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GENERALIZED SEQUENCE SPACES ON SEMINORMED SPACES

CIGDEM A. BEKTAS

ABSTRACT. In this paper we define the sequence space ¢y (u,p, g, s) on a semi-
normed complex linear space by using Orlicz function and we give various properties
and some inclusion relations on this space. This study generalized some results of
Bektag and Altin [1].
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1. INTRODUCTION

Let w be the set of all sequences x = (zj) with complex terms.
Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to construct the
|k

sequence space {yy = {x € w: Y o, M(=F) < oo for some p > 0}. The space

{pr with the norm ||z| = inf{p > 0: > 72, M('x—;‘) < 1} becomes a Banach space
which is called an Orlicz sequence space. The space £, is closely related to the space
¢, which is an Orlicz sequence space with M(x) = 2P for 1 < p < co. An Orlicz
function is a function M : [0,00) — [0, 00), which is continuous, non-decreasing and
convex with M (0) =0, M(z) > 0 for x > 0 and M(z) — oo as © — 00.

Remark 1.1. If M is a convex function and M (0) = 0, then M (Az) < AM(zx) for
all A with 0 <\ < 1.
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Let X be a complex linear space with zero element 6 and (X, ¢) be a seminormed
space with the seminorm ¢. By S(X) we denote the linear space of all sequences
x = (z1) with (zx) € X and the usual coordinatewise operations:

axr = (axg) and =+ y = (T + yi)

for each v € C where C denotes the set of all complex numbers. If A = (\g) is a
scalar sequence and = € S(X) then we shall write Az = (A\gx). Let U be the set
of all sequences u = (uy) such that ux # 0 and complex for all £ = 1,2,.... Let
p = (pr) be a sequence of positive real numbers and M be an Orlicz function. Given
u € U. Let s > 0. Then we define the sequence space

Uk:mk

; ——)]Pk < o0, for some p > 0}.

EM(uapaq’ )—{ﬂfes Zk S
k=1

The following inequality and p = (px) sequence will be used frequently throughout
this paper.
|ag + bg|"* < D{|ar[™* + [bk[* },

where ag, by € C, 0 < p, < supy, px = G, D = max(1,2%71)[4].
A sequence space F is said to be solid (or normal) if (agxr) € E whenever
(x) € E for all sequences (ay) of scalars with |ay| < 1.

2. MAIN RESULTS

Theorem 2.1. The sequence space {yr(u,p,q,s) is a linear space over the field
C' complex numbers.
Proof. Let x,y € {p(u,p,q,s) and o, 5 € C. Then there exist some positive numbers
p1 and py such that

>k IM(g(EE)IP < o0
1 P1

and

Zk “’fy’“))] < cc.

P2
Define p; = max(2|a|py,2|5|py). Since M is non-decreasing and convex, and since

q is a seminorm, we have

i = k(awg + ﬁyk i (q(EUkThy | q(ﬁuwk)]pk

1 P3 P3 P3
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= 1 Uk Tk URYk /
<3 gk M) + Mol ") )
< SR (a(E2)) + b (g2

—1 P1 P2

< DY kMR P+ DS ko[ (g
k=1

P1 —1 P2
< 0.

This proves that £/ (u, p, q, s) is a linear space.
Theorem 2.2. The space {pr(u,p,q,s) is paranormed ( not necessarily totaly para-
normed ) with

o0

gulw) = inf{p/ T R M EENP)YT <1 n=1,2,3,)
k=1

where H = max(1, supy, pg)-

Proof. Clearly g,(x) = gu(—x). The subadditivity of g, follows from (1’), on taking
o =1and # = 1. Since ¢(f) = 0 and M(0) = 0, we get inf{pP/H} =0 for 2 = 6.
Finally, we prove that the scalar multiplication is continuous. Let A be any number.
By definition,

)\uk:ck

ST S =125,

gu(Az) = inf{p"/ - (Y k(M
k=1

Then

ETh ey <1, n=1,2,3,...}
;

gu(Az) = inf{(Ar)P /52 (> 7k (M (g(
k=1
<

where 7 = p/A. Since |A|Pk ax(1, |N), then [A[P*/H < (max(1, |N)VH.

Hence

ukxk

gu(Ax) < (max(L, A inf () /s (3R MDY <1, n=1,2.3,..)
k=1

and therefore g, (Az) converges to zero when g, (x) converges to zero in €/ (u, p, g, s).
Now suppose that A\, — 0 and x is in ¢j;(u, p,q, s). For arbitrary € > 0, let N be a
positive integer such that

S kMG < (S

k=N+1 p
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for some p > 0. This implies that
(3 KM <
p 2
k=N+1
Let 0 < |A| < 1, then using Remark 1.1 we get
)\uk:z:k ukxk 9
> < > KA < Gy
k=N+1 p k=N+1 P

Since M is continuous everywhere in [0, 00), then

ft) = ZN: s [M(q(tukxk))]pk

k=1 P

is continuous at 0. So there is 1 > § > 0 such that |f(t)| < § for 0 <t < 6. Let K
be such that |\,| < § for n > K, then for n > K we have

al A
(O K (M (g(ZEEE P <
k=1 P 2

Since 0 < € < 1 we have

(E k*S[M(q(M))]pk)l/H <1, for n>K.
p
k=1

If we take limit on inf{pP"/} we get g,(A\z) — 0.
3. SOME PARTICULAR CASES

We get the following sequence spaces from fj/(u,p,q,s) on giving particular
values to p and s. Taking pr = 1 for all £k € N, we have

o0
la(u,q,s) ={z e S(X Zk il ukxk))] < 00,8 > 0, for some p > 0}.
p
k=1
If we take s = 0, then we have
> u T
Car(u,p,yq) ={x € S(X Z —kZk ))JP¥ < o0, for some p > 0}.

k=1
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If we take pi, = 1 for all k € N and s = 0, then we have

Uy(u,q) ={z e S(X): [M(q(?))] < 00, for some p > 0}.

e
Il
—

If we take s =0, ¢(x) = |z| and X = C, then we have

Crr(u,p) ={z € S(X): z:[M(|ukpmk‘)]5’”c < 00, for some p > 0}.
k=1

In addition to the above sequence spaces, we write 7 (u, p, q, s) = ar(p) due to
Parashar and Choudhary [5], on taking ux = 1 for all k € N, s =0, ¢(z) = |z| and
X =C. If we take ux, =1 for all k € N, we have €ps(u,p,q,s) = lr(p,q,s) [1].
Theorem 3.1. (i) Let 0 < py < t < oo for each k € N. Then Cy(u,p,q) C
KM (ua t Q) :

(11) 5% (ua Q) - EM(“? q, S)'

(111) gM(“?Z)’ Q) - EM(u,p, q, S)‘

Proof. (i) Let = € £p;(u,p, q). Then there exists some p > 0 such that

PPLUCE VLRSS
k=1

This implies that M (q(%)) < 1 for sufficiently large values of i, say i > kg for
some fixed ky € N.
Since M is non-decreasing, we get

Z[M@(“ij»rk < o0,

k=1
DM@ < 3 IM () < oo
k>ko k>ko

Hence x € lp/(u,t,q).
The proof of (ii) and (iii) is trivial.
Theorem 3.2. Let 0 < py <ty < oo for each k. Then lpr(u,p) C Las(u,t).
Proof. Proof can be proved by the same way as Theorem 3.1(i).
Theorem 3.3. (i) If 0 < px <1 for all k € N, then {yr(u,p,q) C lyr(u,q).
(i) If pr > 1 for all k € N, then fpr(u,q) C lpr(u,p,q).
Proof. (i) If we take t; = 1 for all k € N, in Theorem 3.1(i), then ¢ps(u,p,q) C
O (u, q).
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(ii) If we take p = 1 for all k¥ € N, in Theorem 3.1(i), then £p(u,q) C
Cyr(u,p, q).
Proposition 3.4 For any two sequences p = (px) and t = (tx) of positive real num-
bers and any two seminorms q1 and qa we have Ly(u,p,q1,7) N La(u,t, g, s) # 0
for r,s > 0.
Proof. Since the zero element belongs to ¢y/(u, p,q1,7) and ¢pr(u,t, g2, s), thus the
intersection is nonempty.
Theorem 3.5. The sequence space €pr(u,p,q,s) is solid.
Proof. Let (zy) € lp(u,p,q,s), ie,

DKM (g < oo
k=1

Let (ag) be sequence of scalars such that |ax| < 1 for all k£ € N. Then we have

S kM (g( PR e < N7 RS (0 (g (P )P < e
k=1 p k=1 p

Hence (agzk) € £p(u,p,q,s) for all sequences of scalars (o) with |ag| < 1 for all
k € N, whenever (zy) € €p(u,p,q,s).
Therefore the space £jr(u, p, g, s) is a solid sequence space.
Corollary 3.6. (i) Let |ug| <1 for all k € N. Then ly(p,q,s) C ly(u,p,q,s).
(ii) Let |ug| > 1 for all k € N. Then Lyr(u,p,q,s) C lay(p,q,s).
Proof. Proof is trivial.
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