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THE ORLICZ SPACE OF x™

N. SUBRAMANIAN, S.KRISHNAMOORTHY, S. BALASUBRAMANIAN

ABSTRACT. In this paper we introduced the Orlicz space of x™. We establish
some inclusion relations, topological results and we characterize the duals of the
Orlicz of x™ sequence spaces.
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1. INTRODUCTION

A complex sequence, whose k" terms is x, is denoted by {x1} or simply z. Let
w be the set of all sequences © = (z) and ¢ be the set of all finite sequences. Let
U0, ¢, co be the sequence spaces of bounded, convergent and null sequences x = (xy,)
respectively. In respect of £, ¢, cy we have

|| :sZ;p |xg|, where © = (z1) € ¢9 C ¢ C le. A sequence z = {z}} is said
to be analytic if supy |xk|1/ ¥ < 0o. The vector space of all analytic sequences will
be denoted by A. A sequence z is called entire sequence if limp_ oo |xk|1/ k= o.
The vector space of all entire sequences will be denoted by I'.x was discussed in
Kamthan [19]. Matrix transformation involving x were characterized by Sridhar
[20] and Sirajiudeen [21]. Let x be the set of all those sequences z = (xy) such that
(k! \azk|)1/k — 0 as k — o0o. Then y is a metric space with the metric

A (w,y) = supp { (Ko = i)'/ b =1,2,3,- )

Orlicz [4] used the idea of Orlicz function to construct the space (L). Linden-
strauss and Tzafriri [5] investigated Orlicz sequence spaces in more detail, and
they proved that every Orlicz sequence space £); contains a subspace isomorphic
to £p(1 < p < 00). Subsequently different classes of sequence spaces defined by
Parashar and Choudhary[6], Mursaleen et al.[7], Bektas and Altin[8], Tripathy et
al.[9], Rao and subramanian[10] and many others. The Orlicz sequence spaces are
the special cases of Orlicz spaces studied in Ref[11].
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Recall([4],[11]) an Orlicz function is a function M : [0,00) — [0,00) which is
continuous, non-decreasing and convex with M(0) = 0, M (z) > 0, for z > 0 and
M(z) — oo as & — oo. If convexity of Orlicz function M is replaced by M (x +y) <
M (z)+M (y) then this function is called modulus function, introduced by Nakano[18§]
and further discussed by Ruckle[12] and Maddox[13] and many others.

An Orlicz function M is said to satisfy Ay— condition for all values of u, if there
exists a constant K > 0, such that M (2u) < KM (u)(u > 0). The Ag— condition is
equivalent to M (¢u) < K{M (u), for all values of u and for ¢ > 1. Lindenstrauss and
Tzafriri[5] used the idea of Orlicz function to construct Orlicz sequence space

by = {wa : iM(kCﬁ) < 00, forsomep > 0}. (1)

k=1
The space £3; with the norm

| =mf{p>o:ZM (‘“”’”“') < 1} 2)

k=1 P

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
t?,1 < p < oo, the space ) coincide with the classical sequence space £,- Given
a sequence z = {xy} its n'" section is the sequence (™ = {x1,xs,...,2,,0,0,...}
§™ = (0,0,...,1,0,0,...), 1 in the n*" place and zero’s else where; and s =
(0,0,...,1,-1,0,...), 1 in the n'* place,-1 in the (n+1)"*place and zero’s else where.
An FK-space (Frechet coordinate space) is a Frechet space which is made up of
numerical sequences and has the property that the coordinate functionals py (z) =
xr (k=1,2,3,...) are continuous. We recall the following definitions [see [15]].

An FK-space is a locally convex Frechet space which is made up of sequences
and has the property that coordinate projections are continuous. An metric-space
(X,d) is said to have AK (or sectional convergence) if and only if d (x("), z) — 0 as
n — o00.[see[15]] The space is said to have AD (or) be an AD space if ¢ is dense in
X. We note that AK implies AD by [14].

If X is a sequence space, we define

(1) X" = the continuous dual of X.

()XY ={a=(ag) : > poq larzr| < 00, foreachx € X};

(iil) XP = {a = (ay) : 332, arzyisconvergent, foreachx € X};
(iv) X7 = {a = (ag) n 1> r_y agxy| < oo, foreachz € X} ;

(v)Let X be an FK-spaceD ¢. Then X/ = {f(é(")) 1 fe X/} .

X X8 X7 are called the a—(or Ko the-T deplitz)dual of X, f— (or generalized
K6 the-T deplitz)dual of X, y—dual of X. Note that X* ¢ X# c X". If X C Y
then Y* C X*, for p = «, 3, or-.
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Lemma 1.1. (See (15, Theorem7.27)). Let X be an FK-space D ¢. Then
(i) X7 c Xx/.
(ii) If X has AK, X% = X/.
(iii) If X has AD, X% = X7,

2.DEFINITIONS AND PRELIMIARIES

Let w denote the set of all complex double sequences z = (z)p., and M :
[0,00) — [0,00) be an Orlicz function, or a modulus function. Let

, . (k! )"
Xy =49CEw: limgoo | M ik =0 forsomep >0 ],
m/ " p

1/k
= {x €w:limg_oo (M <|:r;1€/|k )) =0 forsomep > O)
P

|| 2/

and A’M:{xew:supk <M< R )) <ooforsomep>0)
TP

The space x7, is a metric space with the metric

o
d(xz,y) =inf {p>0:supk (M <(k'| kl/kyka )) < 1} (3)
Tk

The space I'}; and A7, is a metric space with the metric
_ | o — "
d(z,y)=1inf<p>0:supg | M — <1 (4)
T p

3.MAIN RESULTS

1/k
Proposition 3.1. x7, C I'l,, with the hypothesis that M ( | > <M ((k'l;’;,lc))

i/k
™ TP
Proof. Let x € x7;. Then we have the following implications

M(W) — 0ask — oo (5)

1/k
7Tk/,0

11
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1/k
But M ( le /’2‘ > <M (W) , by our assumption, implies that
m' e

Tk P k
1/k
=M (%) — 0ask — oo, by (5).

k
=z el

= X3y C I'l;. This completes the proof.

Proposition 3.2. x4, has AK where M is a modulus function.

/k
Proof. Let x = {z}} € xJ;, but then {M (W’“Dl>} € x, and hence

Ak,
k! 1/k
SUPk>n 1M (Hgffll) — 0asn — oo. (6)
' p

/
d (a;, x["}) = SUPk>n+1 <W> — 0asn — oo, by using (6)

1/k
m P
= 2" — zasn — oo, implying that X7y has AK. This completes the proof.
Proposition 3.3. x7, is solid.

Proof. Let |zg| < |yg| and let y = (yx) € x7;-
1/k 1/k
M (W) <M (W)) , because M is non-decreasing.

m P T
1/k
But M <(k'|y1’jk)> € X, because y € x7,.
m' P

1/k 1/k
That is M <W%’}L)) — 0ask — oo and M <W?}Q> — 0ask — oco. Therefore
P TP
x = {z}} € x};. This completes the proof.
Proposition 3.4. Let M be an Orlicz function which satisfies Ao— condition.
Then x C X7

Proof.Let
T EX (7

~—

Then (k! |:1:k|)1/k < e sufficiently large k and every e > 0. But then by taking p > %
/ .
M (%) <M <§> < M (2¢)(because M is non-decreasing)

k

1/k

(k! [ ]) /" »
M| ———— | < KM (¢) byAs — condition, forsomeK >0 <€ (8)
TP

/
~ M (W) — 0ask — oo (by defining M (¢) < 1). Hence x € x7,. From (7)
P

12
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and since
x € Xy 9)
we get © C x7,. This completes the proof.

Proposition 3.5. If M is a modulus function, then x7, is linear set over the
set of complex numbers C

Proof. Let x,y € x7; and a, 8 € C. In order to prove the result we need to find
some p3 such that

1/k
Wk/ P3

| 1/k
M((k|a$k+5yk’) ) —0ask — oo. (10)

Since x,y € X7}, there exists some positive p; and po such that

! 1/k ! 1/k
M (W) — 0ask — ccand M (W) — 0ask — oc. (11)

TP TP

Since M is a non decreasing modulus function, we have

1/k 1/k 1/k 1/k 1/k
M ((kuaxmﬁyk) ) <M <<k!|c§a/c]§> SCIETS) > <M (|a|<ki/xkk|> EICT) >

T P3 T P3 T P3 T P3 T P3
1 _pyinpd 11 1 1
Take p3 such that 25 = N ol pr T8 s } . Then
k|azy+By)* KlzeDY* | Ry *
M (( Jazi + ) ) <M (( 2D L R ™) g (hy(11).
T,  P3 T Pl T P2

1/k
Hence M <(k'amlf/r£yk)> — O0ask — oo. So (ax + PBy) € x7;. Therefore x7, is

T, P3
linear. This completes the proof.

Definition 3.6. Let p = (py) be any sequence of positive real numbers. Then we

define x7; (p) = {x = (o) : (M (W)> — 0ask — oo} . Suppose that py, is
TP

a constant for all k, then x7; (p) = X7,

Proposition 3.7. Let 0 < pi < g and let {%} be bounded. Then X7, (q) C
X (p)-
Proof. Let
* € X () (12)

| 1/k k
<M (W)) — 0ask — oo. (13)
P

13
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1/k 9k
Let t, = (M (%)) and A\ = z—’;. Since pr < qi, we have 0 < A\ < 1. Take
k

0 < A < Ag. Define

_Jtetez) )0t 2 1)
e {o, (te<1) A= {tk,(tk <1) 14)

te = up + vg; té’“ = u?k + v,;\k. Now it follows that u,;\’“ < up <ty cmdv,;\’“ < v,?. Since

ok = upk vk, thentyt <ty + v}

oY1/ qr\ Ak Y qk
()< (o (5)
P m P
a\ P/ qk
() ) s o ()
TP ™ P
NV Pr N 9k
(n(258) (o)
TP TP

B M ((GleeD ™ " k bv (1
ut v — 0ask — oo. (by (13))

k

76\ \ Pk
Therefore <M <W1’j,|31>> — Oask — oco. Hence
™ P

z € X (p) (15)

From (12) and (15) we get x7, (¢) C x7; (p) . This completes the proof.

Proposition 3.8. (a) Let 0 < infpy < pr < 1. Then x7; (p) C X3,
(b) Let 1 < py, < suppy < co. Then x73; C x7s (p)

Proof. (a)Let z € X7, (p)

| 1/k Pk
(M (W)) — 0ask — oc. (16)
P

Since 0 < infpr <pp <1

ar (DTN (@)™ ) a7
7Tk;/:0 Wk/P

From (16) and (17) it follows that x € x7;.
Thus x7; (p) C x73;- We have thus proven (a). (b) Let pp > 1 for each k and

14
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suppy, < 00
Let x € X}

k! |zp )"
(M (%)) — 0ask — oo. (18)
k

Since 1 < pg < suppp < co we have

L Pk g )V L/F
TP TP

e\ \ PF
<M (%) — Oask — oo. by using (18).
Therefore z € x4, (p) . This completes the proof.
Proposition 3.9. Let 0 < pi, < g < 0o for each k. Then x5, (p) C x7; (q).
Proof. Let x € X7 (p)

| 1/k Pk
M () 7 — 0ask — oo. (20)
e
k

/k
This implies that <M <W>> < 1 for sufficiently large k.

1/k
wk/p

Since M is non-decreasing, we get

(k! ) * )™ (k! ) * )\
(o (527)) = (o (2 @y

S (o (@ VN gy by using (20
S — 0ask — oo. (by using (20)).
k

z € X7 (q)
Hence x73; (p) € X7, (¢) - This completes the proof.

Proposition 3.10. x7,(p) is a r— convex for all r where 0 < r < infpy.
Moreover if pr, = p < 1Vk, then they are p— converz.

Proof. We shall prove the Theorem for x7, (p) .
Let z € x7; (p) and r € (0, limy—oopn)
Then, there exists kg such that r < piVk > k.
Now, define

T — 17N\ " N — 1/k\ Pr
g*(w)—inf{prM<(k” kl/kykD ) +M<(k‘| kl/kykD > } (22)

TP TP

15
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Since r < pr, < 1VEk > kg
g* is subadditive: Further, for 0 < |\ < 1; [APF < A" Vk > ko.

9" (Az) <|A" - g" (2) (23)

Now, for 0 < d < 1,
U={x:g"(z) <}, whichisanabsolutelyr — convex set, for (24)
AP+l < lzyeU (25)

Now
9" Az + py) < g* (Az) + g* (1y)
< [A"g" (@) + |ul" 9" (v)
< |AI"0 + |p|" 6 using (23) and (24)
< (A" +1ul") 8
< 1.0, by using (25)
<6 If pp =p < 1Vk then for 0 < r < 1,
U={x:g*(z) <d} is an absolutely p— convex set.
This can be obtained by a similar analysis and there fore we omit the details. This
completes the proof.

Proposition 3.11. (X%)ﬁ =A
Proof: Step 1: X7, C I't; by Proposition 3.1;
= (IF)" © (Gp)”. But (IF)” = A

Ac () (26)

Step 2: Let y € (XTM)’& we have f (x) =Y 72 zry, with x € x7,.

1/k
We recall that s*) has % in the k' place and zero’s elsewhere, with

= s (258))~fon- () 0.

which converges to zero. Hence s%) ¢ X7, Hence d (s(k), 0) =1
But |yx| < ||fIld (s(k),O) < ooVk. Thus (yx) is a bounded sequence and hence an
analytic sequence. In other words y € A.

(x3)” C A (27)
Step 3 From (26) and (27) we obtain (X}{/[)ﬂ =A.

This completes the proof.

16
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Proposition 3.12. (x7,)" = A for p=a, 3,7, f.
Proof. Step 1: x7,; has AK by Proposition 3.2. Hence by Lemma 1.1 (i) we get
(X%)*B = (XTJ\F/[)f. But (Xﬁ/l)ﬁ = A. Hence
(G =A (28)

Step 2: Since AK = AD. Hence by Lemma 1.1 (iii) we get (X’]{/[)B = (xX7)"-
Therefore

()" = A (29)

Step 3: x7], is normal by Proposition 3.3 Hence by Proposition 2.7 [16]. we get

() = ()" = A (30)
From (28), (29) and 930) we have (x7,)* = (x7))” = (x3/)” = (X3! = A.
Proposition 3.13. The dual space of 7, is A. In other words (x7,)" = A.

1/k
Proof. We recall that s®) has W’;C, has the k** place zero’s else where, with

o=, (or () ) = {000 (85) 0}

Hence s) € x7,. We have f (z) = Yorey xpyk with o € X7, and f € (xF,)", where
(x7,)* is the dual space of x7T,. Take 2 = s*) € x7,. Then

ol < II£11d <s<k>,o) < oo forallk. (31)

Thus (yg) is a bounded sequence and hence an analytic sequence. In other words,
y € A. Therefore (x7,)" = A. This completes the proof.

Lemma 3.14. [15, Theorem 8.6.1] Y D X < Y/ C X/ where X is an AD-space
and Y an FK-space.

Proposition 3.15. Let Y be any FK-spaceD ¢. Then Y D X7, if and only if
the sequence s*®) is weakly analytic.

Proof. The following implications establish the result.
YoXevYlc (Xﬁ)f, since x4, has AD and by Lemma 3.14.
& YT C A, since (X%)f =A.
& foreach f € Y’ the topological dual of Y. Therefore f (s(k)) € A.
s f (s(k)) is analytic
& s is weakly analytic.
This completes the proof.

17
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Proposition 3.16. x7, is a complete metric space under the metric

_ /
d(xz,y) = supk{M (W) :k:1,2,3,---} where x = (x) € X}, and
/" p

k
y = (Uk) Xi-
Proof. Let {x(")} be a Cauchy sequence in x7,.
Then given any € > 0 there exists a positive integer N depending on e such that
d (x(”), $(m)) < € for all n > N and for all m > N. Hence

<7E,

k

(ny|\ /"
Consequently (M ((M‘xk‘)
TP

complex numbers. But C is complete. So,
1/k
(0} (k1)
!ag))
/P m/ P

Hence there exists a positive integer ng such that

()
supr s M < ¢ for all n > N and for all m > N.

)) is a Cauchy sequence in the metric space C of

k!‘xén)—xk‘) e .
supp « M Y/ e— < € for all n > ng. In particular, we have

k

(o))"

1/k
Tl'k/p

n / mn
{M <(k!|?;k)1/k>} - {M ((k'xklm/%c:)‘)l k) }+{M ((k!(x%;:p)l/k>} o
TP T T

oo. Thus Uk
|
{M <(k::f/k]l)> } < eask — oo.
TP

That is x € x7;. Therefore, X7, is a complete metric space. This completes the
proof.

< €. Now

18
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