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SOME PROPERTIES OF AN INTEGRAL OPERATOR DEFINED
BY BESSEL FUNCTIONS
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Abstract. In this paper we will study the integral operator involving Bessel functions
of the first kind and of order v. We will investigate the integral operator for the classes
of starlike and convex functions in the open unit disk.
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1. Introduction

Let A be the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n, (1.1)

analytic in the open unit disc E = {z : |z| < 1} and S denote the class of all functions
in A which are univalent in E. Also let C (α) and S∗ (α) be the subclasses of S
consisting of all functions which are respectively convex and starlike of order α
(0 ≤ α < 1). The Bessel functions of the first kind of order v is defined by

Jv (z) =
∞∑

n=0

(−1)n (z/2)2n+v

n! Γ (n+ v + 1)
, v ∈ R, (1.2)

where Γ (.) denotes the gamma function. Sazász and Kupán [10] have studied the
univalence of normalized Bessel functions

gv (z) = 2vΓ (v + 1) z1−v/2Jv

(
z1/2

)
= z +

∞∑
n=1

4−n (−1)n zn+1

n! (v + 1) . . . (v + n)
. (1.3)

Later, Selinger [9], Sazász and Kupán [10], Baricz and Ponnusamy [1] obtained the
conditions for starlikeness of (1.2) by using different techniques.
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Recently, Baricz and Frasin [2] have investigated the univalence of the integral
operator given by

F (z) = Fv1,,...vn,α1,...αn,β (z) =

β
z∫
0

tβ−1
n∏

i=1

(
gvi (t)
t

) 1
αi

dt


1/β

. (1.4)

For the integral operator of the form (1.4) which involve analytic functions of the
form (1.1) , see [3, 4, 5, 8].

In the present paper, we will find the order of starlikeness and convexity for the
above integral defined by (1.4) using the result given by Sazász and Kupán [10].

2. Preliminary Lemmas

In order to derive our main results, we need the following lemmas.

Lemma 2.1 [10] If v >
√

3
2 −1, then the function gv defined by (1.3) is starlike

of order 1
2 in E.

Lemma 2.2 [7] Let u = u1 + iu2, v = v1 + iv2 and ψ (u, v) be a complex valued
function satisfying the conditions:

(i) ψ (u, v) is continuous in a domain D ⊂ C2,
(ii) (1, 0) ∈ D and Reψ (1, 0) > 0,
(iii) Reψ (iu2, v1) ≤ 0, whenever (iu2, v1) ∈ D and v1 ≤ −1

2

(
1 + u2

2

)
.

If h (z) = 1+ c1z+ · · · is a function analytic in E such that (h(z), zh′(z)) ∈ D and
Reψ (h(z), zh′(z)) > 0 for z ∈ E, then Reh(z) > 0 in E.

3. Main Results

Theorem 3.1. Let gvi (z) ∈ S∗
(

1
2

)
, for all vi >

√
3

2 − 1, i = 1, 2, . . . n. Then
F (z) ∈ S∗ (δ) with α1, . . . αn, β are positive real numbers such that

n∑
i=1

1
αi

≤ 2β,

where

δ =

−

(
n∑

i=1

1
αi
− 2β + 1

)
+

√√√√( n∑
i=1

1
αi
− 2β + 1

)2

+ 8β

4β
, 0 ≤ δ < 1. (3.1)
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Proof. Let
zF ′ (z)
F (z)

= (1− δ) p(z) + δ. (3.2)

Differentiation of (1.4) and by using(3.2), we have

zβ
n∏

i=1

(
gvi (z)

z

) 1
αi

(F (z))β
= (1− δ) p(z) + δ. (3.3)

Differentiating (3.3) logarithmically, we obtain

n∑
i=1

1
αi

zg
′
vi

(z)
gvi (z)

= β (1− δ) p(z) +
(1− δ) zp′(z)

(1− δ) p(z) + δ
+

n∑
i=1

1
αi

− β (1− δ) .

Since gvi (z) ∈ S∗
(

1
2

)
, for all vi >

√
3

2 − 1, i = 1, 2, . . . n, by Lemma 2.1, it follows
that

n∑
i=1

1
αi

Re
zg

′
vi

(z)
gvi (z)

= Re

{
β (1− δ) p(z) +

(1− δ) zp′(z)
(1− δ) p(z) + δ

+
n∑

i=1

1
αi

− β (1− δ)

}
.

(3.4)
We now form the functional ψ(u, v) by choosing u = p(z), v = zp(z) in (3.4) and note
that the first two conditions of Lemma 2.2 are clearly satisfied. We check condition
(iii) as follows.

ψ(u, v) = β (1− δ)u+
(1− δ) v

(1− δ)u+ δ
+

1
2

n∑
i=1

1
αi

− β (1− δ) .

Now

ψ(iu2, v1) = β (1− δ) iu2 +
(1− δ) v1

(1− δ) iu2 + δ
+

1
2

n∑
i=1

1
αi

− β (1− δ) .

Taking real part of ψ(iu2, v1), we have

Reψ(iu2, v1) =
δ (1− δ) v1

(1− δ)2 u2
2 + δ2

+
1
2

n∑
i=1

1
αi

− β (1− δ) .

Applying v1 ≤ −1
2

(
1 + u2

2

)
and after a little simplification, we have

Reψ(iu2, v1) ≤
A+Bu2

2

2C
, (3.5)
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where

A = δ2

(
n∑

i=1

1
αi

− 2β (1− δ)

)
− δ (1− δ) ,

B = (1− δ)2
(

n∑
i=1

1
αi

− 2β (1− δ)

)
− δ (1− δ) ,

C = (1− δ)2 u2
2 + δ2.

The right hand side of (3.5) is negative if A ≤ 0 and B ≤ 0. From A1 ≤ 0, we
have the value of δ given by (3.1) and from B ≤ 0, we have 0 ≤ δ < 1. Since
all the conditions of Lemma 2.2 are satisfied, it follows that p (z) ∈ P in E and
consequently F (z) ∈ S∗ (δ) .

Corollary 3.2. Let gvi (z) ∈ S∗
(

1
2

)
, for all vi >

√
3

2 − 1, i = 1, 2, . . . n, and let
α1 = α2 = . . . = αn = α. Then F (z) ∈ S∗ (δ1) , α, β be positive real numbers such
that n ≤ 2αβ, where

δ1 =
−
(

n
α − 2β + 1

)
+
√(

n
α − 2β + 1

)2 + 8β

4β
, 0 ≤ δ1 < 1. (3.6)

Corollary 3.3. For n = 1 in Theorem 3.1, Fv,α,β (z) ∈ S∗ (δ2) , α, β be positive
real numbers such that 1 ≤ 2αβ, where

δ2 =
−
(

1
α − 2β + 1

)
+
√(

1
α − 2β + 1

)2 + 8β

4β
, 0 ≤ δ2 < 1. (3.7)

Corollary 3.4. For n = 1, β = 1 in Theorem 3.1, Fv,α (z) ∈ S∗ (δ3) , α be
positive real numbers such that 1 ≤ 2α, where

δ3 =
−
(

1
α − 1

)
+
√(

1
α − 1

)2 + 8

4
, 0 ≤ δ3 < 1. (3.7)

Theorem 3.5. Let gvi (z) ∈ S∗
(

1
2

)
, for all vi >

√
3

2 − 1, i = 1, 2, . . . n. Then
F (z) ∈ C (η) with α1, α2, . . . αn are positive real numbers such that 0 ≤ η < 1, where

η = 1− 1
2

n∑
i=1

1
αi
. (3.8)
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Proof. Differentiating (1.4) for β = 1, we have

F ′ (z) =
n∏

i=1

(
gvi (z)
z

) 1
αi

. (3.9)

Now differentiating (3.9) logarithmically, we obtain

zF ′′ (z)
F ′ (z)

=
n∑

i=1

1
αi

(
zg

′
vi

(z)
gvi (z)

− 1

)
.

This implies that

1 +
zF ′′ (z)
F ′ (z)

=
n∑

i=1

1
αi

(
zg

′
vi

(z)
gvi (z)

)
+

(
1−

n∑
i=1

1
αi

)
.

Since gvi (z) ∈ S∗
(

1
2

)
, for all vi >

√
3

2 − 1, i = 1, 2, . . . n, by Lemma 2.1, it follows
that

Re
(

1 +
zF ′′ (z)
F ′ (z)

)
>

n
1
2

∑
i=1

1
αi

+

(
1−

n∑
i=1

1
αi

)
, (3.10)

that is

Re
(

1 +
zF ′′ (z)
F ′ (z)

)
>

1−
n

1
2

∑
i=1

1
αi

 . (3.11)

This shows that F (z) ∈ C (η) , where the value of η is given by (3.8).

Corollary 3.6. For n = 1 in the above theorem, then Fv,α (z) ∈ C (η1) , where

η1 = 1− 1
2α
.
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[1] Á. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel
functions, Integral Transforms Spec. Funct., 0(2010), 1-13.

[2] A. Baricz and B. A. Frasin, Univalence of integral operators involving Bessel
functions, Appl. Math. Lett., 23(4)(2010), 371-376.

[3] D. Breaz and N. Breaz, Two integral operator, Studia Universitatis Babes-
Bolyai, Mathematica, Clunj-Napoca, 3(2002), 13-21.
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