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EXISTENCE OF SOLUTIONS FOR TWO POINT BOUNDARY
VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL

EQUATIONS WITH P-LAPLACIAN

Nemat Nyamoradi

Abstract. In this paper, we study the existence of positive solutions to bound-
ary value problem for fractional differential equation


cDσ

0+(φp(u
′′(t)))− g(t)f(u(t)) = 0, t ∈ (0, 1),

φp(u
′′(1)) = 0, φp(u

′′(0)) = 0,
αu(0)− βu′(0) = 0,
γu(1) + δu′(1) = 0,

where cDα
0+ is the Caputo’s fractional derivative of order 1 < σ ≤ 2, φp(s) = |s|p−2s,

p > 1, α, β, γ, δ ≥ 0 and f ∈ C([0,∞); [0,∞)), g ∈ C((0, 1); (0,∞)).

2000 Mathematics Subject Classification: 47H10, 26A33, 34A08.

1. Introduction

The existence of solutions for two point boundary value problems for fractional
differential equations of the form


cDσ

0+(φp(u
′′(t)))− g(t)f(u(t)) = 0, t ∈ (0, 1),

φp(u
′′(1)) = 0, φp(u

′′(0)) = 0,
αu(0)− βu′(0) = 0,
γu(1) + δu′(1) = 0,

(1)

where cDα
0+ is the Caputo’s fractional derivative of order 1 < σ ≤ 2, φp(s) = |s|p−2s,

p > 1, (φp)
−1 = φq,

1
p + 1

q = 1 and we assume that
(H1) f : [0,∞)→ [0,∞) is continuous and

85



N. Nyamoradi - Existence of solutions for two point boundary value problem ...

g ∈ C((0, 1); [0,+∞)) and

0 <

∫ 1

0
g(r)dr <∞,

Moreover, g(t) does not vanish identically on any subinterval of [0, 1].
(H1*) f is a nonnegative, lower semi-continuous function defined on [0,+∞), i.e.
∃I ⊂ [0,+∞); ∀xn ∈ I, xn → x0 (n → ∞), one has f(x0) ≤ limn→∞f(xn). More-
over, f has only a finite number of discontinuity points in each compact subinterval
of [0,+∞).

(A1) ρ = γβ + αγ + αδ, 0 < η := min
{

4δ+γ
4(δ+γ) ,

α+4β
4(α+β)

}
< 1.

Fractional differential equations have been of great interest recently. This is
because of both the intensive development of the theory of fractional calculus itself
and the applications of such constructions in various scientific fields such as physics,
mechanics, chemistry, engineering, etc. For details, see [1-3] and the references
therein. In [4], Liu, and Jia investigated the existence of multiple solutions for
problem:


cDσ

0+(p(t)u′(t)) + q(t)f(t, u(t)) = 0, t > 0, 0 < σ < 1,
p(0)u′(0) = 0,

limt→∞ u(t) =
∫+∞

0 g(t)u(t)dt,

where cDσ
0+ is the standard Caputo derivative of order σ. Some existence results

were given for the problem (1) with σ = 2 by Yanga et al. [5] and Zhao et al. [6].
The solution of differential equations of fractional order is much involved. Some

analytical methods are presented, such as the popular Laplace transform method
[7,8], the Fourier transform method [9], the iteration method [10] and Green function
method [11,12]. Numerical schemes for solving fractional differential equations are
introduced, for example, in [13,14,15]. Recently, a great deal of effort has been ex-
pended over the last years in attempting to find robust and stable numerical as well
as analytical methods for solving fractional differential equations of physical inter-
est. The Adomian decomposition method [16], homotopy perturbation method [17],
homotopy analysis method [18], differential transform method [19] and variational
method [20] are relatively new approaches to provide an analytical approximate so-
lution to linear and nonlinear fractional differential equations.
The existence of solutions of initial value problems for fractional order differential
equations have been studied in the literature [7,10,21,22] and the references therein.

In this work we will consider the existence of positive solutions to problem (1).
we shall first give a new form of the solution, and then determine the properties

86



N. Nyamoradi - Existence of solutions for two point boundary value problem ...

of the Green’s function for associated fractional boundary value problems; finally,
by employing the Krasnoselskii’s fixed point theorems, some sufficient conditions
guaranteeing the existence of positive solution.

The rest of the article is organized as follows: in Section 2, we present some
preliminaries that will be used in Section 3. The main results and proofs will be
given in Section 3. Finally, in Section 4, an example are given to demonstrate the
application of our main result.

2. Preliminaries

In this section, we present some notation and preliminary lemmas that will be
used in the proofs of the main results.

We work in C1([0, 1]) with respect to the norm ||u|| = max0≤t≤1 u(t).
Definition 1. Let X be a real Banach space. A non-empty closed set P ⊂ X is

called a cone of X if it satisfies the following conditions:
(1) x ∈ P, µ ≥ 0 implies µx ∈ P ,
(2) x ∈ P,−x ∈ P implies x = 0.

Definition 2. The Riemann-Liouville fractional integral operator of order α >
0, of function f ∈ L1(R+) is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

where Γ(·) is the Euler gamma function.
Definition 3. The Riemann-Liouville fractional derivative of order α > 0,

n− 1 < α < n, n ∈ N is defined as

Dα
0+f(t) =

1

Γ(n− α)

( d
dt

)n ∫ t

0
(t− s)n−α−1f(s)ds,

where the function f(t) have absolutely continuous derivatives up to order (n− 1).
Lemma 1. ([23]) The equality Dγ

0+I
γ
0+f(t) = f(t), γ > 0 holds for f ∈ L(0, 1).

Definition 4. ([7,23]) The fractional derivative of f in the Caputo sense is
defined as

cDα
0+f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds, n− 1 < α < n,

where n = [α] + 1.
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Lemma 2. ([23-25]) Let α > 0. Then the differential equation

cDα
0+u(t) = 0

has a unique solution u(t) = c0 + c1t + · · · + cn−1t
n−1, ci ∈ R, i = 1, . . . , n, there

n− 1 < α ≤ n.
Lemma 3. ([23-25]) Assume that h ∈ C(0, 1)∩L(0, 1) with a derivative of order

α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+
cDα

0+h(t) = h(t) + c0 + c1t+ · · ·+ cn−1t
n−1,

for some ci ∈ R, i = 1, . . . , n− 1, where n− 1 < α ≤ n.
In the following, we present the Green function of fractional differential equation

boundary value problem.
Lemma 4. Let h(t) ∈ C([0, 1]) be a given function. Then the boundary value

problem


cDσ

0+(φp(u
′′(t)))− h(t) = 0, t ∈ (0, 1),

φp(u
′′(1)) = 0, φp(u

′′(0)) = 0,
αu(0)− βu′(0) = 0,
γu(1) + δu′(1) = 0,

(2)

has a unique solution

u(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)h(τ)dτ

)
ds, (3)

where

G(t, s) =

{
1
ρ(γ + δ − γt)(β + αs), 0 ≤ s ≤ t ≤ 1,
1
ρ(β + αt)(γ + δ − γs), 0 ≤ t ≤ s ≤ 1,

(4)

and

H(t, s) =


(1−s)σ−1−(t−s)σ−1

Γ(σ) , 0 ≤ s ≤ t ≤ 1,
(1−s)σ−1

Γ(σ) , 0 ≤ t ≤ s ≤ 1.
(5)
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proof. According to Lemma 3, we can obtain that

φp(u
′′(t)) = Iσ0+h(t)− c1 − c2t =

1

Γ(σ)

∫ t

0
(t− s)σ−1h(s)ds− c1 − c2t.

By the boundary conditions φp(u
′′(1)) = 0 and (φp(u

′′(0)))′ = 0, we can calculate
out that c2 = 0 and c1 = Iα0+h(1). Consequently, the solution of problem (2) is

φp(u
′′(t)) = Iσ0+h(t)− Iσ0+h(1).

Thus, the unique solution φp(u
′′(t)) of problem (2) is

φp(u
′′(t)) =

1

Γ(σ)

∫ t

0
(t− s)σ−1h(s)ds− 1

Γ(σ)

∫ 1

0
(1− s)σ−1h(s)ds

= −
∫ t

0

(1− s)σ−1 − (t− s)σ−1

Γ(σ)
h(s)ds−

∫ 1

t

(1− s)σ−1

Γ(σ)
h(s)ds

= −
∫ 1

0
H(t, s)h(s)ds.

Then, we get

u′′(t) = −φq
( ∫ 1

0
H(t, s)h(s)ds

)
.

Also, by calculation, it is easy to prove that Lemma 4 holds. So we omit its proof
here.

Lemma 5. (See [26]). Let G(t, s) be given as in (4), then we have the following
results:


G(t,s)
G(s,s) ≤ 1, for t ∈ [0, 1] and s ∈ [0, 1],
G(t,s)
G(s,s) ≥ η, for t ∈

[
1
4 ,

3
4

]
and s ∈ [0, 1].

(6)

Proposition 1. For t, s ∈ [0, 1], we have

0 ≤ H(t, s) ≤ H(s, s) ≤ 1

Γ(σ)
.
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Proposition 2. Let θ ∈ (0, 1
2), then for all s ∈ [0, 1], we have

min
θ≤t≤1−θ

H(t, s) ≥
[
1− (1− θ)σ−1

]
H(s, s).

proof. For θ ∈ (0, 1
2), we have

min
θ≤t≤1−θ

H(t, s) =



(1−s)σ−1−(1−θ−s)σ−1

Γ(σ) , s ∈ [0, θ],

min{ (1−s)σ−1−(1−θ−s)σ−1

Γ(σ) , (1−s)σ−1

Γ(σ) }
= (1−s)σ−1−(1−θ−s)σ−1

Γ(σ) , s ∈ [θ, 1− θ],
(1−s)σ−1

Γ(σ) , s ∈ [1− θ, 1].

=


(1−s)σ−1−(1−θ−s)σ−1

Γ(σ) , s ∈ [0, 1− θ],
(1−s)σ−1

Γ(σ) , s ∈ [1− θ, 1],

and

(1− s)σ−1 − (1− θ − s)σ−1 = (1− s)σ−1 − (1− θ)σ−1(1− s)σ−1

≥ [1− (1− θ)σ−1](1− s)σ−1, for s ∈ [0, 1− θ],
(1− s)σ−1 ≥ [1− (1− θ)σ−1](1− s)σ−1, for s ∈ [1− θ, 1].

Therefore, there has
It follows from Proposition 1 that

min
θ≤t≤1−θ

H(t, s) ≥ [1− (1− θ)σ−1]
(1− s)σ−1

Γ(σ)
= [1− (1− θ)σ−1]H(s, s) for s ∈ [0, 1].

Thus, we complete the proof.
Remark 1. Let θ = 1

4 , then by Proposition 2, we have

min
1
4
≤t≤ 3

4

H(t, s) ≥
[
1− (

3

4
)σ−1

]
H(s, s) for s ∈ [0, 1].

Lemma 6. Let (H1) and (A1) hold. If h(t) ∈ C([0, 1]) and h ≥ 0, then the
unique solution u of the problem (2) satisfies
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(i) u(t) ≥ 0, for t ∈ [0, 1],
and

(ii) min 1
4
≤t≤ 3

4
u(t) ≥ Γ||u||,

where Γ := η
(
1− (3

4)σ−1
)q−1

proof. (i) By Lemma 5, Proposition 1 and the property of function φq it is
obvious that we have

G(t, s) ≥ 0, H(t, s) ≥ 0, φq
( ∫ 1

0
H(s, τ)h(τ)dτ

)
≥ 0,

so we get u(t) ≥ 0.

(ii) From Lemma 5, Remark 1, for t ∈
[

1
4 ,

3
4

]
, we have

u(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)h(τ)dτ

)
ds

≥ η
(
1− (

3

4
)σ−1

)q−1
∫ 1

0
G(s, s)φq

( ∫ 1

0
H(s, s)h(τ)dτ

)
ds

≥ η
(
1− (

3

4
)σ−1

)q−1
||u||.

Therefore, we get min 1
4
≤t≤ 3

4
u(t) ≥ Γ||u||.

Then, choose a cone K is C1([0, 1]), by

K = {u ∈ C[0, 1]|u(t) ≥ 0, min
1
4
≤t≤ 3

4

u(t) ≥ Γ‖u‖},

and define an operator T by

(Tu)(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)f(u(τ))dτ

)
ds. (7)

It is clear that the existence of a positive solution for the system (1) is equivalent
to the existence of nontrivial fixed point of T in K.

Lemma 7. Suppose that the conditions (H1) and (A1) hold, then T (K) ⊆ K
and T : K → K is completely continuous.

proof. For any u ∈ K, by (7), we obtain (Tu)(t) ≥ 0 and, for t ∈ [0, 1],
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(Tu)(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)f(u(τ))dτ

)
ds

≤
∫ 1

0
G(s, s)φq

( ∫ 1

0
H(s, s)g(τ)f(u(τ))dτ

)
ds.

Thus, ||Tu|| ≤
∫ 1

0 G(s, s)φq
( ∫ 1

0 H(s, s)g(τ)f(u(τ))dτ
)
ds.

On the other hand, for t ∈
[

1
4 ,

3
4

]
, we have

(Tu)(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)h(τ)dτ

)
ds

≥ η
(
1− (

3

4
)σ−1

)q−1
∫ 1

0
G(s, s)φq

( ∫ 1

0
H(s, s)h(τ)dτ

)
ds

≥ η
(
1− (

3

4
)σ−1

)q−1
||Tu|| = Γ||Tu||.

Therefore, we get TK ⊆ K
By conventional arguments and Ascoli-Arzela theorem, one can prove T : K → K

is completely continuous, so we omit it here.
Our approach is based on the following Guo-Krasnoselskii fixed point theorem

of cone expansion-compression type [27].
Theorem 1. Let E be a Banach space and K ⊆ E a cone in E. Assume Ω1

and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T : K
⋂

(Ω2\Ω1)→ K
be a completely continuous operator. In addition suppose either
(A) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω2 or
(B) ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω2

holds. Then T has a fixed point in K ∩ (Ω2\Ω1).

3. Main results

We define Ωl = {u ∈ K : ||u|| < l}, ∂Ωl = {u ∈ K : ||u|| = l}, where l > 0.
If u ∈ ∂Ωl, for t ∈ [1

4 ,
3
4 ], we have Γl ≤ u ≤ l.

For convenience, we introduce the following notations. Let

fl = inf
{ f(u)

φp(l)

∣∣∣u ∈ [Γl, l]
}
, f l = sup

{ f(u)

φp(l)

∣∣∣u ∈ [0, l]
}
,

f% = lim inf
u→%

f(u)

φp(u)
, (% := 0+ or +∞),
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f% = lim sup
u→%

f(u)

φp(u)
, (% := 0+ or +∞),

1

ω
=

( 1

Γ(σ)

)q−1( ∫ 1

0
G(s, s)ds

)
φq
( ∫ 1

0
g(τ)dτ

)
,

1

M
= η

(
1− (

3

4
)σ−1

)q−1


(
1− (3

4)σ−1
)σ−1

Γ(σ)


q−1 ( ∫ 1

0
G(s, s)ds

)
φq
( ∫ 1

0
g(τ)dτ

)
.

We always assume that (H1) hold in the following theorems.
Theorem 2. Suppose that there exist constants r,R > 0 with r < ΓR for r < R,

such that the following two conditions
(H2) f r ≤ φp(ω),

and
(H3) fR ≥ φp(M),

hold. Then the problem (1) has at least one positive solution u ∈ K such that

0 < r ≤ ||u|| ≤ R.

proof. Case 1. We shall prove that the result holds when (H1) is satisfied.
Without loss of generality, we suppose that r < ΓR for r < R.

By (H2), (7), Proposition 1 and Lemma 5, for t ∈ [0, 1] and u ∈ Ωr , we have

(Tu)(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)f(u(τ))dτ

)
ds

≤
( 1

Γ(σ)

)q−1
rω
( ∫ 1

0
G(s, s)ds

)
φq
( ∫ 1

0
g(τ)dτ

)
= r = ||u||.

This implies that ||Tu|| ≤ ||u|| for u ∈ Ωr.
Also, by (H3), (7), Remark 1 and Lemma 5, for t ∈ [0, 1] and u ∈ ΩR , we have

(Tu)(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(t, s)φq
( ∫ 3

4

1
4

H(s, τ)g(τ)f(u(τ))dτ
)
ds
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≥ η
(
1− (

3

4
)σ−1

)q−1


(
1− (3

4)σ−1
)σ−1

Γ(σ)


q−1

MR
( ∫ 3

4

1
4

G(s, s)ds
)
φq
( ∫ 3

4

1
4

g(τ)dτ
)

= R = ||u||.

This implies that ||Tu|| ≥ ||u|| for u ∈ ΩR.
Therefore, by Theorem 1, it follows that T has a fixed-point u in K ∩ (ΩR \Ωr).

This means that the problem (1) has at least one positive solution u ∈ K such that
0 < r ≤ ||u|| ≤ R.

Case 2. When (H1*) holds, by applying the linear approaching method on the
domain of discontinuous points of f we can establish sequence {fj}∞j=1 satisfying the
following two conditions

(i) fj ∈ C[0,∞) and 0 ≤ fj ≤ fj+1 on [0,∞),
and

(ii) limj→∞ fj = f , j = 1, 2, . . . , is pointwisely convergent on [0,∞).
By virtue of proof of Case 1, we know that when f = fj , the problem (1) has a

positive solution uj(t) where

uj(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)fj(uj(τ))dτ

)
ds,

for all t ∈ [0, 1] and r ≤ ||uj || ≤ R, r,R are independent of j.
By uniform continuity of G(t, s) on [0, 1]× [0, 1], for any ε > 0 (adequate small),

there exists ϑ > 0 such that for t1, t2 ∈ [0, 1] and |t1 − t2| < ϑ, one has |G(t1, s) −
G(t2, s)| < ε. Thus, for t1, t2 ∈ [0, 1] and |t1 − t2| < ϑ, one has

|uj(t1)− uj(t2)| ≤
∫ 1

0
|G(t1, s)−G(t2, s)| · φq

( ∫ 1

0
H(s, τ)g(τ)fj(uj(τ))dτ

)
ds

≤
( 1

Γ(σ)

)q−1
· max
||uj ||≤R

fj(uj) · φq
( ∫ 1

0
g(τ)dτ

)
· ε.

So we get that {uj}∞j=1 are equicontinuous on [0, 1]. Thus, by Arzela-Asoli theorem,
we know that there exists a convergent subsequence of {uj}∞j=1. For convenience,
we denote this convergent subsequence with {uj}∞j=1. Without loss of generality, we
suppose limj→∞ uj(t) = u(t), ∀t ∈ [0, 1], and r ≤ ||u|| ≤ R. By Fatou’s Lemma and
Lebesgue dominated convergence theorem, we have

lim
j→∞

uj(t) ≥
∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ) lim

j→∞
fj(uj(τ))dτ

)
ds,
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i.e.

u(t) ≥
∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)f(u(τ))dτ

)
ds. (8)

On the other hand, by the conditions (i) and (ii), we have

uj(t) ≤
∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)f(uj(τ))dτ

)
ds.

By the lower semi-continuity of f , taking limits in above inequality as j → ∞, we
have

u(t) ≤
∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)f(u(τ))dτ

)
ds. (9)

By (8) and (9), we have

u(t) =

∫ 1

0
G(t, s)φq

( ∫ 1

0
H(s, τ)g(τ)f(u(τ))dτ

)
ds.

Therefore u(t) is a positive solution of the problem (1). This completes the proof
of Theorem 2.

Similarly, we can obtain the following conclusion.
Theorem 3. Suppose that there exist constants r,R > 0 with r < ΓR for

r < R, such that the following two conditions
(H2*) f r < φp(ω),

and
(H3*) fR > φp(M),

hold. Then the problem (1) has at least one positive solution u ∈ K such that

0 < r < ||u|| < R.

Theorem 4. Assume that one of the following two conditions
(H4) f0 ≤ φp(ω), f∞ ≥ φp(Mγ ),

and
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(H5) f0 ≥ φp(Mγ ), f∞ ≤ φp(ω)
is satisfied. Then the problem (1) has at least one positive solution.

proof. We show that (H4) implies (H2) and (H3). Suppose that (H4) holds,
then there exist r and R with 0 < r < γR, such that

f(u)

φp(u)
≤ φp(ω), 0 < u ≤ r

and

f(u)

φp(u)
≥ φp(

M

γ
), u ≥ γR.

Hence, we obtain

f(u) ≤ φp(ω)φp(u) ≤ φp(ω)φp(r) = φp(rω), 0 < u ≤ r

and

f(u) ≥ φp(
M

γ
)φp(u) ≥ φp(

M

γ
)φp(γR) = φp(MR), u ≥ γR.

Thus, (H2) and (H3) holds.
Therefore, by Theorem 2, the problem (1) has at least one positive solution.
Now suppose that (H5) holds, then there exist 0 < r < R with Mr < ωR such

that

f(u)

φp(u)
≥ φp(

M

γ
), 0 < u ≤ r. (10)

and

f(u)

φp(u)
≤ φp(ω), u ≥ R. (11)

By (10), it follows that

f(u) ≥ φp(
M

γ
)φp(u) ≥ φp(

M

γ
)φp(γr) = φp(Mr), γr ≤ u ≤ r.
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So, the condition (H3) holds for r.
For (11), we consider two cases.
(i) If f(u) is bounded, there exists a constant D > 0 such that f(u) ≤ D, for

0 ≤ u <∞. By (11), there exists a constant λ ≥ R with Mr < ωR ≤ λω satisfying
φp(λ) ≥ max{φp(R), D

φp(ω)} such that f(u) ≤ D ≤ φp(λω) for 0 ≤ u ≤ λ. This

means that the condition (H2) holds for λ.

(ii) If f(u) is unbounded, there exist λ1 ≥ R with Mr < ωR ≤ λ1ω such that
f(u) ≤ f(λ1) for 0 ≤ u ≤ λ1. This yields f(u) ≤ f(λ1) ≤ φp(λ1ω) for 0 ≤ u ≤ λ1.
Thus, condition (H2) holds for λ1.

Therefore, by Theorem 2, the problem (1) has at least one positive solution.
Theorem 4 is proved.

Remark 2. It is obvious that Theorem 4 holds if f satisfies conditions f0 = 0,
f∞ = +∞ or f0 = +∞, f∞ = 0.

In this section, we give some conclusions about the existence of multiple positive
solutions. We always suppose that (H1), (H1*) and (A1) hold in the following
theorems.

Theorem 5. Assume that one of the following two conditions
(H6) f r < φp(ω),

and
(H7) f0 ≥ φp(Mγ ), f∞ ≥ φp(Mγ )

are satisfied. Then the problem (1) has at least two positive solutions such that

0 < ||u1|| < r < ||u2||.

proof. By the proof of Theorem 4, we can take 0 < r1 < r < γr2 such that
f(u) ≥ φp(r1M) for γr1 ≤ u ≤ r1 and f(u) ≥ φp(r2M) for γr2 ≤ u ≤ r2. Therefore,
by Theorems 3 and 4, it follows that problem (1) has at least two positive solutions
such that 0 < ||u1|| < r < ||u2||.

Theorem 6. Assume that one of the following two conditions
(H8) fR > φp(M),

and
(H9) f0 ≤ φp(ω), f∞ ≤ φp(ω),

are satisfied. Then the problem (1) has at least two positive solutions such that

0 < ||u1|| < R < ||u2||.
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Theorem 7. Assume (H4) (or (H5)) holds, and there exist constants r1, r2 > 0
with r1M < r2ω (or r1 < γr2) such that (H6) holds for r = r2 (or r = r1) and (H8)
holds for R = r1 (or R = r2). Then the problem (1) has at least three positive
solutions such that

0 < ||u1|| < r1 < ||u2|| < r2 < ||u3||.

The proofs of Theorems 6 and 7 are similar to that of Theorem 5, so we omit it
here.

Theorem 8. Let n = 2k + 1, k ∈ N . Assume (H4) (or (H5)) holds. If
there exist constants r1, r2, . . . , rn−1 > 0 with r2i < γr2i+1, for 1 ≤ i ≤ k − 1 and
r2i−1M < r2iω for 1 ≤ i ≤ k (or with r2i−1 < γr2i, for 1 ≤ i ≤ k and r2iM < r2i+1ω
for 1 ≤ i ≤ k − 1) such that (H8) (or (H6)) holds for r2i−1, 1 ≤ i ≤ k and (H6) (or
(H8)) holds for r2i, 1 ≤ i ≤ k. Then the problem (1) has at least n positive solutions
u1, . . . , un such that

0 < ||u1|| < r1 < ||u2|| < r2 < · · · < ||un−1|| < rn−1 < ||un||.

4. Application

Example 1. Consider the following singular boundary value problems with a
p-Laplacian operator


cD

3
2

0+(φp(u
′′(t)))− t−

1
2 f(u(t)) = 0, t ∈ (0, 1),

φp(u
′′(1)) = 0, φp(u

′′(0)) = 0,
u(0)− u′(0) = 0,
u(1) + u′(1) = 0,

(12)

where p = 3
2 ,

f(u) =


e−u, 0 ≤ u ≤ 1,
(n+ 1)e−u, n < u ≤ n+ 1, n = 1, 2, . . . , 10,

e
√
u, u > 11.
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We note that

α = β = γ = δ = 1, ρ = 3, η =
5

8
< 1, g(t) = t−

1
2 , Γ =

10− 5
√

3

16

f0 = +∞, f∞ = +∞, ω =
9π

104
, M =

72π

65(2−
√

3)2
.

So, f∞ > φp(
M
Γ ) and f0 > φp(

M
Γ ). We choose r = 4, then

f r = sup
{ f(u)

φp(r)

∣∣∣u ∈ [0, r]
}

= 0.125 < 0.141 = φp(ω).

Thus, (H5) and (H6) hold. Obviously, (H1), (H1*) and (A1) hold. By Theorem
5, the problem (12) has at least two positive solutions u1, u2 ∈ K such that 0 <
||u1|| < 4 < ||u2||.

Acknowledgments: The author would like to thank the referees for several
comments and valuable suggestions.
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