RUSCHEWEYH-TYPE UNIVALENT HARMONIC FUNCTIONS STARLIKE OF THE COMPLEX ORDER

ABDUL RAHMAN S. JUMA

ABSTRACT. In this paper, we have defined the class $\mathcal{R}T^*_{\mathcal{H}}(\gamma,\lambda,\beta)$ by making use of the Ruscheweyh derivatives and we give necessary and sufficient conditions for the functions to be in $\mathcal{R}T^*_{\mathcal{H}}(\gamma,\lambda,\beta)$.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

A continuous function f = u + iv is a complex-valued harmonic function in a domain $D \subset \mathbb{C}$ if both u and v are real harmonic in D. In any simply connected domain, we can write $f = h + \overline{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. Clunie and Sheil-Small [2] proved a necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that |h'(z)| > |g'(z)| in D.

Let \mathcal{H} denote the class of functions $f = h + \overline{g}$ that are harmonic univalent and sense-preserving in the unit disk $\mathcal{U} = \{z : |z| < 1\}$ with $f(0) = f_z(0) - 1 = 0$. Therefore we can express analytic and co-analytic parts of the function $f = h + \overline{g}$ as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad |b_1| < 1.$$
 (1)

We can note that \mathcal{H} reduces to S, the class of normalized univalent analytic functions whenever the co-analytic part $g \equiv 0$.

Let $\mathcal{R}T_{\mathcal{H}}$ denote the family of functions $f = h + \overline{g}$ that are harmonic in \mathcal{U} with the normalization

$$h(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad a_n \ge 0, \quad b_n \ge 0, \quad b_1 < 1.$$
 (2)

For $\lambda > -1, \gamma \in \mathbb{C} \setminus \{0\}$ and $0 \leq \beta \leq 1$, we let $\mathcal{R}T^*_{\mathcal{H}}(\gamma, \lambda, \beta)$ denote the class of all functions in $\mathcal{R}T_{\mathcal{H}}$ for which

$$Re\left\{1 + \frac{1}{\gamma} \left(\frac{z(D^{\lambda}f(z))'}{\beta z(D^{\lambda}f(z))' + (1-\beta)D^{\lambda}f(z)} - 1\right)\right\} > 0.$$
 (3)

Here, the operator $D^{\lambda}f(z)$ is the Ruscheweyh derivative of $\phi(z) = \sum_{n=1}^{\infty} c_n z^n$ given by

$$D^{\lambda}\varphi(z) = \frac{z}{(1-z)^{1+\lambda}} * \varphi(z) = \sum_{n=1}^{\infty} B_n(\lambda)c_n z^n,$$

where * stands for the convolution or Hadamard product of two power series and

$$B_n(\lambda) = \frac{(\lambda+1)(\lambda+2)\cdots(\lambda+n-1)}{(n-1)!}, \text{ see [5]}.$$

Also if $f(z) = h(z) + \overline{g}(z)$ then

$$D^{\lambda}f(z) = D^{\lambda}h(z) + \overline{D^{\lambda}g(z)}, \text{ see [4]}.$$
 (4)

We note that $\mathcal{R}T^*_{\mathcal{H}}(\gamma, 0, 0)$ is the class of harmonic function in the unit disk studied by Sibel et al. [6].

Furthermore, let $ST^*_{\mathcal{H}}(\gamma, \lambda, \beta)$ denote the subclass at $\mathcal{R}T_{\mathcal{H}}$ consisting of functions $f = h + \overline{g} \in \mathcal{R}T_{\mathcal{H}}$ that satisfy the following

$$\sum_{n=1}^{\infty} [2((n-1)(1-\beta) + (\beta(n-1)+1)|\gamma|)B_n(\lambda)a_n + ((n+1)(1-\beta) + |(n+1)(1-\beta) - 2\gamma(1-\beta(n+1))|)B_n(\lambda)b_n] \le 4|\gamma|$$
(5)

We also consider $\mathcal{LR}^*_{\mathcal{H}}(\gamma, \lambda, \beta)$ the subclass of $\mathcal{R}T_{\mathcal{H}}$ consisting of functions $f = h + \overline{g} \in \mathcal{R}T_{\mathcal{H}}$ that satisfy the following

$$\sum_{n=1}^{\infty} \left[(n-1)(1-\beta) \frac{Re(\gamma)}{|\gamma|} + (1+\beta(n-1)|\gamma|) \right] B_n(\lambda) a_n$$

$$+ \left[(n+1)(1-\beta) \frac{Re(\gamma)}{|\gamma|} - (1-\beta(n+1))|\gamma| \right] B_n(\lambda) b_n \le (2+\beta)|\gamma|$$
(6)

The harmonic starlike functions studied by Avci and Zlotkiewicz [1], Jahangiri [3], Silverman [7], and Silverman and Silvia [8].

The coefficient condition $\sum_{n=2}^{\infty} n(|a_n| + |b_n|) \leq 1$, with $b_1 = 0$ is sufficient for $f = h + \overline{g}$ to be harmonic starlike proved by Avci and Zlotkiewicz [1] while Silverman

[7] proved that this coefficient condition is also necessary if $b_1 = 0$ and if a_n and b_n in (1) are negative. Jahangiri [3] proved that if $f = h + \overline{g}$ is given by (1) and if

$$\sum_{n=1}^{\infty} \left(\frac{n-\alpha}{1-\alpha} |a_n| + \frac{n+\alpha}{1-\alpha} |b_n| \right) \le 2, \quad 0 \le \alpha < 1, \quad a_1 = 1, \tag{8}$$

then f is harmonic, univalent, and starlike of order α in \mathcal{U} . This condition is proved to be also necessary if h and g are of the form (2). the case when $\alpha = 0$ is given in [8], and for $\alpha = b_1 = 0$, see [7].

2. Main Results

Theorem 1. $ST^*_{\mathcal{H}}(\gamma,\lambda,\beta) \subset \mathcal{R}T^*_{\mathcal{H}}(\gamma,\lambda,\beta)$.

Proof. Let $f \in \mathcal{S}T^*_{\mathcal{H}}(\gamma, \lambda, \beta)$. We need to show that the condition (3) holds, therefore

$$Re\{[(\gamma - 1)[\beta z(D^{\lambda}h(z))' - \overline{\beta z(D^{\lambda}g(z))'} + (1 - \beta)D^{\lambda}h(z) + (1 - \beta)\overline{D^{\lambda}g(z)}] + z(D^{\lambda}h(z))' - \overline{z(D^{\lambda}g(z))'}]/[\gamma[\beta z(D^{\lambda}h(z))' - \overline{\beta z(D^{\lambda}g(z))'} + (1 - \beta)D^{\lambda}h(z) + (1 - \beta)\overline{D^{\lambda}g(z)}]\} > 0, \text{ where } 0 \le \beta < 1, \gamma \in \mathbb{C} \setminus \{0\}, \lambda > -1.$$

Using the fact that $Re \ w > 0$ if and only if |w+1| > |1-w|, then we have and by (2)

$$|(2\gamma-1)[\beta z(D^{\lambda}h(z))' - \overline{\beta z(D^{\lambda}g(z))'} + (1-\beta)D^{\lambda}h(z) + (1-\beta)\overline{D^{\lambda}g(z)}] + z(D^{\lambda}h(z))' - \overline{z(D^{\lambda}g(z))'} | - |\beta z(D^{\lambda}h(z))' - \beta z(\overline{D^{\lambda}g(z))'} + (1-\beta)D^{\lambda}h(z) + (1-\beta)\overline{D^{\lambda}g(z)} - z(D^{\lambda}h(z))' + z(\overline{D^{\lambda}g(z)})' |$$

$$= |(2\gamma-1)[\beta z - \sum_{n=2}^{\infty} \beta nB_n(\lambda)a_nz^n - \sum_{n=1}^{\infty} \beta nB_n(\lambda)b_n\overline{z}^n + (1-\beta)z - \sum_{n=2}^{\infty} (1-\beta)B_n(\lambda)a_nz^n + \sum_{n=1}^{\infty} (1-\beta)B_n(\lambda)b_n\overline{z}^n] + z - \sum_{n=2}^{\infty} nB_n(\lambda)a_nz^n - \sum_{n=1}^{\infty} nB_n(\lambda)b_n\overline{z}^n + (1-\beta)z - \sum_{n=2}^{\infty} nB_n(\lambda)a_nz^n + \sum_{n=1}^{\infty} (1-\beta)B_n(\lambda)b_n\overline{z}^n + \sum_{n=1}^{\infty} (2\gamma\beta n - \beta n + 2\gamma - 2\gamma\beta - 1 + \beta + n)B_n(\lambda)a_nz^n + \sum_{n=1}^{\infty} (2\gamma\beta n - \beta n - 2\gamma + 2\gamma\beta + 1 - \beta + n)B_n(\lambda)b_n\overline{z}^n + \sum_{n=1}^{\infty} (n-\beta n-1+\beta)B_n(\lambda)a_nz^n + \sum_{n=1}^{\infty} (n+1-\beta n-\beta)B_n(\lambda)b_n\overline{z}^n + \sum_{n=1}^{\infty} (n-\beta n-1+\beta)B_n(\lambda)a_nz^n + \sum_{n=1}^{\infty} (n+1-\beta n-\beta)B_n(\lambda)b_n\overline{z}^n + \sum_{n=1}^{\infty} (n+1)(1-\beta) + |(n+1)(1-\beta) - 2\gamma(1-\beta(n+1))|B_n(\lambda)b_n \geq 0. \text{ For sharpness consider the function}$$

$$f(z) = z - \sum_{n=2}^{\infty} \frac{|\gamma|}{(n-1)(1-\beta) + (\beta(n-1)+1)|\gamma|} s_n z^n + \sum_{n=1}^{\infty} \frac{2|\gamma|}{(n+1)(1-\beta) + |(n+1)(1-\beta) - 2\gamma(1-\beta(n+1))} t_n \overline{z}^n$$
(8)

where s_n, t_n are non-negative and $\sum_{n=2}^{\infty} s_n + \sum_{n=1}^{\infty} t_n = 1$ and all the functions of the form (8) are in $\mathcal{R}T_H^*(\gamma, \lambda, \beta)$, since

$$\sum_{n=2}^{\infty} (2((n-1)(1-\beta) + (\beta(n-1)+1)|\gamma|)B_n(\lambda)a_n + \sum_{n=1}^{\infty} ((n+1)(1-\beta) + |(n+1)(1-\beta) - 2\gamma(1-\beta(n+1))|)B_n(\lambda)b_n = 2|\gamma|(1+\sum_{n=2}^{\infty} s_n + \sum_{n=1}^{\infty} t_n) = 4|\gamma|.$$

Theorem 2. $\mathcal{R}T^*_{\mathcal{H}}(\gamma,\lambda,\beta) \subset \mathcal{L}\mathcal{R}^*_{\mathcal{H}}(\gamma,\lambda,\beta)$.

Proof. Let $f \in \mathcal{R}T^*_{\mathcal{H}}(\gamma, \lambda, \beta)$, then from the condition (3) we have

$$Re\left\{\frac{1}{\gamma}\left(\frac{z(D^{\lambda}h(z))' - \overline{z(D^{\lambda}g(z))'}}{\beta z(D^{\lambda}h(z))' - \overline{\beta z(D^{\lambda}g(z))'} + (1-\beta)D^{\lambda}h(z) + (1-\beta)\overline{D^{\lambda}g(z))}} - 1\right)\right\} > -1.$$

By using (2), we obtain $Re\{\frac{1}{\gamma}([z-\sum_{n=2}^{\infty}nB_n(\lambda)a_nz^n-\sum_{n=1}^{\infty}nB_n(\lambda)b_n\overline{z}^n]/[\beta z-\sum_{n=2}^{\infty}\beta nB_n(\lambda)a_nz^n-\sum_{n=1}^{\infty}\beta nB_n(\lambda)b_n\overline{z}^n+(1-\beta)z-\sum_{n=2}^{\infty}(1-\beta)B_n(\lambda)a_nz^n+\sum_{n=1}^{\infty}(1-\beta)B_n(\lambda)b_n\overline{z}^n]-1\}>-1$, then, we have

$$Re\left\{\frac{1}{\gamma} \frac{-\sum_{n=2}^{\infty} (n-\beta n-1+\beta)B_n(\lambda)a_n z^n - \sum_{n=1}^{\infty} (n-\beta n+1-\beta)B_n(\lambda)b_n \overline{z}^n}{z - \sum_{n=2}^{\infty} (\beta n+1-\beta)B_n(\lambda)a_n z^n + \sum_{n=1}^{\infty} (1-\beta-\beta n)B_n(\lambda)b_n \overline{z}^n}\right\} > -1.$$

Choosing $z \to 1^-$ on the real axis, we obtain

$$\frac{\sum_{n=2}^{\infty} (n-1)(1-\beta)B_n(\lambda)a_n + \sum_{n=1}^{\infty} (n+1)(1-\beta)B_n(\lambda)b_n}{1 - \sum_{n=2}^{\infty} (1+\beta(n-1))B_n(\lambda)a_n + \sum_{n=1}^{\infty} (1-\beta(n+1))B_n(\lambda)b_n} Re\left(\frac{1}{\gamma}\right) \le 1,$$

thus,

$$\sum_{n=2}^{\infty} (n-1)(1-\beta)B_n(\lambda)a_n + \sum_{n=1}^{\infty} (n+1)(1-\beta)B_n(\lambda)b_n \leq \frac{|\gamma|^2}{Re(\gamma)} \left(1 - \sum_{n=2}^{\infty} (1+\beta(n-1))B_n(\lambda)a_n + \sum_{n=1}^{\infty} (1-\beta(n+1))B_n(\lambda)b_n\right),$$

then we get $\sum_{n=1}^{\infty} \left[(n-1)(1-\beta) \frac{Re(\gamma)}{|\gamma|} + (1+\beta(n-1)|\gamma|) \right] B_n(\lambda) a_n$ $+\left[(n+1)(1-\beta)\frac{\tilde{Re}(\gamma)}{|\gamma|}-(1-\beta(n+1))|\gamma|\right]B_n(\lambda)b_n\leq 2|\gamma|$. Then by (6) we have $f \in \mathcal{LR}^*_{\mathcal{H}}(\gamma, \lambda, \beta).$

Theorem 3. $ST^*_{\mathcal{H}}(\gamma,\lambda,\beta) = \mathcal{R}T^*_{\mathcal{H}}(\gamma,\lambda,\beta) = \mathcal{L}\mathcal{R}^*_{\mathcal{H}}(\gamma,\lambda,\beta), \text{ where } 0 < \gamma \leq 1,0 \leq 1$ $\beta < 1$ and $\lambda > -1$.

Proof. If $\gamma \in (0,1]$, then the condition (5) and (6) are equivalent and here $\mathcal{S}T^*_{\mathcal{H}}(\gamma,\lambda,\beta) =$ $\mathcal{LR}^*_{\mathcal{H}}(\gamma,\lambda,\beta)$. By making use the previous two theorems, we get the result and this complete the proof.

Theorem 4. $\mathcal{LR}^*_{\mathcal{H}}(\gamma,\lambda,\beta) \not\subseteq \mathcal{R}T^*_{\mathcal{H}}(\gamma,\lambda,\beta)$, if $Re(\gamma) \leq 0$ and $Re(\gamma) \neq -\frac{1}{2}$ or $\gamma \in (\frac{3}{2}, \infty)$.

Proof. Consider the function $f(z) = z - \frac{1}{\lambda+1}z^2, \lambda > -1, f \in \mathcal{LR}^*_{\mathcal{H}}(\gamma, \lambda, \beta)$, since $\sum_{n=1}^{\infty} \left[(n-1)(1-\beta) \frac{Re(\gamma)}{|\gamma|} + (1+\beta(n-1))|\gamma| \right] B_n(\lambda) a_n$

 $+\left[(n+1)(1-\beta)\frac{Re(\gamma)}{|\gamma|}-(1-\beta(n+1)|\gamma|\right]B_n(\lambda)b_n=|\gamma|+(1-\beta)\frac{Re(\gamma)}{|\gamma|}+(1+\beta)|\gamma|=$ $(2+\beta)|\gamma| + (1-\beta)\frac{Re(\gamma)}{|\gamma|} \le (2+\beta)|\gamma|$ when $\gamma \in \mathbb{C} \setminus \{0\}$ and $Re(\gamma) < 0$.

Also, let $r = Re(\gamma) < 0$ and t be negative real number such that $(1-\beta)+2r(1+\beta)(1-t)>0$. If we choose $z=\frac{\gamma(1-t)}{1-\beta+\gamma(1+\beta)(1-t)}$, then $z\in\mathcal{U}$ and by $D^{\lambda}f(z)=z-z^2$, we have $1+\frac{1}{\gamma}\left(\frac{z(D^{\lambda}f(z))'}{\beta z(D^{\lambda}f(z))'+(1-\beta)D^{\lambda}f(z)}-1\right)=t<0$, then

 $f(z) \not\in \mathcal{R}T^*_{\mathcal{H}}(\gamma,\lambda,\beta).$

By the same way, let $f(z) = z + \frac{1}{\lambda+1}\overline{z}^2$, then if $\gamma \in \left(\frac{3(1-\beta)}{2}, \infty\right)$, we obtain $f \in \mathcal{LR}^*_{\mathcal{H}}(\gamma, \lambda, \beta)$, since

$$\sum_{n=1}^{\infty} \left[(n-1)(1-\beta) \frac{Re(\gamma)}{|\gamma|} + (1+\beta(n-1))|\gamma| \right] B_n(\lambda) a_n$$

$$+ \left[(n+1)(1-\beta) \frac{Re(\gamma)}{|\gamma|} - (1-\beta(n+1))|\gamma| \right] B_n(\lambda) b_n$$

$$= 3(1-\beta) \frac{Re(\gamma)}{|\gamma|} + 3\beta|\gamma| \le (2+\beta)|\gamma|.$$

Now let t be a negative real number such that $3(1-\beta) + \gamma(t-1) < 0$, choose $z = -\frac{\gamma(t-1)}{3(1-\beta)+\gamma(t-1)}$, then $z \in \mathcal{U}$ and by definition of f we have

$$1 + \frac{1}{\gamma} \left(\frac{z(D^{\lambda} f(z))'}{\beta z(D^{\lambda} f(z))' + (1 - \beta)D^{\lambda} f(z)} - 1 \right) = t < 0,$$

therefore $f \notin \mathcal{R}T^*_{\mathcal{H}}(\gamma, \lambda, \beta)$.

Theorem 5. $\mathcal{R}T^*_{\mathcal{H}}(\gamma,\lambda,\beta) \not\subseteq \mathcal{S}T^*_{\mathcal{H}}(\gamma,\lambda,\beta)$, whenever $\gamma < -1,\lambda > -1$ and $\beta \in [0,1)$.

Proof. Consider the function $f_{\sigma}(z) = z - \frac{\sigma}{1+\lambda}z^2$, $\lambda > -1$ and $\sigma > \frac{\gamma}{(1-\beta)+\gamma(1+\beta)}$, then $f \in \mathcal{R}T^*_{\mathcal{H}}(\gamma, \lambda, \beta)$, since

$$Re\left\{1 + \frac{1}{\gamma} \left(\frac{z(D^{\lambda} f_{\sigma}(z))'}{\beta z(D^{\lambda} f_{\sigma}(z))' + (1 - \beta)D^{\lambda} f_{\sigma}(z)} - 1\right)\right\}$$
$$= Re\left\{1 + \frac{\sigma z(1 - \beta)}{\gamma(\sigma z(1 + \beta) - 1)}\right\} > 0.$$

We have also

$$\sum_{n=1}^{\infty} [2((n-1)(1-\beta) + (\beta(n-1)+1)|\gamma|)B_n(\lambda)a_n + ((n+1)(1-\beta) + |(n+1)(1-\beta) - 2\gamma(1-\beta(n+1))|)B_n(\lambda)b_n]$$

$$= 2|\gamma| + [2(1-\beta) + 2(\beta+1)|\gamma|]\sigma > 4|\gamma|,$$

because $\sigma > \frac{\gamma}{(1-\beta)+\gamma(1+\beta)} > 1$, then $f \notin \mathcal{S}T^*_{\mathcal{H}}(\gamma,\lambda,\beta)$.

References

- [1] Y. Avci and E. Zlotkiewicz, *On harmonic univalent mappings*, Ann. Univ. Mariae Curie-sklodowska, Sect. A, 44 (1990), 1-7.
- [2] J. Clunie and T. Sheil-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn., Ser. A I Math. 9 (1984), 3-25.
- [3] J. Jahangiri, *Harmonic functions starlike in unit disk*, J. Math. Anal. Appl., 235 (1999), 470-477.
- [4] G. Murugusundaramoorthy and K. Vijaya, On certain classes of harmonic functions involving Ruscheweyh derivatives, Bull. Cal. Math. Soc. 96(2), (2004), 99-108.
- [5] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
- [6] Sibel Yalcin and Metin Öztürk, harmonic functions starlike of the complex order, Matema. Bech., 58 (2006), 7-11.
- [7] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283-289.
- [8] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions,N. Z. J. Math., 28 (1999), 275-284.

Abdul Rahman S. Juma

Department of Mathematics

University of Alanbar

Address: Ramadi, Iraq

E-mail: absa662004@yahoo.com