ON THE FEKETE-SZEGÖ INEQUALITY FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY USING GENERALIZED DIFFERENTIAL OPERATOR

Salma Faraj Ramadan, Maslina Darus

ABSTRACT. In this present investigation, the Fekete- Szegö inequality for certain normalized analytic functions f defined on the open unit disk for which $\frac{z\left(D_{\alpha,\beta,\lambda,\delta}^{k}f(z)\right)'}{D_{\alpha,\beta,\lambda,\delta}^{k}f(z)}$ $(k \in N_0, \alpha, \beta, \lambda, \delta \geq 0)$ lies in a region starlike with respect to 1 and is symmetric with respect to the real axis will be obtained. In addition, certain applications of the main result for a class of functions defined by convolution are given. As a special case of this result, Fekete- Szegö inequality for a class of functions defined by fractional derivative is obtained. The motivation of this paper is due to the work given by Srivastava and Mishra in [6].

2000 Mathematics Subject Classification: 30C45.

Key words: Analytic function, Starlike functions, Derivative operator, Fekete-Szegö inequality.

1. Introduction

Let A be the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

which are analytic in the open unit disk $U = \{z : z \in C \text{ and } |z| < 1\}$. Further, let S denote the class of functions which are univalent in U. For a function $f \in A$, we define

$$D^0 f(z) = f(z)$$

$$D_{\alpha,\beta,\lambda,\delta}^{1}f(z) = [1 - (\lambda - \delta)(\beta - \alpha)] f(z) + (\lambda - \delta)(\beta - \alpha)zf'(z)$$

$$= z + \sum_{n=2}^{\infty} [(\lambda - \delta)(\beta - \alpha)(n - 1) + 1] a_{n}z^{n}$$

$$\vdots$$

$$D_{\alpha,\beta,\lambda,\delta}^{k}f(z) = D_{\alpha,\beta,\lambda,\delta}^{1}\left(D_{\alpha,\beta,\lambda,\delta}^{k-1}f(z)\right)$$

$$D_{\alpha,\beta,\lambda,\delta}^{k}f(z) = z + \sum_{n=2}^{\infty} [(\lambda - \delta)(\beta - \alpha)(n - 1) + 1]^{k} a_{n}z^{n}$$

$$for (\alpha \ge 0, \beta \ge 0, \lambda \ge 0, \delta \ge 0, \lambda > \delta, \beta > \alpha) and k \in \{0, 1, 2,\}.$$

Remark 1.

- (i) When $\alpha = 0$, $\delta = 0$, $\lambda = 1$, $\beta = 1$, it reduces to Sălăgean differential operator[9].
- (ii) When $\alpha = 0$, reduces to Darus and Ibrahim differential operator [2].
- (iii) And when $\alpha = 0$, $\delta = 0$, $\beta = 1$, reduces to Al- Obouli differential operator [1].

Let $\phi(z)$ be an analytic function with positive real part on U with $\phi(z) = 1$, $\phi'(z) > 0$ which maps the unit disk U onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Let $S^*(\phi)$ be the class of functions in $f(z) \in S$ for which

$$\frac{zf'(z)}{f(z)} \prec \phi(z), \ (z \in U)$$

and $C(\phi)$ be the class of functions in $f(z) \in S$ for which

$$1 + \frac{zf''\left(z\right)}{f'\left(z\right)} \prec \phi\left(z\right), \ \left(z \in U\right)$$

where \prec denotes the subordination between analytic functions. These classes were investigated and studied by Ma and Minda [4]. They have obtain the Fekete- Szegö inequality for the functions in the class $C\left(\phi\right)$. Since $f\in C\left(\phi\right)$ if and only if $zf'\left(z\right)\in S^*\left(\phi\right)$, we get the Fekete- Szegö inequality for functions in the class $S^*\left(\phi\right)$. For a brief history of the Fekete- Szegö problem for class of starlike, convex, and close to convex functions, see the recent paper by Srivastava et.al [7]. In the present paper, we obtain the Fekete- Szegö inequality for the class $M_{\alpha,\beta,\lambda,\delta}^k\left(\phi\right)$ as defined below. Also we give applications of our result to certain functions defined through convolution (or Hadamard product) and in particular we consider a class $M_{\alpha,\beta,\lambda,\delta}^k\left(\phi\right)$

defined by fractional derivatives. The object of this paper is to generalize the Fekete-Szegö inequality of that given by Srivastava and Mishra [6].

Definition 1. Let $\phi(z)$ be a univalent starlike function with respect to 1 which maps the unit disk U onto a region in the right half plane which is symmetric with respect to the real axis, $\phi(0) = 1$ and $\phi'(0) > 0$. A function $f \in A$ is in the class $M_{\alpha,\beta,\lambda,\delta}^k(\phi)$ if

$$\frac{z\left(D_{\alpha,\beta,\lambda,\delta}^{k}f\left(z\right)\right)'}{D_{\alpha,\beta,\lambda,\delta}^{k}f\left(z\right)} \prec \phi\left(z\right).$$

For fixed $g \in A$, we define the class $M_{\alpha,\beta,\lambda,\delta}^{k,g}(\phi)$ to be the class of functions $f \in A$ for which $(f * g) \in M_{\alpha,\beta,\lambda,\delta}^{k}(\phi)$. In order to derive our main results, we have to recall here the following lemma [4]:

Lemma 1. If $p_1(z) = 1 + c_1 z + c_2 z^2 + ...$ is an analytic function with positive real part in U, then

$$|c_2 - \nu c_1^2| \le \begin{cases} -4\nu + 2 & if \quad \nu \le 0; \\ 2 & if \quad 0 \le \nu \le 1; \\ 4\nu - 2 & if \quad \nu \ge 1. \end{cases}$$

When $\nu < 0$ or $\nu > 1$, the equality holds if and only if $p_1(z)$ is (1+z)/(1-z) or one of its rotations. If $0 < \nu < 1$, then the equality holds if and only if $p_1(z)$ is $(1+z^2)/(1-z^2)$ or one of its rotations. If $\nu = 0$, the equality holds if and only if

$$p_1(z) = \left(\frac{1+\gamma}{2}\right) \frac{1+z}{1-z} + \left(\frac{1-\gamma}{2}\right) \frac{1-z}{1+z}, \ (0 \le \gamma \le 1)$$

or one of its rotations. If $\nu=1$, the equality holds if and only if $p_1(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $\nu=0$. Also the above upper bound is sharp, and it can be improved as follows when $0<\nu<1$:

$$\left| c_2 - \nu c_1^2 \right| + \nu \left| c_1 \right|^2 \le 2 \qquad \left(0 < \nu \le \frac{1}{2} \right)$$

and

$$|c_2 - \nu c_1^2| + (1 - \nu) |c_1|^2 \le 2$$
 $\left(\frac{1}{2} < \nu \le 1\right)$.

2.Fekete-Szegö problem

Our main result is the following:

Theorem 1. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + ...$ If f(z) given by (1) belongs to

 $M_{\alpha,\beta,\lambda,\delta}^{k}(\phi)$, then

$$\left|a_3 - \mu a_2^2\right| \le$$

$$\begin{cases}
\frac{B_2}{[2(\lambda-\delta)(\beta-\alpha)+1]^k} - \frac{2\mu B_1^2}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k}} + \frac{B_1^2}{[2(\lambda-\delta)(\beta-\alpha)+1]^k} & if \ \mu \leq \sigma_1; \\
\frac{B_1}{2[2(\lambda-\delta)(\beta-\alpha)+1]^k} & if \ \sigma_1 \leq \mu \leq \sigma_2; \\
-\frac{B_2}{[2(\lambda-\delta)(\beta-\alpha)+1]^k} + \frac{2\mu B_1^2}{[(\lambda-\delta)(\beta-\alpha)+1]^{2k}} - \frac{B_1^2}{[2(\lambda-\delta)(\beta-\alpha)+1]^k} & if \ \mu \geq \sigma_2,
\end{cases} (3)$$

where

$$\sigma_{1} := \frac{\left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k} \left\{ (B_{2} - B_{1}) + B_{1}^{2} \right\}}{2 \left[2 (\lambda - \delta) (\beta - \alpha) + 1 \right]^{k} B_{1}^{2}}$$
$$\sigma_{2} := \frac{\left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k} \left\{ (B_{2} + B_{1}) + B_{1}^{2} \right\}}{2 \left[2 (\lambda - \delta) (\beta - \alpha) + 1 \right]^{k} B_{1}^{2}}.$$

The result is sharp.

Proof. For $f \in M_{\alpha,\beta,\lambda,\delta}^k(\phi)$, let

$$p(z) = \frac{z \left(D_{\alpha,\beta,\lambda,\delta}^k f(z)\right)'}{D_{\alpha,\beta,\lambda,\delta}^k f(z)} = 1 + b_1 z + b_2 z^2 + \dots$$
 (4)

From (4), we obtain

$$[(\lambda - \delta) (\beta - \alpha) + 1]^{k} a_{2} = b_{1},$$

$$2 [2 (\lambda - \delta) (\beta - \alpha) + 1]^{k} a_{3} = [(\lambda - \delta) (\beta - \alpha) + 1]^{2k} a_{2}^{2} + b_{2}.$$
(5)

Since $\phi(z)$ is univalent and $p \prec \phi$, the function

$$p_1(z) = \frac{1 + \phi^{-1}(p(z))}{1 - \phi^{-1}(p(z))} = 1 + c_1 z + c_2 z^2 + \dots$$

is analytic and positive real in U.

Also we have

$$p(z) = \phi\left(\frac{p_1(z) - 1}{p_1(z) + 1}\right),$$
 (6)

and from this equality and (4), $1+b_1z+b_2z^2+\ldots=\phi\left(\frac{c_1z+c_2z^2+\ldots}{2+c_1z+c_2z^2+\ldots}\right)$ = $\phi\left(\frac{1}{2}\ c_1z+\frac{1}{2}\left(c_2-\frac{1}{2}\ c_1^2\right)z^2+\ldots\right)=1+B_1\frac{1}{2}\ c_1z+B_1\frac{1}{2}\left(c_2-\frac{1}{2}\ c_1^2\right)z^2+\ldots+B_2\frac{1}{4}\ c_1^2z^2+\ldots$ we obtain $b_1=\frac{1}{2}B_1c_1$ and $b_2=\frac{1}{2}B_1\left(c_2-\frac{1}{2}\ c_1^2\right)+\frac{1}{4}B_2c_1^2$. Therefore, we have

$$a_{3} - \mu a_{2}^{2} = \frac{B_{1}}{4 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{k}} \left[c_{2} - c_{1}^{2} \left\{ \frac{1}{2} \left(1 - \frac{B_{2}}{B_{1}} \right) \right\} \right]$$
$$- \frac{\left[\left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{2k} - 2\mu \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{k}}{\left[\left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{2k}} B_{1} \right],$$
$$a_{3} - \mu a_{2}^{2} = \frac{B_{1}}{4 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{k}} \left\{ c_{2} - \nu c_{1}^{2} \right\}.$$

Where

$$\nu = \frac{1}{2} \left(1 - \frac{B_2}{B_1} - \frac{\left[(\lambda - \delta) \left(\beta - \alpha \right) + 1 \right]^{2k} - 2\mu \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k}{\left[(\lambda - \delta) \left(\beta - \alpha \right) + 1 \right]^{2k}} B_1 \right).$$

If $\mu \leq \sigma_1$, then by applying Lemma 1, we get

$$\left| a_3 - \mu a_2^2 \right| \le \frac{B_2}{\left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k} - \frac{2 \mu B_1^2}{\left[\left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{2k}} + \frac{B_1^2}{\left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k}$$

which is the first part of assertion (3).

Next, if $\mu \geq \sigma_2$, by applying Lemma 1, we get

$$\left| a_3 - \mu a_2^2 \right| \le -\frac{B_2}{\left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k} + \frac{2 \mu B_1^2}{\left[\left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{2k}} - \frac{B_1^2}{\left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k}.$$

if $\mu = \sigma_1$, then equality holds if and only if

$$p_1(z) = \left(\frac{1+\gamma}{2}\right) \frac{1+z}{1-z} + \left(\frac{1-\gamma}{2}\right) \frac{1-z}{1+z}, \ (0 \le \gamma \le 1, \ z \in U)$$

or one of its rotations. if $\mu = \sigma_2$, then

$$\frac{1}{2}\left(1-\frac{B_2}{B_1}-\frac{\left[\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^{2k}-2\mu\left[2\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^k}{\left[\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^{2k}}B_1\right)=0.$$

Therefore,

$$\frac{1}{p_1\left(z\right)} = \left(\frac{1+\gamma}{2}\right)\frac{1+z}{1-z} + \left(\frac{1-\gamma}{2}\right)\frac{1-z}{1+z}, \quad (0<\gamma<1,\ z\in U)\,.$$

Finally, we see that

$$|a_{3} - \mu a_{2}^{2}| = \frac{B_{1}}{4 \left[2 (\lambda - \delta) (\beta - \alpha) + 1\right]^{k}} \left| c_{2} - c_{1}^{2} \left\{ \frac{1}{2} \left(1 - \frac{B_{2}}{B_{1}} \right) - \frac{\left[(\lambda - \delta) (\beta - \alpha) + 1\right]^{2k} - 2\mu \left[2 (\lambda - \delta) (\beta - \alpha) + 1\right]^{k}}{\left[(\lambda - \delta) (\beta - \alpha) + 1\right]^{2k}} B_{1} \right|$$

and

$$\max \left| \frac{1}{2} \left(1 - \frac{B_2}{B_1} - \frac{\left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k} - 2\mu \left[2 (\lambda - \delta) (\beta - \alpha) + 1 \right]^k}{\left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k}} B_1 \right) \right| \le 1,$$

$$(\sigma_1 \le \mu \le \sigma_2).$$

Therefore using Lemma 1, we get

$$\left| a_3 - \mu a_2^2 \right| = \frac{B_1 \left| c_1 \right|}{4 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k} \le \frac{B_1}{2 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{2k}}, \quad (\sigma_1 \le \mu \le \sigma_2).$$

If $\sigma_1 < \mu < \sigma_2$, then we have

$$p_1(z) = \frac{1 + \nu z^2}{1 - \nu z^2}, \ (0 \le \nu \le 1).$$

Our result now follows by an application of Lemma 1. To show that the bounds are sharp, we define the function K_s^{ϕ} (s=2,3,...) by

$$p\left(z\right) = \frac{z\left(D_{\alpha,\beta,\lambda,\delta}^{k}K_{s}^{\phi}\left(z\right)\right)'}{D_{\alpha,\beta,\lambda,\delta}^{k}K_{s}^{\phi}\left(z\right)} = \phi\left(z^{s-1}\right), \ K_{s}^{\phi}\left(0\right) = 0 = \left[K_{s}^{\phi}\left(0\right)\right]' - 1$$

and the function F_{γ} and G_{γ} , $(0 \le \gamma \le 1)$ by

$$\frac{z\left(D_{\alpha,\beta,\lambda,\delta}^{k}F_{\gamma}\left(z\right)\right)'}{D_{\alpha,\beta,\lambda,\delta}^{k}F_{\gamma}\left(z\right)} = \phi\left(\frac{z\left(z+\nu\right)}{1+\nu z}\right) , \quad F_{\gamma}\left(0\right) = 0 = \left[F_{\gamma}\left(0\right)\right]' - 1$$

and

$$\frac{z\left(D_{\alpha,\beta,\lambda,\delta}^{k}G_{\gamma}\left(z\right)\right)'}{D_{\alpha,\beta,\lambda,\delta}^{k}G_{\gamma}\left(z\right)} = \phi\left(-\frac{z\left(z+\nu\right)}{1+\nu z}\right) , \quad G_{\gamma}\left(0\right) = 0 = \left[G_{\gamma}\left(0\right)\right]' - 1.$$

Clearly the functions K_s^{ϕ} , F_{γ} , $G_{\gamma} \in M_{\alpha,\beta,\lambda,\delta}^k(\phi)$. Also we write $K^{\phi} = K_2^{\phi}$.

If $\mu < \sigma_1$ or $\mu > \sigma_2$, then the equality holds if and only if f is K_s^{ϕ} or one of its rotations. When $\sigma_1 < \mu < \sigma_2$, the equality holds if and only if f is K_3^{ϕ} or one of its rotations. If $\mu = \sigma_1$, then the equality holds if and only if f is F_{γ} or one of its rotations. If $\mu = \sigma_2$, then the equality holds if and only if f is G_{γ} or one of its rotations.

Remark 2. If $\sigma_1 \leq \mu \leq \sigma_2$, then in view of Lemma 1, Theorem 1 can be improved. Let σ_3 be given by

$$\sigma_3 := \frac{\left[(\lambda - \delta) \left(\beta - \alpha \right) + 1 \right]^{2k} \left(B_2 + B_1^2 \right)}{2 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k B_1^2}.$$

If $\sigma_1 \leq \mu \leq \sigma_3$, then

$$|a_{3} - \mu a_{2}^{2}| + \frac{\left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k}}{2 \left[2 (\lambda - \delta) (\beta - \alpha) + 1 \right]^{k} B_{1}^{2}} \left[B_{1} - B_{2} + \frac{2\mu \left[2 (\lambda - \delta) (\beta - \alpha) + 1 \right]^{k} - \left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k}}{\left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k}} B_{1}^{2} \right] |a_{2}|^{2} \leq \frac{B_{1}}{2 \left[2 (\lambda - \delta) (\beta - \alpha) + 1 \right]^{k}}.$$

If $\sigma_3 \leq \mu \leq \sigma_2$, then

$$|a_{3} - \mu a_{2}^{2}| + \frac{\left[(\lambda - \delta)(\beta - \alpha) + 1\right]^{2k}}{2\left[2(\lambda - \delta)(\beta - \alpha) + 1\right]^{k} B_{1}^{2}} \left[B_{1} + B_{2} - \frac{2\mu\left[2(\lambda - \delta)(\beta - \alpha) + 1\right]^{k} - \left[(\lambda - \delta)(\beta - \alpha) + 1\right]^{2k}}{\left[(\lambda - \delta)(\beta - \alpha) + 1\right]^{2k}} B_{1}^{2}\right] |a_{2}|^{2} \leq \frac{B_{1}}{2\left[2(\lambda - \delta)(\beta - \alpha) + 1\right]^{k}}.$$

Proof. For the values of $\sigma_1 \leq \mu \leq \sigma_3$, we have

$$|a_3 - \mu a_2^2| + (\mu - \sigma_1) |a_2|^2 =$$

$$\frac{B_1}{4 \left[2 (\lambda - \delta) (\beta - \alpha) + 1\right]^k} \left|c_2 - \nu c_1^2\right| + (\mu - \sigma_1) \frac{B_1^2}{4 \left[(\lambda - \delta) (\beta - \alpha) + 1\right]^{2k}} \left|c_1\right|^2$$

$$= \frac{B_1}{4 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k} \left| c_2 - \nu c_1^2 \right| +$$

$$+ \left(\mu - \frac{\left[\left(\lambda - \delta \right) \left(\beta - \alpha \right) + \right]^{2k} \left\{ \left(B_2 - B_1 \right) + B_1^2 \right\}}{2 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k B_1^2} \right) \frac{B_1^2}{4 \left[\left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^{2k}} \left| c_1 \right|^2 =$$

$$= \frac{B_1}{2 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k} \left\{ \frac{1}{2} \left[\left| c_2 - \nu c_1^2 \right| + \nu \left| c_1 \right|^2 \right] \right\} \le \frac{B_1}{2 \left[2 \left(\lambda - \delta \right) \left(\beta - \alpha \right) + 1 \right]^k}.$$

Similarly, for the value of $\sigma_3 \leq \mu \leq \sigma_2$, we write

$$|a_3 - \mu a_2^2| + (\sigma_2 - \mu) |a_2|^2 =$$

$$\frac{B_1}{4\left[2\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^k} \left|c_2-\nu c_1^2\right| + \left(\sigma_2-\mu\right) \frac{B_1^2}{4\left[\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^{2k}} \left|c_1\right|^2 \\
= \frac{B_1}{4\left[2\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^k} \left|c_2-\nu c_1^2\right| + \\
+ \left(\frac{\left[\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^{2k} \left\{\left(B_2+B_1\right)+B_1^2\right\}}{2\left[2\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^k} B_1^2} - \mu\right) \frac{B_1^2}{4\left[\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^{2k}} \left|c_1\right|^2 = \\
= \frac{B_1}{2\left[2\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^k} \left\{\frac{1}{2}\left[\left|c_2-\nu c_1^2\right|+\left(1-\nu\right)\left|c_1\right|^2\right]\right\} \le \frac{B_1}{2\left[2\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^k}.$$

Thus, Remark 2 holds.

3. Applications to Functions Defined by Fractional Derivatives

For two analytic functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, their convolution (or Hadamard product) is defined to be the function (f * g)(z) given by

$$(f * g)(z) = f(z) * g(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

Definition 2.[8] Let f be analytic in a simply-connected region of the z-plane containing the region. The fractional derivative of f of order γ is defined by

$$D_{z}^{\gamma}f\left(z\right)\frac{1}{\Gamma\left(1-\gamma\right)}\frac{d}{dz}\int_{0}^{z}\frac{f\left(\zeta\right)}{\left(z-\zeta\right)^{\gamma}}d\zeta,\quad\left(0\leq\gamma<1\right),$$

where the multiplicity of $(z-\zeta)^{\gamma}$ is removed by requiring that $\log(z-\zeta)$ is real for $z-\zeta>0$. Using the above definition and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [5] introduced the operator $\Omega^{\gamma}: A \to A$ defined by

$$(\Omega^{\gamma} f)(z) = \Gamma(2 - \gamma) z^{\gamma} D_z^{\gamma} f(z), \quad (\gamma \neq 2, 3, 4, \dots).$$

The class $M^{k,\gamma}_{\alpha,\beta,\lambda,\delta}(\phi)$ consists of functions $f\in A$ for which $\Omega^{\gamma}f\in M^k_{\alpha,\beta,\lambda,\delta}(\phi)$. Note that $M^{k,\gamma}_{\alpha,\beta,\lambda,\delta}(\phi)$ is the special case of the class $M^{k,g}_{\alpha,\beta,\lambda,\delta}(\phi)$ when

$$g(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\gamma)}{\Gamma(n+1-\gamma)} z^{n}.$$
 (7)

Let

$$g(z) = z + \sum_{n=2}^{\infty} g_n z^n, \quad (g_n > 0).$$

Since

$$D_{\alpha,\beta,\lambda,\delta}^{k}f(z) = z + \sum_{n=2}^{\infty} \left[(\lambda - \delta) (\beta - \alpha) (n-1) + 1 \right]^{k} a_{n} z^{n} \in M_{\alpha,\beta,\lambda,\delta}^{g}(\phi)$$

if and only if

$$\left(D_{\alpha,\beta,\lambda,\delta}^{k}f * g\right)(z) = z + \sum_{n=2}^{\infty} \left[\left(\lambda - \delta\right)\left(\beta - \alpha\right)\left(n - 1\right) + 1\right]^{k} a_{n}g_{n}z^{n} \in M_{\alpha,\beta,\lambda,\delta}^{k}\left(\phi\right)$$
(8)

we obtain the coefficient estimate for functions in the class $M_{\alpha,\beta,\lambda,\delta}^{k,g}\left(\phi\right)$, from the corresponding estimate for functions in the class $M_{\alpha,\beta,\lambda,\delta}^{k}\left(\phi\right)$. Applying Theorem 1 for the operator (8), we get the following Theorem 2 after an obvious change of the parameter μ :

Theorem 2. Let $g(z) = z + \sum_{k=2}^{\infty} g_k z^k$, $(g_k > 0)$ and let the function $\phi(z)$ be given by $\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n$. If operator (2) belongs to $M_{\alpha,\beta,\lambda,\delta}^{k,g}(\phi)$, then

$$|a_3 - \mu a_2| \le$$

$$\begin{cases} \frac{1}{g_3} \left[\frac{B_2}{[2(\lambda - \delta)(\beta - \alpha) + 1]^k} - \frac{2\mu g_3 B_1^2}{[(\lambda - \delta)(\beta - \alpha) + 1]^{2k}} + \frac{B_1^2}{[2(\lambda - \delta)(\beta - \alpha) + 1]^k} \right] & if \ \mu \leq \sigma_1; \\ \frac{1}{g_3} \left[\frac{B_1}{2[2(\lambda - \delta)(\beta - \alpha) + 1]^k} \right] & if \ \sigma_1 \leq \mu \leq \sigma_2; \\ \frac{1}{g_3} \left[-\frac{B_2}{[2(\lambda - \delta)(\beta - \alpha) + 1]^k} + \frac{2\mu g_3 B_1^2}{[(\lambda - \delta)(\beta - \alpha) + 1]^{2k}} - \frac{B_1^2}{[2(\lambda - \delta)(\beta - \alpha) + 1]^k} \right] & if \ \mu \geq \sigma_2, \end{cases}$$

where

$$\sigma_{1} := \frac{g_{2}^{2} \left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k} \left\{ (B_{2} - B_{1}) + B_{1}^{2} \right\}}{2g_{3} \left[2 (\lambda - \delta) (\beta - \alpha) + 1 \right]^{k} B_{1}^{2}}$$

$$\sigma_{2} := \frac{g_{2}^{2} \left[(\lambda - \delta) (\beta - \alpha) + 1 \right]^{2k} \left\{ (B_{2} + B_{1}) + B_{1}^{2} \right\}}{2g_{3} \left[2 (\lambda - \delta) (\beta - \alpha) + 1 \right]^{k} B_{1}^{2}}.$$

The result is sharp.

Since

$$\left(\Omega^{\gamma} D_{\alpha,\beta,\lambda,\delta}^{k} f\right)(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\gamma)}{\Gamma(n+1-\gamma)} \left[(\lambda - \delta) (\beta - \alpha) (n-1) + 1 \right]^{k} a_{n} z^{n}$$

we have

$$g_2 := \frac{\Gamma(3)\Gamma(2-\gamma)}{\Gamma(3-\gamma)} = \frac{2}{2-\gamma} \tag{9}$$

and

$$g_3: \frac{\Gamma(4)\Gamma(3-\gamma)}{\Gamma(4-\gamma)} = \frac{6}{(2-\gamma)(3-\gamma)}.$$
 (10)

For g_2 and g_3 given by (9) and (10), Theorem 2 reduces to the following:

Theorem 3. Let $g(z) = z + \sum_{k=2}^{\infty} g_k z^k$, $(g_k > 0)$ and let the function $\phi(z)$ be given by $\phi(z) = 1 + \sum_{n=1}^{\infty} B_n z^n$. If $D_{\alpha,\beta,\lambda,\delta}^k f$ given by (2) belongs to $M_{\alpha,\beta,\lambda,\delta}^{k,\gamma}(\phi)$, then $|a_3 - \mu a_2| \le$

$$\begin{cases} \frac{(2-\gamma)(3-\gamma)}{6} \left[\frac{B_2}{[2(\lambda-\delta)(\beta-\alpha)+1]^k} - \frac{3(2-\gamma)\mu B_1^2}{(3-\gamma)[(\lambda-\delta)(\beta-\alpha)+1]^{2k}} + \frac{B_1^2}{[2(\lambda-\delta)(\beta-\alpha)+1]^k} \right] if \mu \leq \sigma_1; \\ \frac{(2-\gamma)(3-\gamma)}{6} \left[\frac{B_1}{2[2(\lambda-\delta)(\beta-\alpha)+1]^k} \right] & if \sigma_1 \leq \mu \leq \sigma_2; \\ \frac{(2-\gamma)(3-\gamma)}{6} \left[-\frac{B_2}{[2(\lambda-\delta)(\beta-\alpha)+1]^k} + \frac{3(2-\gamma)\mu B_1^2}{(3-\gamma)[(\lambda-\delta)(\beta-\alpha)+1]^{2k}} - \frac{B_1^2}{[2(\lambda-\delta)(\beta-\alpha)+1]^k} \right] & if \mu \geq \sigma_2, \end{cases}$$

where

$$\sigma_{1} := \frac{(3-\gamma)\left[(\lambda-\delta)\left(\beta-\alpha\right)+1\right]^{2k}\left\{(B_{2}-B_{1})+B_{1}^{2}\right\}}{3\left(2-\gamma\right)\left[2\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^{k}B_{1}^{2}}$$

$$\sigma_{2} := \frac{(3-\gamma)\left[(\lambda-\delta)\left(\beta-\alpha\right)+1\right]^{2k}\left\{(B_{2}+B_{1})+B_{1}^{2}\right\}}{3\left(2-\gamma\right)\left[2\left(\lambda-\delta\right)\left(\beta-\alpha\right)+1\right]^{k}B_{1}^{2}}.$$

The result is sharp.

Remark 3. When k = 0, $\lambda = 1$, $\beta = 1$, $\alpha = 0$, $\delta = 0$, $B_1 = \frac{8}{\pi^2}$ and $B_2 = \frac{16}{3\pi^2}$ the above Theorem 3 reduces to a recent result of Srivastava and Mishra ([6], Theorem 8, P.64) for a class of functions for which $\Omega^{\gamma} f(z)$ is a parabolic starlike functions (see [3],[5]). Note also, other work related to the upper bounds of the Fekete-Szegó theorem can be found in [10].

Acknowledgement: The work here is fully supported by UKM-ST-06-FRGS0244-2010.

References

- [1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., **27** (2004), 1429-1436.
- [2] M. Darus and R. W. Ibrahim, On subclasses for generalized operators of complex order, Far East Journal of Math. Sci.(FJMS), **33(3)** (2009), 299-308.
- [3] B. Frasin, and M. Darus, On Fekete-Szegö problem using Hadamard products, Intern. Math. Jour., 3 (2003), 1289-1295.
- [4] W. Ma and D. Minda, A unified treatment of some speial classes of univalent functions, in: Proceeding of the conference on complex analysis, Z. Li. F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press (1994), 157-169.
- [5] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad J. Math., **39** (5) (1987), 1057-1077.

- [6] H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl., **39** (2000), 57-69.
- [7] H. M. Srivastava, A. K. Mishra and M. K. Das, *The Fekete- Szegö problem for a subclass of close-to-convex functions*, Complex Variables Theory Appl., **44** (2001), 145-163.
- [8] H. M. Srivastava and S. Owa, *Univalent functions, fractional calculus and their applications.*, John Wiley and Sons, New Jersey, (1989).
- [9] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math.1013, Springer, Verlag Berlin, (1983), PP.362-372.
- [10] S. P. Goyal and Pranay Goswami, Certain coefficient inequalities for Sakaguchi type functions and applications to fractional derivative operator, Acta Universitatis Apulensis, No. 19/2009, 159-166.

Salma Faraj Ramadan School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia E-mail: salma.naji@gmail.com

Maslina Darus School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia E-mail: maslina@ukm.my