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NEW ITERATIVE METHOD FOR SOLVING OF UNDER
DETERMINED LINEAR EQUATIONS SYSTEM
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Abstract. In this paper, we consider minimum norm solution of under deter-
mined orthogonal linear system equations Ax = b. For this purpose, after translate
of system to quadratic equation f(x) = 0, and by use of classical Newton-Raphson
rule, we calculate approximation of x.
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1. Introduction

Systems of linear algebraic equations arise in all walks of life [1-5]. They represent
the most basic type of system of equations and their taught to everyone as far back
as 8-th grade. Yet, the complete story about linear algebraic equations is usually
not taught at all. What happens when there are more equations than unknowns or
fewer equations than unknowns? In this paper iterative methods for solving under
determined system of linear algebraic equations that Ax = b will be presented. Here
A is a given m × n, orthogonal matrix and b is a vector. We assume in addition
that A and b are real, although this restriction in inessential in most of the methods.
We like to associate this phenomenon with finding the zeros of given function f .
We know that, finding the zeros of f , that is arguments x for which f(x) = 0, is a
classical problem. In particular, determining the zeros of a polynomial (the zeros of
a polynomial are also known its roots)

P (x) = a0 + a1x+ · · ·+ anxn

has captured the attention of pure and applied mathematicians for centuries. How-
ever, much more general problems can be formulated in terms of finding zeros,
depending upon the definition of the function f : A −→ B, its domain A and its
range B.
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For example, if A = B = Rn, then a transformation f : Rn −→ Rn is described
by n real functions fi(x1, x2, . . . , xn) of n real variables x1, . . . , xn:

f(x) =

 f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

 = 0 , xT = (x1, . . . , xn)

The problem is solving f(x) = 0, becomes that of solving a system of equations

fi(x1, . . . , xn) = 0 , i = 1, 2, . . . , n

Even more general problems result if A and B are linear vector spaces of infinite
dimension, e.g. function spaces.

Problems of finding zeros are closely associated with problems of the the form

min S(x), x ∈ Rn

where

fT (x).f(x) =
n∑
i=1

f2i (x) = S(x)

for a real function S : Rn −→ R of n variables S(x) = S(x1, . . . , xn). For if S is
differentiable and g(x) := ( ∂S∂x1 , . . . ,

∂S
∂xn

)T is the gradient of S, then each minimum
point x of S(x) is zero of the gradient g(x) = 0. Conversely, each zero of f is also
the minimum point of some function S, where S(x) = ‖f(x)‖2.

2. Derivation of new method

A system of linear algebraic equations can be written as
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

(1)

Note that there are m equations with n unknowns. The number of equations and
the number of unknowns can be different from one another.

Definition 2.1. When there are fewer equations than unknowns, the system of
equations is referred to as under-determined or under-constrained.

In this case there are infinitely many possible solutions to Eq. (1).
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Definition 2.2. When the number of equations is equal to the number of un-
knowns, the system is referred to as uniquely determined or uniquely constrained,
referring to the fact that the solution is unique.

Definition 2.3. When there are more equations than unknowns, the system is
referred to as over-determined or over-constrained.

In this case, there is no exact solution to the problem although approximate
solutions are possible.

Using a matrix-vector notation, Eq. (1) is written as

Ax = b (2)

where A is a m × n matrix, x is a n × 1 vector, and b is a m × 1 vector. In this
paper, well assume that the equations are not linear combinations of each other.
Mathematically, this implies that the rank of the matrix is the smaller of n and m,
written rank(A) = min(n,m). This is called the full rank condition. By assuming
that the rank of the matrix is full, it follows that the inverse of the m ×m matrix
ATA exists when m ≤ n, and that the inverse of the n× n matrix AAT exists when
n ≤ m.

When there are fewer equations than unknowns, as stated above, there are in-
finitely many solutions. One of the solutions that is frequently sought is the one
that has the smallest norm (size). The squared norm is defined as

‖ x ‖2= x21 + x22 + · · ·+ x2n = xT .x (3)

The minimum norm problem is to minimize Eq. (3) subject to the linear algebraic
equation constraints

f(x) = Ax− b = 0 (4)

Let’s now convert this constrained minimization problem into an unconstrained mini-
mization problem. In this paper we consider the system (1) or (2) is under determine.
Now if we define x = (x1, x2, . . . , xn)T and similarly fi : Rn → Rm as belove

fi(x) = ai1x1 + ai2x2 + · · ·+ ainxn − bi =
n∑
j=1

aijxj − bi (5)

Hence by assumption f = (f1, . . . , fm)T , the systems of (1) or (2) becomes f(x) = 0
where f : Rn → R. Now want to solve f(x) = 0 which x has minimum norm on the
other hand we must minimize ‖f‖ or ‖f‖2, moreover we have

‖f‖2 = fT (x).f(x) =
n∑
i=1

f2i (x) = S(x) (6)

191



Ali Shokri and Abbas Ali Shokri - New iterative method for solving...

Then we had minimize the value of S(x) where S : Rn → R. So we must solve that
∇S(x) = 0 where

∇S(x) =


∂S(x)
∂x1
...

∂S(x)
∂xn

 =

 g1(x)
...

gn(x)

 (7)

Then for solving (1) and finding of its minimum norm solution, it is enough that we
solve g(x) = 0 where

∇S(x) = g(x),

and g : Rn → Rn. For this purpose we use the classical Newton -Raphson rule. The
classical Newton -Raphson method is obtained by linearizing g. Linearization is also
a means of constructing iterative methods to solve equation systems of the form:

g(x) =

 g1(x1, . . . , xn)
...

gn(x1, . . . , xn)

 = 0 (8)

If we assume that x = ξ is a zero for g, that x0 is an approximation to ξ, and that
g is differentiable for x = x0 then to a first approximation

0 = g(ξ) ≈ g(x0) +Dg(x0)(ξ − x0) (9)

where

Dg(x0) =


∂g1
∂x1

. . . ∂g1
∂xn

...
...

∂gn
∂x1

· · · ∂gn
∂xn

 , ξ − x0 =

 ξ1 − x01
...

ξn − x0n

 (10)

If the Jacobian Dg(x0) is nonsingular, then the equation

g(x0) +Dg(x0)(x1 − x0) = 0 (11)

can be solved for x1

x1 = x0 − (Dg(x0))−1g(x0) (12)

and x1 may be taken as a closer approximation to the zero ξ. The generalization
Newton method for solving systems of equation (1) is given by

xk+1 = xk − (Dg(xk))−1g(xk), k = 0, 1, 2, . . . (13)

Since

gi(x) =
∂S(x)

∂xi
,
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we have

gi(x) = 2
m∑
i=1

ai1(ai1x1 + ai2x2 + · · ·+ ainxn − bi) (14)

The Jacobian matrix Dg(xk), is now obtained by differentiating (12).

Lemma 2.4. If G(x) is the Jacobian matrix of g(x) = 0, then G(x) is constant
and symmetric n × n matrices and therefor we can assume G indicates the value
G(x).

Proof. If we define Dg(x) = G(x) then by a simple calculation we have

Gij =
∂2s(x)

∂xi∂xj
= 2

m∑
k=1

akiakj (15)

And hence

G(x) = 2


∑m

k=1 a
2
k1

∑m
k=1 ak1ak2 · · ·

∑m
k=1 ak1akn∑m

k=1 ak2ak1
∑m

k=1 a
2
k2 · · ·

∑m
k=1 ak2akn

...
...

...
...∑m

k=1 aknak1
∑m

k=1 aknak2 · · ·
∑m

k=1 a
2
kn


n×n

(16)

Therefor G(x) is independent of x, then G is constant matrix and we can use G
indicated G(x). Moreover by symmetric properties of

m∑
k=1

akiakj =
m∑
k=1

akjaki

G is symmetric matrix.

Lemma 2.5. Let A is coefficient matrix in (1). Then G = 2ATA

Proof. We know that

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


(m×n)

(17)

Then ATA becomes

ATA =


∑m

k=1 a
2
k1

∑m
k=1 ak1ak2 · · ·

∑m
k=1 ak1akn∑m

k=1 ak2ak1
∑m

k=1 a
2
k2 · · ·

∑m
k=1 ak2akn

...
...

...
...∑m

k=1 aknak1
∑m

k=1 aknak2 · · ·
∑m

k=1 a
2
kn


n×n

(18)
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Then obviously G = 2ATA.
Note that the matrices ATA and AAT are each square, symmetric matrices.

They are also positive semi-definite. To show this, let Ax = y for any x. Note
that xT (ATA)x = yT y ≥ 0, so ATA is positive semi-definite. AAT is positive semi-
definite by the same reasoning. Since, these matrices are symmetric and positive
semi-definite it follows that their eigenvalues are positive or zero and their eigenvec-
tors are real.

Theorem 2.6. G is diagonal with non-zero entries as form

G =


2‖A1‖2 0 · · · 0

0 2‖A2‖2
. . .

...
...

. . .
. . . 0

0 · · · 0 2‖An‖2


n×n

. (19)

Where Ai is ith column of A and moreover G is invertible and its inverse is the
form

G−1 =


1

2‖A1‖2 0 · · · 0

0 1
2‖A2‖2

. . .
...

...
. . .

. . . 0
0 · · · 0 1

2‖An‖2


n×n

. (20)

Proof. We know that G = 2ATA so we can write

G = 2


AT1A1 AT1A2 · · · AT1An
AT2A1 AT2A2 · · · AT2An

...
...

...
ATnA1 ATnA2 · · · ATnAn


n×n

. (21)

Because orthogonality of columns of A we have ATi Aj = 0 for all i 6= j and ATi Ai =
‖Ai‖2, therefor we have (19). Moreover without lose of generality all columns of A
is non-zero, then

‖Aj‖ 6= 0, ∀j = 1, 2, · · · , n (22)

Consequently G is invertible and the inverse of G is given by (20).
Therefor G is constant matrix and G−1 exist from Theorem (2.5). So whit once

estimate of G−1, we can use of G−1 in each step of our iterative method. Since it
uses only once calculate G−1 in the initial step of our method hence can significantly
reduce computational effort. Now we introduce new iterative methods as belove

xk+1 = xk −G−1g(xk) (23)
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Then by attention to Theorem (2.5) we have

xk+1 = xk −


1

2‖A1‖2 0 · · · 0

0 1
2‖A2‖2

. . .
...

...
. . .

. . . 0
0 · · · 0 1

2‖An‖2

 g(xk) (24)

where

xk =


xk1
xk2
...
xkn

 (25)

Therefor 
xk+1
1

xk+1
2
...

xk+1
n

 =


xk1
xk2
...
xkn

−


g1(xk)
2‖A1‖2
g2(xk)
2‖A2‖2

...
gn(xk)
2‖An‖2

 (26)

Or equality 
xk+1
1

xk+1
2
...

xk+1
n

 =


xk1 −

g1(xk)
2‖A1‖2

xk2 −
g2(xk)
2‖A2‖2
...

xkn −
gn(xk)
2‖An‖2

 (27)

Upon choosing x0, that is initial approximation, we can calculate xn by (27), that is
minimum norm solution of under determined of system (1). For show convergence
of (27), we use the next theorem from [1].

Theorem 2.7. Let C ⊆ Rn be a given open set. Further, let C0 be a convex set
with C0 ⊆ C, and let f : C → Rn be a function which is differentiable for all x ∈ C.
For x0 ∈ C0 let positive constant r, α, β, γ, h be given with the following properties:

Sr(x
0) := {x|‖x− x0‖ < r} ⊆ C0

and h := αβγ
2 < 1 and also r := α

(1−h) and let f(x) have the properties

• ∀x, y ∈ C0, ‖Df(x)−Df(y)‖ ≤ ‖x− y‖

• Df(x)−1 exists and satisfies ‖Df(x)−1‖ ≤ β, ∀x ∈ C0
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• ‖Df(x0)−1f(x0)‖ ≤ α

Then

1. Beginning at x0, each point

xk+1 := xk −Df(xk)−1f(xk), k = 0, 1, . . . (28)

is well defined and satisfies xk ∈ Sr(x0), ∀k ≥ 0.

2. limk→∞ x
k = ξ exists and satisfies ξ ∈ Sr(x0) and f(ξ) = 0.

3. ∀k ≥ 0

‖xk − ξ‖ ≤ α h2
k−1

1− h2k
. (29)

Proof. see [1].

Theorem 2.8. Suppose that g : Rn → Rn, defined by (14). Then with start from
x0, (initial approximation for x), the method of (27) is well defined and convergence
to root of g(x) = 0, that is minimum norm solution of system (1).

Proof. Since G is invertible from Theorem (2.5), all conditions of previous The-
orem are hold.
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