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ON CERTAIN SUBCLASS OF P-VALENT FUNCTIONS
INVOLVING THE DZIOK-SRIVASTAVA OPERATOR
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Abstract. In this paper, we introduce a class Tk(λ, α1, p, q, s, ρ). We investi-
gate a number of inclusion relationships, radius problem and some other interesting
properties of p-valent functions which are defined here by means of a certain linear
integral operator Hp,q,s(α1).
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1. Introduction

Let A(p) denote the class of functions f(z) normalized by

f(z) = zp +
∞∑

k=1

ap+kz
p+k (p ∈ N = {1, 2, 3 · · · } , (1)

which are analytic and p-valent in the unit disk E = {|z| : z ∈ C, |z| < 1}.
For functions fj(z) ∈ A(p), given by (1) we define the Hadamard product (or

convolution) of f1(z) and f2(z) by

fj(z) = zp +
∞∑

k=1

ap+k,jz
p+k (j = {1, 2, 3 · · · } , (2)

we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) = zp +
∞∑

k=1

ap+k,1ap+k,2z
p+k = (f2 ∗ f1)(z), (z ∈ E). (3)
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Let Pk(ρ) be the class of functions p(z) analytic in E satisfying the properties p(0) =
1 and

2π∫
0

∣∣∣∣Rep(z)− ρ

1− ρ

∣∣∣∣ dθ ≤ kπ, , (4)

where z = reiθ, k ≥ 2 and 0 ≤ ρ < 1. This class has been introduced in [10]. We note,
for ρ = 0, we obtain the class Pk defined and studied in [11], and for ρ = 0, k = 2,
we have the well-known class P of functions with positive real part. The case k = 2
gives the class P (ρ) of functions with positive real part greater than ρ. From (4) we
can easily deduce that p ∈ Pk(ρ) if and only if, there exists p1, p2 ∈ P (ρ) such that
for z ∈ E,

p(z) =
(

k

4
+

1
2

)
p1(z)−

(
k

4
− 1

2

)
p2(z). (5)

Making use of the Hadamard product (or convolution) given by (3), we now
define the Dziok-Srivastava operator,

Hp(α1, · · · , αq;β1, · · ·βq) : A(p) → A(p).

which was introduced and studied in a series of recent papers by Dziok and Srivastava
[1], [2], see also [5], [6]. Indeed, for complex parameters
α1, · · ·αq and β1, · · · , βs, (βj /∈ Z−

0 = {0,−1,−2,−3, · · · }; j = 1, · · · s),
the generalized hypergeometric function

qFs(α1, · · · , αq;β1, · · · , βs; z)

is given by

qFs(α1, · · · , αq;β1, · · · , βs; z) =
∞∑

n=0

(α1)n · · · (αq)n

(β1, · · · , βs)nn!
zn (6)

(q ≤ s+1; q, s ∈ N0 = N∪{0}; N = {1, 2, · · · }; z ∈ E, where (v)k is the Pochhammer
symbol (or the shifted factorial) defined in (terms of the Gamma function) by

(v)k =
Γ(v + k)

Γ(v)
=

{
1 if k = 0, v ∈ C\{0}

v(v + 1), · · · (v + k − 1) if k ∈ N, v ∈ C.

}
Corresponding to a function

Fp(α1, · · ·αq;β1, · · · , βs; z)

defined by

Fp(α1, · · ·αq;β1, · · · , βs; z) = zp
qFs(α1, · · · , αq;β1, · · · , βs; z).
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Dziok and Srivastava [1] considered a linear operator defined by the following Hadamard
product (or convolution):

Hp(α1, · · ·αq;β1, · · · , βs)f(z) = Fp(α1, · · ·αq;β1, · · · , βs; z) ∗ f(z). (7)

For convenience, we write

Hp,q,s(α1) = Hp(α1, · · ·αq;β1, · · · , βs). (8)

Thus after some calculations, we have

z(Hp,q,s(α1)f(z))′ = α1Hλ,q,s(α1 + 1)f(z)− (α1 − p)Hp,q,s(α1)f(z). (9)

Many interesting subclasses of analytic functions, associated with the Dziok-Srivastava
operator Hp,q,s(α1) and its many special cases, were investigated recently by Dziok
and Srivastava [1], [2], Gangadharan et. al [3], Liu and Srivastava [5], [6], see also
[5], [9], [13].

Definition 1.1. Let f ∈ A(p). Then f ∈ Tk(λ, α1, p, q, s, ρ), if and only if{
(1− λ)

Hp,q,s(α1)f(z)
zp

+ λ
Hp,q,s(α1 + 1)f(z)

zp

}
∈ Pk(ρ), z ∈ E,

where λ > 0, k ≥ 2 and 0 ≤ ρ < p.

2. Preliminary Results

Lemma 2.1.[12] If p(z) is analytic in E with p(0) = 1, and if λ1 is a convex
number satisfying Re(λ1) ≥ 0, (λ1 6= 0), then

Re
{
p(z) + λ1zp′(z)

}
> β (0 ≤ β < 1)

implies
Rep(z) > β + (1− β)(2γ − 1),

where γ is given by

γ = γ(Reλ1 =

1∫
0

(1 + tReλ1)−1
dt,

which is an increasing function of Re(λ1) and 1
2 ≤ γ < 1. The estimate is sharp in

the sense that the bound cannot be improved.

Lemma 2.2.[14] If p(z) is analytic in E, p(0) = 1 and Rep(z) > 1
2 , z ∈ E, then

for any function F analytic in E, the function p ∗ F takes the value in the convex
hull of the image of E under F .
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3. Main Results

Theorem 3.1. Let Reα1 > 0. Then Tk(λ, α1, p, q, s, ρ) ⊂ Tk(0, α1, p, q, s, ρ1),
where ρ1is given by

ρ1 = ρ + (1− ρ)(2γ − 1), (10)

and
1∫

0

(
1 + t

Re
(

λ
α1

))−1

dt.

Proof. Let f ∈ Tk(λ, α1, p, q, s, ρ) and set

Hp,q,s(α1)f(z)
zp

= h(z) =
(

k

4
+

1
2

)
h1(z)−

(
k

4
− 1

2

)
h2(z) (11)

Then h(z) is analytic in E with h(0) = 1. By a simple computation, we have{
(1− λ)

Hp,q,s(α1)f(z)
zp

+ λ
Hp,q,s(α1 + 1)f(z)

zp

}
=

{
h(z) +

λzh′(z)
α1

}
∈ Pk(ρ)

for z ∈ E.
This implies that Re

{
hi(z) + λzh′i(z)

α1

}
> ρ, i = 1, 2.

Using Lemma 2.1, we see that Rehi(z) > ρ1, where ρ1 is given by (10). Conse-
quently h ∈ Pk(ρ1), where ρ1 is given by (10) for z ∈ E and proof is complete.

Theorem 3.2. Let f ∈ Tk(0, α1, p, q, s, ρ) for z ∈ E. Then f ∈ Tk(λ, α1, p, q, s, ρ)
for |z| < R(α1, λ), where

R(α1, λ) =
|α1|

λ +
√

(λ2 + |α1|2)
. (12)

Proof. Set
Hp,q,s(α1)f(z)

zp
= (p− ρ)h(z) + ρ, h ∈ Pk.

Now proceeding as in Theorem 3.1, we have{
(1− λ)

Hp,q,s(α1)f(z)
zp

+ λ
Hp,q,s(α1 + 1)f(z)

zp
− ρ

}
= (p− ρ)

{
h(z) +

λzh′(z)
α1

}

= (p− ρ)
[
(
k

4
+

1
2
)
{

h1(z) +
λzh′1(z)

α1

}
− (

k

4
− 1

2
)
{

h2(z) +
λzh′2(z)

α1

}]
(13)
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where we have used (5) and h1, h2 ∈ P, z ∈ E. Using the following well-known
estimates, see [7]

|zh′i(z)| ≤ 2r

1− r2
Rehi(z), (|z| = r < 1), i = 1, 2,

we have

Re
{

hi(z) +
λzh′i(z)
|α1|

}
}

≥ Re
{

hi(z) +
λzh′i(z)
|α1|

}
}

≥ Rehi(z)
{

1− 2λr

|α1|(1− r2)

}
.

The right hand side of this inequality is positive if r < R(α1, λ), where R(α1, λ)
is given by (12). Consequently it follows from (13) that f ∈ Tk(λ, α, p, q, s, ρ) for
|z| < R(α1, λ). Sharpness of this result follows by taking hi(z) = 1+z

1−z in (13),
i = 1, 2.

Theorem 3.3. Tk(λ1, α1, p, q, s, ρ) ⊂ Tk(λ2, α1, p, q, s, ρ) for 0 ≤ λ2 < λ1.
Proof. For λ2 = 0 the proof is immediate. Let λ2 > 0 and let f ∈ Tk(λ1, α1, p, q, s, ρ).
Then there exist two functions H1,H2 ∈ Pk(ρ) such that, from Definition 1.1 and
Theorem 3.1,

(1− λ1)
Hp,q,s(α1)f(z)

zp
+ λ1

Hp,q,s(α1 + 1)
zp

= H1(z),

and
Hp,q,s(α1)

zp
= H2(z).

Hence

(1− λ2)
Hp,q,s(α2)f(z)

zp
+ λ2

Hp,q,s(α1 + 1)
zp

=
λ2

λ1
H1(z) + (1− λ2

λ1
)H2(z). (14)

Since the class Pk(ρ) is a convex set, see [8], it follows that the right hand side of
(14) belongs to Pk(ρ) and this proves the result.

Theorem 3.4. Let f ∈ Tk(λ, α1, p, q, s, ρ) and let φ ∈ C(ρ) is the class of
p-valent convex functions. Then φ ∗ f ∈ Tk(λ, α1, p, q, s, ρ).

Proof. Let F = φ ∗ f . Then we have{
(1− λ)

Hp,q,s(α1)F (z)
zp

+ λ
Hp,q,s(α1 + 1)F (z)

zp

}
=

φ(z)
zp

∗G(z),
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where

G(z) =
{

(1− λ)
Hp,q,s(α1)f(z)

zp
+ λ

Hp,q,s(α1 + 1)f(z)
zp

}
∈ Pk(ρ).

Therefore,we have

φ(z)
zp

∗G(z) = (
k

4
+

1
2
)
{

(p− ρ)
(

φ(z)
zp

∗ g1(z)
)

+ ρ

}
−(

k

4
−1

2
)
{

(p− ρ)
(

φ(z)
zp ∗ g2(z)

)
+ ρ

}
where g1, g2 ∈ P .

Since φ ∈ C(p),Re
{

φ(z)
zp

}
> 1

2 , z ∈ E, and so using Lemma 2.2, we conclude
that F = φ ∗ f ∈ Tk(λ, α1, p, q, s, ρ).

Theorem 3.5. Let f(z) ∈ A(p) and define the one-parameter integral operator
Jc(c > −p) by

Jcf(z) =
c + p

zc

z∫
0

tc−1f(t)dt (f ∈ A(p); c > p). (15)

If {
(1− λ)

Hp,q,s(α1)Jcf(z)
zp

+ λ
Hp,q,s(α1)f(z)

zp

}
∈ Pk(ρ). (16)

then
Hp,q,s(α1)Jcf(z)

zp
∈ Pk(ρ2),

where ρ2 is given by
ρ2 = ρ + (1− ρ)(2γ1 − 1), (17)

and

γ1 =

1∫
0

(
1 + t

Re( λ
(c+p)

)−1

dt.

Proof. First of all it follows from the Definition 3.6, that

z(Hp,q,s(α1)Jcf(z))′ = (c + p)Hλ,q,s(α1)f(z)− cHp,q,s(α1)Jcf(z). (18)

Let
Hp,q,s(α1Jcf(z)

zp
= h(z) = (

k

4
+

1
2
)h1(z)− (

k

4
− 1

2
)h2(z), (19)

194



A. Muhammad - On certain subclass of p-valent functions involving the Dziok...

then the hypothesis (16) in conjection with (18) would yield{
(1− λ)

Hp,q,s(α1)Jcf(z)
zp

+ λ
Hp,q,s(α1)f(z)

zp

}
=

{
h(z) +

λzh′(z)
c + p

}
∈ Pk(ρ) forz ∈ E.

Consequently{
hi(z) +

λzh′i(z)
c + p

}
∈ P (ρ), i = 1, 2, 0 ≤ ρ < p, andz ∈ E.

Using Lemma 2.1 with λ1 = λ
(c+p) , we have Rehi(z) > ρ2, where ρ2 is given by (17),

and the proof is complete.
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