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1. Introduction

The notion of weakly symmetric manifolds were introduced by Tamássy and Binh
[10]. A non-flat Riemannian manifold (Mn, g) (n > 2) is called a weakly symmetric
manifold if its curvature tensor R of type (0,4) satisfies the condition

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) + B(Y )R(X, Z, U, V ) (1)
+ H(Z)R(Y, X,U, V ) + D(U)R(Y, Z, X, V )
+ E(V )R(Y, Z, U, X)

for all vector fields X, Y , Z, U , V ∈ χ(Mn), where A, B, H, D and E are 1-forms
(not simultaneously zero) and ∇ denotes the operator of covariant differentiation
with respect to the Riemannian metric g. The 1-forms are called the associated
1-forms of the manifold and an n-dimensional manifold of this kind is denoted by
(WS)n. In 1999 De and Bandyopadhyay [3] studied a (WS)n and proved that in
such a manifold the associated 1-forms B = H and D = E. Hence (1) reduces to
the following:

(∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ) + B(Y )R(X, Z, U, V ) (2)
+ B(Z)R(Y, X,U, V ) + D(U)R(Y, Z, X, V )
+ D(V )R(Y, Z, U, X).
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A transformation of an n-dimensional Riemannian manifold M , which transforms
every geodesic circle of M into a geodesic circle, is called a concircular transformation
[13]. The interesting invariant of a concircular transformation is the concircular
curvature tensor C̃, which is defined by [13]

C̃(Y, Z, U, V ) = R(Y, Z, U, V )− r

n(n− 1)
[
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

]
, (3)

where r is the scalar curvature of the manifold.
Recently Shaikh and Hui [8] introduced the notion of weakly concircular symmet-

ric manifolds. A Riemannian manifold (Mn, g)(n > 2) is called weakly concircular
symmetric manifold if its concircular curvature tensor C̃ of type (0,4) is not identi-
cally zero and satisfies the condition

(∇XC̃)(Y, Z, U, V ) = A(X)C̃(Y, Z, U, V ) + B(Y )C̃(X, Z, U, V ) (4)
+ H(Z)C̃(Y, X,U, V ) + D(U)C̃(Y, Z, X, V )
+ E(V )C̃(Y, Z, U, X)

for all vector fields X, Y , Z, U , V ∈ χ(Mn), where A, B, H, D and E are 1-forms
(not simultaneously zero) and an n-dimensional manifold of this kind is denoted by
(WC̃S)n. Also it is shown that [8], in a (WC̃S)n the associated 1-forms B = H and
D = E, and hence the defining condition (4) of a (WC̃S)n reduces to the following
form:

(∇XC̃)(Y, Z, U, V ) = A(X)C̃(Y, Z, U, V ) + B(Y )C̃(X, Z, U, V ) (5)
+ B(Z)C̃(Y, X,U, V ) + D(U)C̃(Y, Z, X, V )
+ D(V )C̃(Y, Z, U, X),

where A, B and D are 1-forms (not simultaneously zero).
Again Tamássy and Binh [11] introduced the notion of weakly Ricci symmetric

manifolds. A Riemannian manifold (Mn, g) (n > 2) is called weakly Ricci symmetric
manifold if its Ricci tensor S of type (0,2) is not identically zero and satisfies the
condition

(∇XS)(Y, Z) = A(X)S(Y, Z) + B(Y )S(X, Z) + D(Z)S(Y, X), (6)

where A, B and D are three non-zero 1-forms, called the associated 1-forms of the
manifold, and ∇ denotes the operator of covariant differentiation with respect to
the metric tensor g. Such an n-dimensional manifold is denoted by (WRS)n.
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Let {ei : i = 1, 2, · · · , n} be an orthonormal basis of the tangent space at each
point of the manifold and let

P (Y, V ) =
n∑

i=1

C̃(Y, ei, ei, V ), (7)

then from (3), we get
P (Y, V ) = S(Y, V )− r

n
g(Y, V ). (8)

The tensor P is called the concircular Ricci symmetric tensor [4], which is a
symmetric tensor of type (0,2). In [4] De and Ghosh introduced the notion of weakly
concircular Ricci symmetric manifolds. A Riemannian manifold (Mn, g)(n > 2) is
called weakly concircular Ricci symmetric manifold [4] if its concircular Ricci tensor
P of type (0, 2) is not identically zero and satisfies the condition

(∇XP )(Y, Z) = A(X)P (Y, Z) + B(Y )P (X, Z) + D(Z)P (Y, X), (9)

where A, B and D are three 1-forms (not simultaneously zero).
In [12] Tanno classified connected almost contact metric manifolds whose au-

tomorphism groups possess the maximum dimension. For such a manifold, the
sectional curvature of plane sections containing ξ is a constant, say c. He proved
that they could be divided into three classes: (i) homogeneous normal contact Rie-
mannian manifolds with c > 0, (ii) global Riemannian products of a line or a circle
with a Kähler manifold of constant holomorphic sectional curvature if c = 0 and (iii)
a warped product space R×f Cn if c < 0. It is known that the manifolds of class (i)
are characterized by admitting a Sasakian structure. The manifolds of class (ii) are
characterized by a tensorial relation admitting a cosymplectic structure. Kenmotsu
[5] characterized the differential geometric properties of the manifolds of class (iii)
which are nowadays called Kenmotsu manifolds and later studied by several authors.

As a generalization of both Sasakian and Kenmotsu manifolds, Oubiña [6] in-
troduced the notion of trans-Sasakian manifolds, which are closely related to the
locally conformal Kähler manifolds. A trans-Sasakian manifold of type (0,0), (α, 0)
and (0, β) are called the cosympletic, α-Sasakian and β-Kenmotsu manifolds respec-
tively, α, β being scalar functions. In particular, if α = 0, β = 1; and α = 1, β = 0
then a trans-Sasakian manifold will be a Kenmotsu and Sasakian manifold respec-
tively.

Tamássy and Binh [11] studied weakly symmetric and weakly Ricci symmetric
Sasakian manifolds and proved that in such a manifold the sum of the associated
1-forms vanishes everywhere. Again Özgür [7] studied weakly symmetric and weakly
Ricci symmetric Kenmotsu manifolds and proved that in such a manifold the sum
of the associated 1-forms is zero everywhere and hence such a manifold does not
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exist unless the sum of the associated 1-forms is everywhere zero. In this con-
nection Shaikh and Hui [9] studied weakly symmetric and weakly Ricci symmetric
trans-Sasakian manifolds and proved that the sum of the associated 1-forms of a
weakly symmetric and also of a weakly Ricci symmetric trans-Sasakian manifold
of non-vanishing ξ-sectional curvature are non-zero everywhere and hence such two
structure exists, provided that the manifold is of non-vanishing ξ-sectional curva-
ture.

The object of the present paper is to study weakly concircular symmetric and
weakly concircular Ricci symmetric Kenmotsu manifolds. Section 2 deals with pre-
liminaries of Kenmotsu manifolds. In section 3 of the paper we have obtained all
the 1-forms of a weakly concircular symmetric Kenmotsu manifold and hence such
a structure exist, provided that r 6= −n(n− 1). Again in section 4 we study weakly
concircular Ricci symmetric Kenmotsu manifolds and obtained all the 1-forms of
a weakly concircular Ricci symmetric Kenmotsu manifold and consequently such a
structure exist, provided that r 6= −n(n− 1). Also it is proved that the sum of the
associated 1-forms of a weakly concircular Ricci symmetric Kenmotsu manifold is
non-vanishing, provided that r 6= −n(n− 1).

2. Kenmotsu manifolds

A smooth manifold (Mn, g) (where n = 2m + 1,m > 1) is said to be an almost
contact metric manifold [1] if it admits a (1,1) tensor field φ, a vector field ξ, an
1-form η and a Riemannian metric g which satisfy

φξ = 0, η(φX) = 0, φ2X = −X + η(X)ξ, (10)

g(φX, Y ) = −g(X, φY ), η(X) = g(X, ξ), η(ξ) = 1, (11)

g(φX, φY ) = g(X, Y )− η(X)η(Y ) (12)

for all vector fields X, Y on M .
An almost contact metric manifold Mn(φ, ξ, η, g) (where n = 2m + 1,m > 1) is

said to be Kenmotsu manifold if the following condition holds [5]:

∇Xξ = X − η(X)ξ (13)

and
(∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX, (14)

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold, the following relations hold [5]:

(∇Xη)(Y ) = g(X, Y )− η(X)η(Y ), (15)
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R(X, Y )ξ = η(X)Y − η(Y )X, (16)

R(ξ,X)Y = η(Y )X − g(X, Y )ξ, (17)

η(R(X, Y )Z) = η(Y )g(X, Z)− η(X)g(Y, Z), (18)

S(X, ξ) = −(n− 1)η(X), (19)

S(ξ, ξ) = −(n− 1), i.e., Qξ = −(n− 1)ξ (20)

for any vector field X, Y , Z on M and R is the Riemannian curvature tensor and
S is the Ricci tensor of type (0, 2) such that g(QX,Y ) = S(X, Y ).

3. Weakly concircular symmetric Kenmotsu manifolds

Definition 1. A Kenmotsu manifold Mn(φ, ξ, η, g) (where n = 2m + 1,m > 1)
is said to be weakly concircular symmetric if its concircular curvature tensor C̃ of
type (0,4) satisfies (5).
Setting Y = V = ei in (5) and taking summation over i, 1 ≤ i ≤ n, we get

(∇XS)(Z,U)− dr(X)
n

g(Z,U) (21)

= A(X)
[
S(Z,U)− r

n
g(Z,U)

]
+ B(Z)

[
S(X, U)− r

n
g(X, U)

]
+D(U)

[
S(X, Z)− r

n
g(X, Z)

]
+ B(R(X, Z)U) + D(R(X, U)Z)

− r

n(n− 1)

[
{B(X) + D(X)}g(Z,U)−B(Z)g(X, U)−D(U)g(Z,X)

]
.

Plugging X = Z = U = ξ in (21) and then using (16) and (20), we obtain

A(ξ) + B(ξ) + D(ξ) =
dr(ξ)

r + n(n− 1)
, r + n(n− 1) 6= 0. (22)

This leads to the following:

Theorem 1. In a weakly concircular symmetric Kenmotsu manifold Mn(φ, ξ, η, g)
(where n = 2m + 1,m > 1), the relation (22) holds.
Next, substituting X and Z by ξ in (21) and then using (16), (17) and (19), we
obtain [

A(ξ) + B(ξ)
][ r

n
+ n− 1

]
η(U) (23)

+
[ r

n(n− 1)
+ 1

][
(n− 2)D(U) + η(U)D(ξ)

]
− dr(ξ)

n
η(U) = 0.
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By virtue of (22), it follows from (23) that

D(U) =
[
D(ξ) +

r + n(n− 2)
n2(n− 1)(n− 2)

dr(ξ)
]
η(U), r + n(n− 1) 6= 0. (24)

Next, setting X = U = ξ in (21) and proceeding in a similar manner as above, we
get

B(Z) =
[
B(ξ) +

r + n(n− 2)
n2(n− 1)(n− 2)

dr(ξ)
]
η(Z), r + n(n− 1) 6= 0. (25)

Again, setting Z = U = ξ in (21) and using (16) and (20), we get

A(X) =
dr(X)

r + n(n− 1)
− 1

n− 1
[
B(X) + D(X)

]
(26)

− n− 2
n− 1

[
B(ξ) + D(ξ)

]
η(X), r + n(n− 1) 6= 0.

This leads to the following:

Theorem 2. In a weakly concircular symmetric Kenmotsu manifold Mn(φ, ξ, η, g)
(where n = 2m + 1,m > 1), the associated 1-forms D, B and A are given by (24),
(25) and (26), respectively.

4. Weakly concircular Ricci symmetric Kenmotsu manifolds

Definition 2. A Kenmotsu manifold Mn(φ, ξ, η, g) (where n = 2m + 1,m > 1)
is said to be weakly concircular Ricci symmetric if its concircular Ricci tensor P of
type (0,2) satisfies (9).
In view of (8), (9) yields

(∇XS)(Y, Z)− dr(X)
n

g(Y, Z) = A(X)
[
S(Y, Z)− r

n
g(Y, Z)

]
(27)

+ B(Y )
[
S(X, Z)− r

n
g(X, Z)

]
+ D(Z)

[
S(X, Y )− r

n
g(X, Y )

]
.

Setting X = Y = Z = ξ in (27), we get the relation (22) and hence we can state the
following:

Theorem 3. In a weakly concircular Ricci symmetric Kenmotsu manifold
Mn(φ, ξ, η, g) (where n = 2m + 1,m > 1), the relation (22) holds.
Next, substituting X and Y by ξ in (27) and using (19) and (22), we obtain

D(Z) = D(ξ)η(Z), r + n(n− 1) 6= 0. (28)
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Again putting X = Z = ξ in (27) and proceeding in a similar manner as above we
get

B(Y ) = B(ξ)η(Y ), r + n(n− 1) 6= 0. (29)

Again, setting Y = Z = ξ in (27) and using (20) and (22), we get

A(X) =
dr(X)

r + n(n− 1)
+

[
A(ξ)− dr(ξ)

r + n(n− 1)

]
η(X), r + n(n− 1) 6= 0. (30)

This leads to the following:

Theorem 4. If in a weakly concircular Ricci symmetric Kenmotsu manifold
Mn(φ, ξ, η, g) (where n = 2m + 1,m > 1), r + n(n − 1) 6= 0 then the associated
1-forms D, B and A are given by (28), (29) and (30), respectively.
Adding (28), (29) and (30) and using (22), we get

A(X) + B(X) + D(X) =
dr(X)

r + n(n− 1)
∀ X. (31)

This leads to the following:

Theorem 5. If in a weakly concircular Ricci symmetric Kenmotsu manifold
Mn(φ, ξ, η, g) (where n = 2m + 1,m > 1), r + n(n− 1) 6= 0, the sum of the associ-
ated 1-forms is given by (31).
Also from (31), we can state the following:

Corollary 1. There exist no weakly concircular Ricci symmetric Kenmotsu
manifold of constant scalar curvature, unless the sum of the associated 1-forms is
everywhere zero.
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