1/k
k ρ

)
≤ KM (ε) by∆2 − condition, for someK > 0 ≤ ε (8)

⇒ M

(
(k!|xk|)1/k

π
1/k
k ρ

)
→ 0ask →∞ (by defining M (ε) < ε

k ). Hence x ∈ χπ
M . From (7)
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and since
x ∈ χπ

M (9)

we get x ⊂ χπ
M . This completes the proof.

Proposition 3.5. If M is a modulus function, then χπ
M is linear set over the

set of complex numbers C

Proof. Let x, y ∈ χπ
M and α, β ∈ C. In order to prove the result we need to find

some ρ3 such that

M

(
(k! |αxk + βyk|)1/k

π
1/k
k ρ3

)
→ 0ask →∞. (10)

Since x, y ∈ χπ
M , there exists some positive ρ1 and ρ2 such that

M

(
(k! |xk|)1/k

π
1/k
k ρ

)
→ 0ask →∞andM

(
(k! |yk|)1/k

π
1/k
k ρ

)
→ 0ask →∞. (11)

Since M is a non decreasing modulus function, we have

M

(
(k!|αxk+βyk|)1/k

π
1/k
k ρ3

)
≤ M

(
(k!|αxk|)1/k

π
1/k
k ρ3

+ (k!|βyk|)1/k

π
1/k
k ρ3

)
≤ M

(
|α|(k!|xk|)1/k

π
1/k
k ρ3

+ |β|(k!|yk|)1/k

π
1/k
k ρ3

)
Take ρ3 such that 1

ρ3
= min

{
1
|α|

1
ρ1

, 1
|β|

1
ρ2

}
. Then

M

(
(k!|αxk+βyk|)1/k

π
1/k
k ρ3

)
≤ M

(
(k!|xk|)1/k

π
1/k
k ρ1

+ (k!|yk|)1/k

π
1/k
k ρ2

)
→ 0 (by(11)).

Hence M

(
(k!|αxk+βyk|)1/k

π
1/k
k ρ3

)
→ 0ask → ∞. So (αx + βy) ∈ χπ

M . Therefore χπ
M is

linear. This completes the proof.

Definition 3.6. Let p = (pk) be any sequence of positive real numbers. Then we

define χπ
M (p) =

{
x = (xk) :

(
M

(
(k!|xk|)1/k

π
1/k
k ρ

))
→ 0ask →∞

}
. Suppose that pk is

a constant for all k, then χπ
M (p) = χπ

M .

Proposition 3.7. Let 0 ≤ pk ≤ qk and let
{

qk
pk

}
be bounded. Then χπ

M (q) ⊂
χπ

M (p) .

Proof. Let
x ∈ χπ

M (q) (12)(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))qk

→ 0ask →∞. (13)

13



N. Subramanian, S. Krishnamoorthy, S. Balasubramanian - The Orlicz space of χπ

Let tk =
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))qk

and λk = pk
qk

. Since pk ≤ qk, we have 0 ≤ λk ≤ 1. Take

0 < λ < λk. Define

uk =

{
tk, (tk ≥ 1)
0, (tk < 1)

andvk =

{
0 (tk ≥ 1)
tk, (tk < 1)

(14)

tk = uk + vk; t
λk
k = uλk

k + vλk
k . Now it follows that uλk

k ≤ uk ≤ tk andvλk
k ≤ vλ

k . Since
tλk
k = uλk

k + vλk
k , thentλk

k ≤ tk + vλ
k(

M

(
(k!|xk|)1/k

π
1/k
k ρ

)qk
)λk

≤
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))qk

⇒
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

)qk
)pk/qk

≤
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))qk

⇒
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))pk

≤
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))qk

But
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))qk

→ 0ask →∞. (by (13))

Therefore
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))pk

→ 0ask →∞. Hence

x ∈ χπ
M (p) (15)

From (12) and (15) we get χπ
M (q) ⊂ χπ

M (p) . This completes the proof.

Proposition 3.8. (a) Let 0 < infpk ≤ pk ≤ 1. Then χπ
M (p) ⊂ χπ

M

(b) Let 1 ≤ pk ≤ suppk < ∞. Then χπ
M ⊂ χπ

M (p)

Proof. (a)Let x ∈ χπ
M (p)(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))pk

→ 0ask →∞. (16)

Since 0 < infpk ≤ pk ≤ 1(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))
≤

(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))pk

(17)

From (16) and (17) it follows that x ∈ χπ
M .

Thus χπ
M (p) ⊂ χπ

M . We have thus proven (a). (b) Let pk ≥ 1 for each k and
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suppk < ∞
Let x ∈ χπ

M (
M

(
(k! |xk|)1/k

π
1/k
k ρ

))
→ 0ask →∞. (18)

Since 1 ≤ pk ≤ suppk < ∞ we have(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))pk

≤

(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))
(19)

(
M

(
(k!|xk|)1/k

π
1/k
k ρ

))pk

→ 0ask →∞. by using (18).

Therefore x ∈ χπ
M (p) . This completes the proof.

Proposition 3.9. Let 0 < pk ≤ qk < ∞ for each k. Then χπ
M (p) ⊆ χπ

M (q).

Proof. Let x ∈ χπ
M (p)(

M

(
(k! |xk|)1/k

π
1/k
k ρ

))pk

→ 0ask →∞. (20)

This implies that
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))
≤ 1 for sufficiently large k.

Since M is non-decreasing, we get(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))qk

≤

(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))pk

(21)

⇒
(

M

(
(k!|xk|)1/k

π
1/k
k ρ

))qk

→ 0ask →∞. (by using (20)).

x ∈ χπ
M (q)

Hence χπ
M (p) ⊆ χπ

M (q) . This completes the proof.

Proposition 3.10. χπ
M (p) is a r− convex for all r where 0 ≤ r ≤ infpk.

Moreover if pk = p ≤ 1∀k, then they are p− convex.

Proof. We shall prove the Theorem for χπ
M (p) .

Let x ∈ χπ
M (p) and r ∈ (0, limn→∞pn)

Then, there exists k0 such that r ≤ pk∀k > k0.
Now, define

g∗ (x) = inf

{
ρ : M

(
(k! |xk − yk|)1/k

π
1/k
k ρ

)r

+ M

(
(k! |xk − yk|)1/k

π
1/k
k ρ

)pn
}

(22)

15



N. Subramanian, S. Krishnamoorthy, S. Balasubramanian - The Orlicz space of χπ

Since r ≤ pk ≤ 1∀k > k0

g∗ is subadditive: Further, for 0 ≤ |λ| ≤ 1; |λ|pk ≤ |λ|r ∀k > k0.

g∗ (λx) ≤ |λ|r · g∗ (x) (23)

Now, for 0 < δ < 1,

U = {x : g∗ (x) ≤ δ} , which isanabsolutely r − convexset, for (24)

|λ|r + |µ|r ≤ 1x, y ∈ U (25)

Now
g∗ (λx + µy) ≤ g∗ (λx) + g∗ (µy)

≤ |λ|r g∗ (x) + |µ|r g∗ (y)
≤ |λ|r δ + |µ|r δ using (23) and (24)
≤ (|λ|r + |µ|r) δ
≤ 1 · δ, by using (25)
≤ δ. If pk = p ≤ 1∀k then for 0 < r < 1,

U = {x : g∗ (x) ≤ δ} is an absolutely p− convex set.
This can be obtained by a similar analysis and there fore we omit the details. This
completes the proof.

Proposition 3.11. (χπ
M )β = Λ

Proof: Step 1: χπ
M ⊂ Γπ

M by Proposition 3.1;
⇒ (Γπ

M )β ⊂ (χπ
M )β . But (Γπ

M )β = Λ

Λ ⊂ (χπ
M )β (26)

Step 2: Let y ∈ (χπ
M )β we have f (x) =

∑∞
k=1 xkyk with x ∈ χπ

M .

We recall that s(k) has π
1/k
k
k! in the kth place and zero’s elsewhere, with

x = s(k),

(
M

(
(k!|xk|)1/k

π
1/k
k ρ

))
=
{

0, 0, · · ·M
(

(1)1/k

ρ

)
, 0, · · ·

}
which converges to zero. Hence s(k) ∈ χπ

M . Hence d
(
s(k), 0

)
= 1.

But |yk| ≤ ‖f‖ d
(
s(k), 0

)
< ∞∀k. Thus (yk) is a bounded sequence and hence an

analytic sequence. In other words y ∈ Λ.

(χπ
M )β ⊂ Λ (27)

Step 3 From (26) and (27) we obtain (χπ
M )β = Λ.

This completes the proof.
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Proposition 3.12. (χπ
M )µ = Λ for µ = α, β, γ, f .

Proof. Step 1: χπ
M has AK by Proposition 3.2. Hence by Lemma 1.1 (i) we get

(χπ
M )β = (χπ

M )f . But (χπ
M )β = Λ. Hence

(χπ
M )f = Λ (28)

Step 2: Since AK ⇒ AD. Hence by Lemma 1.1 (iii) we get (χπ
M )β = (χπ

M )γ .
Therefore

(χπ
M )γ = Λ (29)

Step 3: χπ
M is normal by Proposition 3.3 Hence by Proposition 2.7 [16]. we get

(χπ
M )α = (χπ

M )γ = Λ. (30)

From (28), (29) and 930) we have (χπ
M )α = (χπ

M )β = (χπ
M )γ = (χπ

M )f = Λ.

Proposition 3.13. The dual space of χπ
M is Λ. In other words (χπ

M )∗ = Λ.

Proof. We recall that s(k) has π
1/k
k
k! has the kth place zero’s else where, with

x = s(k),

(
M

(
(k!|xk|)1/k

π
1/k
k ρ

))
=
{

0, 0, · · ·M
(

(1)1/k

ρ

)
, 0, · · ·

}
Hence s(k) ∈ χπ

M . We have f (x) =
∑∞

k=1 xkyk with x ∈ χπ
M and f ∈ (χπ

M )∗ , where
(χπ

M )∗ is the dual space of χπ
M . Take x = s(k) ∈ χπ

M . Then

|yk| ≤ ‖f‖ d
(
s(k), 0

)
< ∞for all k. (31)

Thus (yk) is a bounded sequence and hence an analytic sequence. In other words,
y ∈ Λ. Therefore (χπ

M )∗ = Λ. This completes the proof.

Lemma 3.14. [15, Theorem 8.6.1] Y ⊃ X ⇔ Y f ⊂ Xf where X is an AD-space
and Y an FK-space.

Proposition 3.15. Let Y be any FK-space⊃ φ. Then Y ⊃ χπ
M if and only if

the sequence s(k) is weakly analytic.

Proof. The following implications establish the result.
Y ⊃ X ⇔ Y f ⊂ (χπ

M )f , since χπ
M has AD and by Lemma 3.14.

⇔ Y f ⊂ Λ, since (χπ
M )f = Λ.

⇔ for eachf ∈ Y
′
, the topological dual of Y . Therefore f

(
s(k)
)
∈ Λ.

⇔ f
(
s(k)
)

is analytic
⇔ s(k) is weakly analytic.
This completes the proof.
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Proposition 3.16. χπ
M is a complete metric space under the metric

d (x, y) = supk

{
M

(
(k!|xk−yk|)1/k

π
1/k
k ρ

)
: k = 1, 2, 3, · · ·

}
where x = (xk) ∈ χπ

M and

y = (yk) χπ
M .

Proof. Let
{
x(n)

}
be a Cauchy sequence in χπ

M .
Then given any ε > 0 there exists a positive integer N depending on ε such that
d
(
x(n), x(m)

)
< ε for all n ≥ N and for all m ≥ N. Hence

supk

{
M

((
k!

∣∣∣x(n)
k −x

(m)
k

∣∣∣)1/k

π
1/k
k ρ

)}
< ε for all n ≥ N and for all m ≥ N.

Consequently

(
M

((
k!

∣∣∣x(n)
k

∣∣∣)1/k

π
1/k
k ρ

))
is a Cauchy sequence in the metric space C of

complex numbers. But C is complete. So,M


(
k!
∣∣∣x(n)

k

∣∣∣)1/k

π
1/k
k ρ


→

(
M

(
(k! |xk|)1/k

π
1/k
k ρ

))
as n →∞.

Hence there exists a positive integer n0 such that

supk

{
M

((
k!

∣∣∣x(n)
k −xk

∣∣∣)1/k

π
1/k
k ρ

)}
< ε for all n ≥ n0. In particular, we have{

M

((
k!

∣∣∣x(n)
k −xk

∣∣∣)1/k

π
1/k
k ρ

)}
< ε. Now{

M

(
(k!|xk|)1/k

π
1/k
k ρ

)}
≤

{
M

((
k!

∣∣∣xk−x
(n0)
k

∣∣∣)1/k

π
1/k
k ρ

)}
+

{
M

((
k!

∣∣∣x(n0)
k

∣∣∣)1/k

π
1/k
k ρ

)}
< ε+0ask →

∞. Thus {
M

(
(k! |xk|)1/k

π
1/k
k ρ

)}
< εask →∞.

That is x ∈ χπ
M . Therefore, χπ

M is a complete metric space. This completes the
proof.
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