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ABOUT NATURAL SPLINE FUNCTIONS OF INTERPOLATION
AND THEIR APPLICATIONS

N. DAILI

Abstract. Spline functions have proved to be very useful in numerical analysis,
in numerical treatment of differential, integral and partial differential equations, in
statistics, and have founded applications in science, engineering, economics, biology,
medecine, etc. The aim of this paper is to prove a sequence of theorems and results
on spline functions of interpolation and their applications.

2000 Mathematics Subject Classification: Primary 41A15, 41A05; Secondary
41A10.

1. Historic Introduction

Historically, the term "spline function" was used for the first time by I.J. Schoen-
berg ([3], 1946) to indicate a function formed by fragments of polynomials which link
as well as some of their derivatives with junction points.
We obtain in particular functions of this type when we minimize the functional

b∫
a
(f (q)(s))2ds

on the set of all the functions which verify conditions of interpolation of the type

f (j)(si) = yij

In broad outline, we can divide into two periods the researches made in the field
of the spline functions.
Before 1964, articles are especially dedicated to the properties of the functions formed
by pieces of polynomials.
After 1964 (functional approaches on Hilbert space), numerous authors tried hard
to generalize these notions by using the functional analysis. Taking place generally
in Hilbert spaces, they considered problems of minimization similar to those who
intervene in the elementary theory of spline functions, still giving the name of spline
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to their solutions. This tactics showed itself extremely fruitful and increased con-
siderably the number of the examples and the applications.
It is necessary to distinguish an important exception for our classification in two
periods.
In 1958, M. Golom and H. Weinberger, by studying the optimal estimate of linear
continuous functional spaces, were brought to introduce the notion of spline function
in an Hilbert space "without giving her however this name and without establishing
explicitly all the connections with the properties known for spline functions as pieces
of polynomials".
The importance of this fundamental article was underestimated for a long time.
The first appearance, for the spline functions of adjustment, is owing to M. Atteia
([1], 1965).
A decisive stage was the discovery by I.J. Schoenberg ([5], 1964) relations between
the spline functions and the best formulae of estimate in the sense of Sard.
This relation was generalized at once by M. Atteia ([1], 1965) in the case of Hilbert
spaces. Let us note however that these relations were already implicitly contained,
under a slightly different form, in M. Golomb and H. Weinberger’s article ([2], 1958).
Since 1967-1968 and 1968-2009 an impressive number of mathematicians was inter-
ested in the theory and in the applications of the spline functions.

2.Main Results

2.1 Problem
Let I = [a, b] be a given finite interval of the real line R.We define a partition Πn of
I by:

Πn : a < x1 < x2 < ... < xN < b

Let assume that f is defined on I. Let us given N ditinct abscissas xi on the interval
I, with

a < x1 < x2 < ... < xN < b

Being given N real numbers yi (who can be the ordinates in xi of a certain function
f ,(f(xi) = yi), we propose to find a function s(x) such that

s(xi) = yi

and which is formed by polynomials by fragments linking, as well as some of their
derivatives in knots xi.
2.2. Natural Spline Functions

234



N.Daili - About natural spline functions of interpolation and their applications

Definition 2.1 Let a < x1 < x2 < ... < xN < b and k is an integer such that 1≤ k
≤ N . We call natural spline function of degree (2k−1) a function s : [a, b] → R such
that:

(a) s is reduced to a polynomial of degree ≤ (k − 1) on [a,x1] and on [xN ,b];
(b) on every interval [xi,xi+1], 1≤ i ≤ N − 1, s is reduced to a polynomial of

degree ≤ (2k − 1);
(c) in every knot xi, the defining polynomials s link continuously until their

derivatives (2k − 1) included (hence s ∈ C2k−2([a, b])).
Proposition 2.1 Denote by Fk the set of the functions belonging to C2k−2([a, b]).

1) Let s be a function of Fk and f be a function of Ck([a, b]) such that

f(xi) = s(xi) for i = 1, ..., N .

Then
b∫
a
(s(k)(x)(s(k)(x)− f (k)(x)))dx = 0.

2) Let s be a spline function of Definition 2.1 (that is verifying (a)-(c)). Then for all
f ∈ Ck([a, b]) verifying

f(xi) = yi for i = 1, ..., N, f � s.

one has
b∫
a
(s(k)(x))2dx <

b∫
a
(f (k)(x))2dx.

Proof. Indeed,

1) put r = f − s.

To calculate,
b∫
a
(s(k)(x)r(k)(x))dx, we integrate (k − 1) time by parts what gives

(check by recurrence) :

b∫
a

(s(k)(x)r(k)(x))dx = (

k−2∑
j=0

(−1)j(r(k−j−1)(x)sk+j(x))|ba + (−1)(k−1)

b∫
a

(r′(x)s(2k−1)(x))dx

But

s(k+j)(a) = s(k+j)(b) = 0 for j = 0, ..., k − 2

because s is a polynomial of degree (k − 1) in [a,x1] and [xN ,b]. Furthermore,
s(2k−1)(x) is a constant ci in [xi, xi+1] and it is zero in [a,x1] and [xN ,b], hence
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b∫
a
(r′(x)s(2k−1)(x))dx =

N−1∑
i=1

ci

xi+1∫
xi

r′(x)dx = 0

because r(xi) = 0 for i = 1, ..., N . 2) It is enough to apply 1). We have

b∫
a
(f (k)(x))2dx−

b∫
a
(s(k)(x))2dx =

b∫
a
(f (k)(x))2dx− 2

b∫
a

f (k)(x)s(k)(x)dx +
b∫
a

s(k)(x)dx

=
b∫
a
(f (k)(x)− s(k)(x))2dx ≥ 0

Furthermore this quantity is not zero that if the integrated function, which is con-
tinuous and positive, is zero in any point; thus if

f (k)(x) = s(k)(x),∀x ∈ [a, b]

or still, there is a polynomial pk−1 of degree (k − 1) such that

f(x) = s(x) + pk−1(x),∀x ∈ [a, b].

But we should to have pk−1(xi) = 0 for i = 1, ..., N which implies that pk−1 = 0
because N ≥ k. Definiton 2.2 If e is a real arithmetical expression, we have

em
+ =

{
em if e ≥ 0
0 else

Lemma 2.2 The following two properties are equivalent :
(p1): s is a natural spline function of degree (2k − 1);
(p2): one has

(2.1)


s(x) = pk−1(x) +

n∑
i=1

λi(x− xi)2k−1
+

and with λi ∈ R
N∑

i=1
λix

r
i = 0 for 0 ≤ r ≤ k − 1

where pk−1 is a polynomial of degree ≤ (k − 1).
Proof. We have
(p1) ⇒ (p2): for x ∈ [a, x1] it is necessary that

s(x) = pk−1(x).

Let x ∈ [x1,x2[, since s ∈ C2k−2([a, b]), it is necessary that in the neighborhood of
x1 we have
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s(x) ' λ1(x− x1)2k−1

Consider the expression

s(x) = pk−1(x) + λ1(x− x1)2k−1
+ for x ∈ [a, x2[,

then
s(x) = pk−1(x) for x ∈ [a, x1]

s(x) = pk−1(x) + λ1(x− x1)2k−1,

polynomial of degree (2k − 1), for x ∈ [x1, x2[, and

s(i)(x) = p
(i)
k−1(x) + λ1(2k − 1)(2k − 2)...(2k − i)(x− x1)2k−1−i for x ∈ [x1,x2[;

the derivatives link well at x1, the (k − 1) first ones are

p′(x1), p′′(x1), ..., p(k−1)(x1)

and others 0. More generally, for x ∈]xj , xj+1[, we consider the expression

s(x) = pk−1(x) +
j∑

i=1
λi(x− xi)2k−1

+ .

We envisage three cases:
• if x ≤ xj , then

s(x) = pk−1(x) +
j−1∑
i=1

λi(x− xi)2k−1

and

s(α)(x) = p
(α)
k−1(x) + (2k − 1)(2k − 2)...(2k − α)

j−1∑
i=1

λi(x− xi)2k−1−α;

• if x ≥ xj , then

s(x) = pk−1(x) +
j∑

i=1
λi(x− xi)2k−1

and

s(α)(x) = p
(α)
k−1(x) + (2k − 1)(2k − 2)...(2k − α)λj(x− xj)2k−1−α;
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• for x
.= xj , then there is equality of the derivatives so much that α ≤ (2k− 2).

For α = 2k − 1, they differ by (2k − 1)!λj ;
• to finish, let x ∈ [xn, b], by what precedes :

s(x) = pk−1(x) +
N∑

i=1
λi(x− xi)2k−1

has to be reduced to a polynomial of degree ≤ (k − 1), it will be the case if, and
only if, s(k)(x) ≡ 0, but

s(k)(x) = (2k − 1)(2k − 2)...(k)
N∑

i=1
λi(x− xi)k−1;

it is necessary and it is enough that
N∑

i=1
λi

k−1∑
r=0

(−1)rCr
k−1x

k−r−1xr
i = 0, ∀x ∈ [xN , b] ⇔

N∑
i=1

λix
r
i = 0, 0 ≤ r ≤ k − 1.

(p2) ⇒ (p1) : It is clear that the function s defined by (2.1) verifies the three
conditions of a Definition 2.1.

Remark 2.1 The derivative

s(2k−2)(x) = (2k − 1)!
N∑

i=1
λi(x− xi)+

is a polygonal line, not derivable. The distribution derivative s(2k−1) is a function in
staircase, the jumps of which are proportional in λi.

2.3. Natural Spline Functions of Interpolation
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Lemma 2.3 Let us given N numbers yi, there exists a natural spline function of
order (2k − 1), unique if k ≤ N , such that

s(xi) = yi, 1 ≤ i ≤ N .

Proof. we can see [1].
Remark 2.2 There is to determine k coefficients a0, a1, ..., ak−1 of pk−1 and the
N coefficients λi, but now we have (N + k) conditions leading to (N + k) linear
equations, they are :

(2.2)


s(xi) = yi, 1 ≤ i ≤ N,

∀x ∈]xN , b], s(p) = 0, p = k, k + 1, ..., 2k − 1.

The proof consists in verifying that the linear system described below is Crame-
rian

(2.1) ⇔


yi =

k−1∑
p=0

apx
p
i +

i−1∑
p=1

λp(xi − xp)2k−1, 1 ≤ i ≤ N,

N∑
i=1

λix
r
i = 0, 0 ≤ r ≤ k − 1.

Or explicitly (see below)


1 x1 x2
1 . xk−1

1 0 0 0 0 0

1 x2 x2
2 . xk−1

2 (x2 − x1)2k−1 0 0 0 0

. . . . . (x3 − x1)2k−1 (x3 − x2)2k−1 0 0 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

1 xN x2
N . xk−1

N
(xN − x1)2k−1 (xN − x2)2k−1 (xN − x3)2k−1 . (xN − xN−1)2k−1

0 0 0 0 0 1 1 1 . 1
0 0 0 0 0 x1 x2 x3 . xN
0 0 0 0 0 . . . . .
0 0 0 0 0 . . . . .

0 0 0 0 0 xk−1
1 xk−1

2 xk−1
3 . xk−1

N


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

a0

a1

.
ak−1

λ1

.
0
.
.
.
.

λn



=



y0

y1

.

.

.

.
yN

0
0
0
0
0


Such a system, if it allows to resolve in theory the problem, is often very badly con-
ditioned in fact (xi 6= xi+1 for example) where from the necessity of finding different
methods for the calculation of the coefficients.

Theorem 2.4 (fundamental property) Among all the functions u ∈ Ck−1([a, b]),
such that 

Ik(u) =
b∫
a
(u(k)(x))2dx < +∞

and
u(xi) = yi, 1 ≤ i ≤ N.

the natural spline function s of interpolation of degree (2k − 1) is the one which
minimizes Ik(u).
Reciprocally, if v is a function such that

v(xi) = yi, 1 ≤ i ≤ N
and

Ik(v) ≤ Ik(u) ∀u,

then v = s (k ≤ N).
Proof. To prove this theorem see ([1]).

In other words, the spline function of interpolation is characterized by a property
of minimization which is essential when we generalize the problem.
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2.4. Generalized Problem

Let X and Y be two Hilbert spaces. Let T : X → Y be a linear continuous
mapping from X into Y .

Let A : X → RN be a linear continuous mapping from X into RN . N(T ) and
N(A) are Kernels of the mappings T and A.

Theorem 2.5 (Atteia) Let us given N reals yi, 1 ≤ i ≤ N , let Y be a correspond-
ing vector of RN and

TY := {x ∈ X : A(x) = Y }.

if N(T ) is of finite dimension and if N(T )
⋂

N(A) = {0}, then there exists an
unique s in TY which minimizes ‖Tx‖Y . Moreover

‖Ts‖Y ≤ ‖Tx‖Y ,∀x ∈ TY .

The problem which we treat is a particular case. Indeed ; take

X = Hk([a, b]) := {u ∈ Ck−1([a, b]) : ‖u‖2
X =

k∑
i=1

b∫
a
(u(i)(x))2dx < +∞}

Y = H0([a, b]) = L2([a, b]) := {u : [a, b] → R; ‖u‖2
Y =

b∫
a

u2(x)dx < +∞}

T = Dk, the kth derivative operator ;

A(u) =


u(x1)

.

.

.
u(xN )


with

a < x1 < x2 < ... < xN < b.

We are then brought to look for a function u such that u(xi) = yi, 1 ≤ i ≤ N and

b∫
a

(uk(x))2dx

is minimum. Since N(T ) = Pk−1 is a finite dimension k and
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N(T )
⋂

N(A) = { polynomials of degree (k − 1) that nullify N time }
= {0}, N ≥ k,

we have the existence and uniqueness of a solution (that we know besides how to be
the spline function s defined previously).
2.5. Projection Method for Building s(x)

We have, to define s, conditions at once in X : s(xi) = yi and in Y : ‖Ts‖Y

minimum.
The method consists in throwing the first conditions in Y (namely s(k)) by means

of Peano’s theorem a simplified version of which we give :
Theorem 2.6 (Peano) Let L : C([a, b]) → R be a continuous linear application, that
we can take, to simplify, of the form

L(f)(x) =
p∑

j=1
bjf(xj), xj ∈ [a, b]

and which has for kernel N(L) = Pm, the set of polynomials of degree ≤ m, then for
all f such that f (m+1) ∈ L2(]a, b[):

L(f)(y) = ( 1
m!)

b∫
a

Ly[(y − x)m
+ ]f (m+1)(x)dx.

Proof. Write Taylor’s formula with remainder integral and apply L to both members.
Let us consider in particular divided differences functional of order k on points
xi, xi+1, ..., xi+k.
This functional is zero on Pk−1, then for u ∈ Ck−1([a, b]), u(k) ∈ L2([a, b]), one has

Lu = [u(xi), u(xi+1), ...u(xi+k)]
with 1 ≤ i ≤ N − k

= 1
(k−1)!

b∫
a
[(xi − x)k−1

+ ...(xi+k − x)k−1
+ ]u(k)(x)dx

because we work on abscissas x1, x2, ..., xN . Let us remind that

[u(xi), u(xi+1), ...u(xi+k)] =
k∑

j=0

u(xi+j)
w′

i(xi+j)

where

wi(x) =
∏k

j=0(x− xi+j) and wi(x1) =
∏i+k

j=i,j 6=1(x1 − xj).
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This formula is convenient for the reasoning, but for the effective calculation, we
shall use the algorithm of calculation of the divide differences by recurrence. •Put

(2.3) ϕi(x) = 1
(k−1)! [(xi − x)k−1

+ ...(xi+k − x)k−1
+ ] = 1

(k−1)!

k∑
j=0

(xi+j−x)k−1
+

w′
i(xi+j)

.

We have the following properties of functions ϕi(x).
Proposition 2.7 ϕi(x) is > 0 on ]xi, xi+k[ and has [xi, xi+k] for support.
Proof. Indeed,

• for x ≤ xi, we can remove all the signs + in the expression (2.3), but then ϕi(x)
expresses himself as divided difference of order k of a polynomial of degree (k − 1),
which is zero;
• for x > xi+k, all the terms (x− xj)k−1

+ are zero by definition. On the other hand,
as

ϕi(xi) = ϕi(xi+k) = 0,

by Rolle’s theorem :

ϕ
′
i nullifies at least 1 time on ]xi, xi+k[ ;

ϕ
′′
i nullifies at least 2 time on ]xi, xi+k[ ;

ϕ
(k−2)
i nullifies at least (k − 2) time on ]xi, xi+k[ .

But

ϕ
(k−2)
i (x) = (−1)k−2

i+k∑
j=i

(xj − x)+
w

′
i(xj)

nullifies exactly (k − 2) time on ]xi, xi+k[.
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Thus in fact ϕ
′
i nullifies exactly 1 time on ]xi, xi+k[. On the other hand, for

x ∈ [xi+k−1, xi+k[, one has

ϕi(x) =
1

(k − 1)!
(xi+k − x)k−1

+

w
′
i(xi+k)

> 0

because

w
′
i(xi+k) =

i+k∏
j=i, j 6=i+k

(xi+k − xj) > 0

therefore
ϕi(x) > 0 on ]xi, xi+k[ .

Proposition 2.8 ϕi(x), 1 ≤ i ≤ N − k, are Linearly independents.
Proof. Indeed, let

N−k∑
i=1

αi ϕi(x) = 0 ∀x,

then

• for x ∈ [x1, x2[ we have α1 ϕ1(x) = 0 ∀x, but

ϕ1(x) > 0 =⇒ α1 = 0 ;

• for x ∈ [x2, x3[ we have α1 ϕ1(x) + α2 ϕ2(x) = 0 ∀x, but

ϕ2(x) > 0 =⇒ α2 = 0

... etc
α1 = α2 = ... = αN−k = 0.

It holds the following theorem :

Theorem 2.9 If f ∈ C([a, b]) is a function such that

f(xi) = yi 1 ≤ i ≤ N ,

the spline function s of interpolation of f at points (xi, fi) is such that

xi+k∫
xi

ϕi(x) s(k)(x)dx = zi, 1 ≤ i ≤ (N − k)
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where
zi = [f(xi), ..., f(xi+k)] = [s(xi), ..., s(xi+k)] .

Proof. Apply the Theorem 2.6 and properties of ϕi.
Then, we have back all the conditions in Y = H0([a, b]) = L2([a, b]). We look

for an element v∗ =
{
s(k)

}
∈ Y such that :

1) one has

(ϕi, v∗)Y =

xi+h∫
xi

ϕi(x) v∗(x) dx = zi, 1 ≤ i ≤ (N − k) ;

2) and ‖v∗‖Y is minimum.
To resolve this problem, we have the following theorem :

Theorem 2.10 Let Y be a Hilbert space, ϕi 1 ≤ i ≤ m, m linearly independent
elements of Y engendering the linear subspace W of dimension m. Let

∆z = {v ∈ Y : (ϕi, v)Y = zi, 1 ≤ i ≤ m} .

Then element v∗ ∈ ∆z (which is of a minimum norm) belongs to W .
Proof. Indeed, let

W⊥ = {v ∈ Y : ∀w ∈ W, (v, w)Y = 0} = {v ∈ Y : ∀i = 1, ...,m, (v, ϕi)Y = 0}

it is the orthogonal complementary of W in Y . But ∆z is a translation of W⊥,
namely, ∃ρ ∈ ∆z such that

∆z = ρ + W⊥

and any element v of ∆z can be written v = ρ + λ with λ ∈ W⊥.

245



N.Daili - About natural spline functions of interpolation and their applications

The element v∗ ∈ ∆z which is of a minimum norm, it is the one whose distance
to O is minimum. It is the unique orthogonal projection of O on ∆z, then

v∗ ⊥ W⊥ =⇒ v∗ ∈ W =⇒ ∃ci ∈ R ; v∗ =
m∑

i=1

ciϕi

2.6. Some Applications

We have as applications :

Proposition 2.11 For Y = L2([a, b]), m = N − k, ϕi defined by (2.3), it holds
that

(2.4)

s(h)(x) =
N−k∑
j=1

cj ϕj(x)

and by Theorem 2.9, the coefficients cj are solutions of linear system :

(2.5)
N−k∑
j=1

cj

b∫
a

ϕi(x) ϕj(x) dx = zi, 1 ≤ i ≤ N − k.
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To obtain s(x) it will be enough to integrate k time s(k) but previously, it is necessary
to calculate explicitly the integral (2.5), namely (ϕi, ϕj)Y .

• Calculus of (ϕi, ϕj)Y :

Let us notice at first that

em
+ = em + (−1)m+1(−e)m

+

because for e < 0, one has

(−1)m |e|m + (−1)m+1 |e|m = 0,

then

ϕi(x) =
1

(k − 1)!

i+k∑
p=i

(xp − x)k−1
+

w
′
i(xp)

and

ϕj(x) =
1

(k − 1)!

j+k∑
r=j

(x− xr)k−1

w
′
j(xr)

=
(−1)k

(k − 1)!

j+k∑
r=j

(x− xr)k−1
+

w
′
j(xr)

,

because
(y − x)k−1

+ = (y − x)k−1 + (−1)k(x− y)k−1
+

and the first term gives 0. Therefore

(ϕi, ϕj)Y =
(−1)k

((k − 1)!)2

i+k∑
p=i

j+k∑
r=j

1
w

′
i(xp) w

′
j(xr)

b∫
a

(xp − x)k−1
+ (x− xr)k−1

+ dx

By definition of em
+ , we have :

I =

b∫
a

(xp − x)k−1
+ (x− xr)k−1

+ dx =


xp∫
xr

(xp − x)k−1(x− xr)k−1dx if r < p,

0 else.

� 0 6= 0 � 0
xr xp

0 � 0 � 0
xp xr

Fig.5.

For the case r < p,
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• Let us calculate first time by parts :

u = (xp − x)k−1 =⇒ du = −(k − 1)(xp − x)k−2dx

dv = (x− xr)k−1dx =⇒ v = 1
k (x− xr)k.

I = uv|xp
xr︸ ︷︷ ︸

=0

+ k−1
k

xp∫
xr

(x− xp )k−2(x− xr)kdx = k−1
k

xp∫
xr

(x− xp )k−2(x− xr)kdx ;

• second time by parts :

I =
(k − 1)(k − 2)

k(k + 1)

xp∫
xr

(xp − x )k−3(x− xr)k+1dx ;

• later (k − 1) integrations by parts :

I =
(k − 1)!

k(k + 1)...(2k − 2)

xp∫
xr

(x− xr)2k−2dx,

and finally

I =


((k − 1)!)2

(2k − 1)! (xp − xr)2k−1 if p > r,

0 else,

then

(ϕi, ϕj)Y =
(−1)k

(2k − 1)!

i+k∑
p=i

1
w

′
i(xp)

j+k∑
r=j

(xp − xr)2k−1
+

w
′
j(xr)

.

If we put
hj(y) =

[
(y − xj)2k−1

+ , ..., (y − xj+k)2k−1
+

]
,

we deduce that

(2.6)

(ϕi, ϕj)Y =
(−1)k

(2k − 1)!
[hj(xi), ..., hj(xi+k)] .
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Remark 2.3 (concerning the system (2.5)) Because of the supports of ϕi and ϕj ,
one has

(ϕi, ϕj)Y = 0 if |j − i| ≥ k.

The matrix is symmetric, (2k − 1) diagonal, regular and generally very well condi-
tioned.

• Calculus of s(x) :

We had by the formula (2.4)

s(k)(x) =
N−k∑
j=1

Cjϕj(x).

If we put

C∗
j =

(−1)k

(2k − 1)!
Cj ,

the C∗
j are given by the formula (2.5) as a solution of system

N−k∑
j=1

C∗
j [hj(xi), ..., hj(xi+k)] = zi, 1 ≤ i ≤ N − k.

Besides, we saw that

ϕj(x) =
(−1)k

(k − 1)!

j+k∑
r=j

(x− xr)k−1
+

w
′
j(xr)

,

then, we can write

s(k)(x) =
(2k − 1)!
(k − 1)!

N−k∑
j=1

C∗
j

j+k∑
r=j

(x− xr)k−1
+

w
′
j(xr)

.

The kth primitive of s(k) is in the form

s(x) = Pk−1(x) +
(2k − 1)!
(k − 1)!

1
k(k + 1)...(2k − 1)

N−k∑
j=1

C∗
j

j+k∑
r=j

(x− xr)2k−1
+

w
′
j(xr)

,

or still, by definition of hj :
(2.7)

s(x) = Pk−1(x) +
N−k∑
j=1

C∗
j hj(x).
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To determine the coefficients a0, a1, ..., ak−1 of Pk−1 (which are for the moment
the arbitrary constants of integration), it is enough to write that :

s(xi) = yi for k values of i taken in {1, 2, ..., N} .

For example, the k first ones, we have then the system :

(2.8)
k−1∑
j=0

(aj(xi))j = yi −
N−k∑
j=1

C∗
j hj(xi), 1 ≤ i ≤ k.

To show the sufficiency of the expression (2.7) to resolve the initial problem it is
enough to verify that then we have

s(xi) = yi for i = k + 1, ..., N .

Indeed, one has

b∫
a

ϕi(x) s(k)(x) dx = zi = [s(xi), ..., s(xi+k)] = [f(xi), ..., f(xi+k)] , 1 ≤ i ≤ N − k

and we suppose that
s(xi) = yi for 1 ≤ i ≤ k.

Then,

• for i = 1,
k+1∑
j=1

s(xj)
w

′
1(xj)

=
k+1∑
j=1

yj

w
′
1(xj)

=⇒ s(xi+1) = yi+1

... etc ;

• for i = N − k,

N∑
j=N−k

s(xj)
w

′
N−k(xj)

=
N∑

j=N−k

yj

w
′
N−k(xj)

=⇒ s(xN ) = yN .

Remark 2.4: a) For k = 1, the function s(x) is the joining broken line of (xi, yi) with
s(x) = y1 on [a, x1]
and
s(x) = yN on [xN , b] .
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b) The value k = 2 is most used (min
b∫
a
(s

′′
(x))2 dx corresponds to a minimization of

energy), the spline is then formed by polynomials of the 3rd degree linking with the
order 2 (cubic splines), and of the 1st degree in the extremities.
c) If N = k, s(x) is reduced to the polynomial of interpolation ΠN−1(x) on points
(xi, yi), then we have

b∫
a

(Π(k)
N−1(x))2 dx = 0.

d) If k > N, s(x) is not defined any more in a unique way :

s(x) = ΠN−1(x) + polynomial of degree (2k − 1),

where polynomial of degree (2k − 1) is zero in xi.
e) It is evident, by decomposing

N−k∑
j=1

C∗
j

j+k∑
r=j

(x− xr)2k−1
+

w
′
j(xr)

that s(x) is a natural spline function of degree (2k − 1).
Theorem 2.12 (numerical calculus of spline functions of order 2) According to
Definition 2.1, the looked function is a polynomial of degree 3 on every interval
[xn−1, xn] , n = 2, ..., N . Let us note pn this polynomial and take as unknowns
the values mn of p

′′
n in xn and mn−1 of p

′′
n in xn−1. One hase

p
′′
n(x) = mn

xn−1 − x

−hn
+ mn−1

xn − x

hn
with hn = xn − xn−1.

Then we have

1)
pn(x) = mn

(xn−1−x)3

−6hn
+ mn−1

(xn−x)3

6hn

+x−xn−1

hn
(yn −mn

h2
n
6 ) + xn−x

hn
(yn−1 −mn−1

h2
n
6 ).

2) By writing the conditions of connecting of the first derivatives in points xn, n =
1, ..., N, then the numbers mn, n = 2, ..., N − 1 are the solutions of the linear sys-
tem AM = k, where A is a tridiagonal symmetric matrix. It has the property of
strictly diagonally dominant matrix :

α) diagonal terms aii are positive ;
β) one has

|aii| =
hi + hi+1

3
>

N−1∑
j 6=i, j=2

|aij | =
hi + hi+1

6
.
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It is thus invertible.
Proof. Indeed,

1) one has

(2.9)

p
′′
n(x) = mn

xn−1 − x

−hn
+ mn−1

xn − x

hn

and hn = xn − xn−1. Namely

p
′′
n(x) =

mn

hn
x− mn

hn
xn−1 −

mn−1

hn
x + mn−1

xn

hn

By integration of (2.9) once, then

(2.10)
p
′
n(x) =

mn

2hn
x2 −mn

xn−1

hn
x− mn−1

2hn
x2 + mn−1

xn

hn
x + c

By integration of (2.10) one, then

pn(x) =
mn

6hn
x3 −mn

xn−1

2hn
x2 − mn−1

6hn
x3 + mn−1

xn

2hn
x2 + cx + d.

Or
(a− b)3 = a3 − 2a2b + 2ab2 − b3

namely
(xn−1 − x)3 = x3

n−1 − 2x2
n−1x + 2xn−1x

2 − x3.

Hence

pn(x) = mn
(xn−1 − x)3

−6hn
+ mn−1

(xn − x)3

6hn
+ Cn(xn−1 − x) + Dn(xn − x),

and
p
′
n(x) = mn

(xn−1−x)2

2hn
−mn−1

(xn−x)2

2hn
− Cn −Dn,

p
′′
n(x) = mn

(xn−1−x)
−hn

+ mn−1
(xn−x)

hn
.

By integrating twice this relation, we obtain

pn(x) = mn
(xn−1 − x)3

−6hn
+ mn−1

(xn − x)3

6hn
+ Cn(xn−1 − x) + Dn(xn − x).

Determine Cn and Dn. If we put x = xn, then

pn(xn) = mn
(xn−1 − xn)3

−6hn
+ mn−1

(xn − xn)3

6hn
+ Cn(xn−1 − xn) + Dn(xn − xn),
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therefore

xn = mn
h2

n

6
− Cnhn.

If we take x = xn−1, then

pn(xn−1) = mn
(xn−1−xn−1)3

−6hn
+ mn−1

(xn−xn−1)3

6hn
+ Cn(xn−1 − xn−1) + Dn(xn − xn−1),

= mn−1
(xn−xn−1)3

6hn
+ Dn(xn − xn−1)

therefore

yn−1 = mn−1
h2

n

6
+ Dnhn ; Cn =

1
hn

(mn
h2

n

6
− yn) ; Dn =

1
hn

(yn−1 −mn−1
h2

n

6
).

It holds that

pn(x) = mn
(xn−1−x)3

−6hn
+ mn−1

(xn−x)3

6hn
+ x−xn−1

hn
(yn − mn

6 h2
n)

+xn−x
hn

(yn−1 −mn−1
h2

n
6 ).

2) We notice that by construction the second derivatives link in xn, n = 1, ..., N .
We write then the conditions of connecting of the first derivatives in points xn, n =
1, ..., N : p

′
n(xn) = p

′
n+1(xn). We have

pn(x) = mn
(xn−1−x)3

−6hn
+ mn−1

(xn−x)3

6hn
+ x−xn−1

hn
(yn − mn

6 h2
n) + xn−x

hn
(yn−1 −mn−1

h2
n
6 ).

p
′
n(x) = mn

(xn−1−x)2

2hn
−mn−1

(xn−x)2

2hn
+ 1

hn
(yn −mn

h2
n
6 )− 1

hn
(yn−1 −mn−1

h2
n
6 ).

and

pn+1(x) = mn+1
(xn−x)3

−6hn+1
+ mn

(xn+1−x)3

6hn+1

+x−xn
hn+1

(yn+1 −mn+1
h2

n+1

6 ) + xn+1−x
hn+1

(yn −mn
h2

n+1

6 ).

p
′
n+1(x) = mn+1

(xn−x)2

2hn+1
−mn

(xn+1−x)2

2hn+1
+ 1

hn+1
(yn+1 −mn+1

h2
n+1

6 )− 1
hn+1

(yn −mn
h2

n+1

6 )

and

p
′
n(xn) = mn

(xn−1−xn)2

2hn
−mn−1

(xn−xn)2

2hn

+ 1
hn

(yn −mn
h2

n
6 )− 1

hn
(yn−1 −mn−1

h2
n
6 )

= mn
(xn−1−xn)2

2hn
+ 1

hn
(yn −mn

h2
n
6 )− 1

hn
(yn−1 −mn−1

h2
n
6 ).
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But
hn = xn − xn−1 ; hn+1 = xn+1 − xn,

hence

p
′
n(xn) = mn

hn
2 + 1

hn
(yn −mn

h2
n
6 )− 1

hn
(yn−1 −mn−1

h2
n
6 )

p
′
n+1(xn) = −mn

hn+1

2 + 1
hn+1

(yn+1 −mn+1
h2

n+1

6 )− 1
hn+1

(yn −mn
h2

n+1

6 ).

Now
p
′
n(xn) = p

′
n+1(xn), for n = 1, ..., N,

therefore

mn
hn
2 + yn

hn
−mn

hn
6 − yn−1

hn
+ mn−1

hn
6 = −mn

hn+1

2 + yn+1

hn+1
−mn+1

hn+1

6 − yn

hn+1
+ mn

hn+1

6

=⇒ mn−1
hn
6 + mn

hn+hn+1

3 + mn+1
hn+1

6 = yn+1−yn

hn+1
− yn−yn−1

hn
for n = 2, ..., N − 1.

By hypothesis, we have m1 = mN = 0.
Therefore the mn, n = 2, ...N − 1 are solutions of linear system AM = k, with

M = (m2, ..., mN−1)t, k = (k2, ..., kN−1)t

where
kn =

yn+1 − yn

hn+1
− yn − yn−1

hn
, n = 2, ..., N − 1

and

A =



h2+h3
3

h3
6 0 . . 0

h3
6

h3+h4
3

h4
6 0 . 0

0 . . . 0 .
. . . . . .

. . .
hN−2

6
hN−2+hN−1

3
hN−1

6

0 . . 0 hN−1

6
hN−1+hN

3


.

A matrix A is tridiagonal and symmetric. It has a property of strictly diagonally
dominant matrix, namely :

α) diagonal terms aii are positive ;

β) |aii| = hi+hi+1

3 >
N−1∑

j=2, j 6=i

|aij | = hi+hi+1

6 .

therefore it is invertible because A is a matrix with strict diagonal dominance
implies A invertible.

Indeed, else there existe x 6= 0 such that
∑
j 6=i

aijxj + aiixi = 0.
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Take i such that |xi| ≥ |xj | , ∀ j 6= i. Then

1 ≤
∑
j 6=i

|aij |
|aii|

|xj |
|xi|

≤
∑
j 6=i

|aij |
|aii|

< 1

contradiction.
Definition 2.3 We call cubic spline function all function f of class C2 on [a, b] such
that its restriction to each of intervals [xi−1, xi] is a polynomial of degree ≤ 3.

Theorem 2.13 Let f be a function of class C4 on [a, b]. Put

M = sup
a≤x≤b

∣∣∣f (4)(x)
∣∣∣ .

Then
|f(x)− s(x)| ≤ 7

8
Mh4,

where s is a cubic spline function such that

s(xi) = f(xi) for i = 0, ..., n ; s
′′
(a) = 0 ; s

′′
(b) = 0.

To prove this theorem, we need to the following results :
Lemma 2.14 Let f be a function defined on [a, b]. Put

xi = a + ih, h =
b− a

n
; x0 = a, xn = b.

Let s be a cubic spline function such that

s(xi) = f(xi) for i = 0, ..., n ; s
′′
(a) = 0 ; s

′′
(b) = 0.

Let x ∈ Rn−1. Put ‖x‖ = sup
i
|xi|. If Ax = y, where

A =


4 1 0 0 . . 0
1 4 1 0 . . 0
. . . . . . .
. . . . 1 4 1
0 . . . . 1 4

 ,

then
‖x‖ ≤ 1

2
‖y‖ and

∥∥A−1
∥∥ ≤ 1

2
.
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Proof. Let x ∈ Rn−1. Put ‖x‖ = sup
i
|xi|. If Ax = y, then ‖x‖ ≤ 1

2 ‖y‖ and
∥∥A−1

∥∥ ≤
1
2 , where

A =


4 1 0 0 . . 0
1 4 1 0 . . 0
. . . . . . .
. . . . 1 4 1
0 . . . . 1 4

?

Indeed, there exists j such that ‖x‖ = |xj | and

yj = xj−1 + 4xj + xj+1

|yj | ≥ 4 |xj | − |xj−1| − |xj+1| ≥ 2 |xj | = 2 ‖x‖

But ‖y‖ ≥ |yj |, hence ‖x‖ ≤ 1
2 ‖y‖, it holds that ‖A‖ ≤ 1

2 .
A is a tridiagonal and symmetric matrix. It has a strict diagonal dominant

therefore it is invertible. It holds that
∥∥A−1

∥∥ ≤ 1
2 .

Lemma 2.15 With the same notations of previous Lemma 2.14, let zi = s
′′
(xi).

Put

zi−1 + 4zi + zi+1 = 6
h2 ( f(xi−1)− 2f(xi) + f(xi+1)) = ui

Ri = f
′′
(xi−1) + 4f

′′
(xi) + f

′′
(xi+1)− 6

h2 (f(xi−1)− 2f(xi) + f(xi+1)) = wi − ui

Az = u, R = Aw − u.

Then we have
‖R‖ ≤ 3

2
M h2.

Proof. Indeed, let zi = s
′′
(xi) and

zi−1 + 4zi + zi+1 =
6
h2

( f(xi−1) + f(xi+1)− 2f(xi)) = ui.

Put

Ri = f
′′
(xi−1) + f

′′
(xi+1) + 4f

′′
(xi)−

6
h2

(f(xi−1) + f(xi+1)− 2f(xi)) = wi − ui

We have
Az = u, R = Aw − u =⇒ A(w − z) = R.
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Estimate Ri by means of Taylor’s formula :

f(a + h) = f(a) + hf
′
(a) + h2

2! f
′′
(a) + ... + hn

n! f
(n)(a) + hn+1

(n+1)!f
(n+1)(c),

with c ∈ ]a, a + h[ , h > 0.

We have

f
′′
(xi+1) = f

′′
(xi + h) = f

′′
(xi) + hf (3)(xi) +

h2

2
f (4)(ξ1)

and

f
′′
(xi−1) = f

′′
(xi − h) = f

′′
(xi)− hf (3)(xi) +

h2

2
f (4)(ξ2).

Therefore

f
′′
(xi−1) + f

′′
(xi+1) + 4f

′′
(xi) = wi = 6f

′′
(xi) +

h2

2
(f (4)(ξ1) + f (4)(ξ2))

and

f(xi+1) = f(xi + h) = f(xi) + hf
′
(xi) + h2

2 f
′′
(xi) + h3

6 f (3)(xi) + h4

24f (4)(ξ3)

f(xi−1) = f(xi − h) = f(xi)− hf
′
(xi) + h2

2 f
′′
(xi)− h3

6 f (3)(xi) + h4

24f (4)(ξ4)

Then

ui = 6f
′′
(xi) +

h2

4
(f (4)(ξ3) + f (4)(ξ4))

and

Ri = wi − ui =
h2

4
(2f (4)(ξ1) + 2f (4)(ξ2)− f (4)(ξ3)− f (4)(ξ4)).

It holds that

|Ri| ≤
6Mh2

4
=

3
2
Mh2 =⇒ ‖R‖ ≤ 3

2
Mh2,

where M = sup
∣∣f (4)(ξi)

∣∣
Lemma 2.16 Using the same notations of previous Lemma 2.14 and Lemma 2.15,
we have

a)
∣∣∣f ′′

(xi)− s
′′
(xi)

∣∣∣ ≤ 3
4
M h2.

b)
∥∥∥f (3)(x)− s(3)(x)

∥∥∥ ≤ 2M h.

c)
∥∥∥f

′′
(x)− s

′′
(x)

∥∥∥ ≤ 7
4
M h2.
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Proof. Indeed,
a) Prove that ∣∣∣f ′′

(xi)− s
′′
(xi)

∣∣∣ ≤ 3
4
M h2?

We have

A(w − z) = R =⇒ ‖R‖ = ‖A(w − z)‖ ≤ ‖A‖ . ‖w − z‖

and (according to Lemma 2.14 and Lemma 2.15) we have

(‖w − z‖ ≤ 1
2
‖R‖ ; ‖R‖ ≤ 3

2
Mh2) =⇒ ‖w − z‖ ≤ 3

4
Mh2.

It holds that ∣∣∣f ′′
(xi)− s

′′
(xi)

∣∣∣ ≤ 3
4
M h2.

b) Prove that ∥∥∥f (3)(x)− s(3)(x)
∥∥∥ ≤ 2M h ?

Indeed, let x ∈ [a, b] , there exists i such that x ∈ [xi−1, xi].
Suppose x ∈ ]xi−1, xi[ such that zi = zi−1 + hs(3)(x), namely

s(3)(x) =
zi − zi−1

h
.

Then

f (3)(x)− s(3)(x) = f (3)(x)− zi−zi−1

h

= f (3)(x)− f
′′
(xi)−f

′′
(xi−1)

h + 1
h(f

′′
(xi)− zi − f

′′
(xi−1) + zi−1)

But ∣∣∣f ′′
(xi)− zi − f

′′
(xi−1) + zi−1

∣∣∣ ≤ 3
2
Mh2

and
f
′′
(xi) = f

′′
(x) + (xi − x)f (3)(x) + 1

2(xi − x)2f (4)(ξ1)

f
′′
(xi−1) = f

′′
(x) + (xi−1 − x)f (3)(x) + 1

2(xi−1 − x)2f (4)(ξ2).
Therefore

f
′′
(xi)− f

′′
(xi−1)− hf (3)(x) = 1

2(xi − x)2f (4)(ξ1)− 1
2(xi−1 − x)2f (4)(ξ2)

=⇒
∣∣∣f ′′

(xi)− f
′′
(xi−1)− hf (3)(x)

∣∣∣ ≤ 1
2 sup(f (4)(ξ1), f (4)(ξ2))((xi − x)2 + (xi−1 − x)2)

≤ M
2 ((xi − x)2 + (xi−1 − x)2) ≤ M

2 h2.
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It holds that ∥∥∥f (3)(x)− s(3)(x)
∥∥∥ ≤ M

2
h2

h
+

3M

2
h2

h
= 2Mh.

c) Prove that ∥∥∥f
′′
(x)− s

′′
(x)

∥∥∥ ≤ 7
4
M h2?

Indeed, let x ∈ [a, b]; there exists i such that |x− xi| ≤ h
2 . We have

f
′′
(x)− s

′′
(x) = f

′′
(xi)− s

′′
(xi) +

x∫
xi

(f
(3)

(t)− s
(3)

(t))dt

and then ∥∥∥f
′′
(x)− s

′′
(x)

∥∥∥ ≤ 3
4
Mh2 +

h

2
2Mh =

7
4
Mh2.

Lemma 2.17 Using the same notations of previous Lemma 2.14, Lemma 2.15 and
Lemma 2.16, we have

d)
∥∥∥f

′
(x)− s

′
(x)

∥∥∥ ≤ 7
4
M h3;

e) ‖f(x)− s(x)‖ ≤ 7
8
M h4.

Proof. Indeed,
d) Prove that ∥∥∥f

′
(x)− s

′
(x)

∥∥∥ ≤ 7
4
M h3.

Let
f(x)− s(x) = 0 for x = x0, x1, ..., xn

According to Rolle’s theorem, for all i, there exists ξi ∈ ]xi−1, xi[ such that f
′
(ξi)−

s
′
(ξi) = 0.

Indeed, let x ∈ [a, b] , there exists i such that x ∈ [xi−1, xi] and we have

∥∥∥f
′
(x)− s

′
(x)

∥∥∥ =

∥∥∥∥∥∥∥
x∫
ξi

(f
′′
(t)− s

′′
(t))dt

∥∥∥∥∥∥∥ ≤
x∫
ξi

∥∥∥f
′′
(t)− s

′′
(t)

∥∥∥ dt ≤ 7
4
M h3.

e) Prove that

‖f(x)− s(x)‖ ≤ 7
8
M h4
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Indeed, let x ∈ [a, b] , there exists i such that |x− xi| ≤ h
2 and we have

‖f(x)− s(x)‖ =

∥∥∥∥∥∥
x∫
xi

(f
′
(t)− s

′
(t))dt

∥∥∥∥∥∥ ≤
x∫
xi

∥∥∥f
′
(t)− s

′
(t)

∥∥∥ dt ≤ 7
8
M h4.

Proof. (Theorem 2.13) The proof results from Lemma 2.14, Lemma 2.15, Lemma
2.16 and Lemma 2.17.
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