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Abstract. In this paper we use the description of free group factors as
the von Neumann algebras of Berezin’s deformation of the upperhalf plane,
modulo PSL(2, Z).

The derivative, in the deformation parameter, of the product in the cor-
responding algebras, is a positive — 2 Hochschild cocycle, defined on a dense
subalgebra. By analyzing the structure of the cocycle we prove that there
is a generator, L, for a quantum dynamical semigroup, that implements the
cocycle on a strongly dense subalgebra.

For x in the dense subalgebra, L(x) is the (diffusion) operator

L(x) = Λ(x)− 1/2{T, x},

where Λ is the pointwise (Schurr) multiplication operator with a symbol
function related to the logarithm of the automorphic form ∆. The operator
T is positive and affiliated with the algebra At and T corresponds to Λ(1),
in a sense to be made precise in the paper. After a suitable normalization,
corresponding to a principal value type method, adapted for II1 factors, Λ
becomes (completely) positive on a union of weakly dense subalgebras. More-
over the 2- cyclic cohomology cocycle associated to the deformation may be
expressed in terms of Λ
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1. Introduction

In this paper we analyze the structure of the positive Hochschild cocy-
cle that determines the Berezin’s deformation [4] of the upper halfplane H,
modulo PSL(2, Z).

As described in [27], the algebras At,t>1, in the deformation are II1 fac-
tors, (free group factors, by [15] and [27], based on [33]) whose elements are
(reproducing) kernels k, that are functions on H×H, analytic in the second
variable and antianalytic in the first variable, diagonally PSL(2, Z) invariant
and subject to boundedness conditions (see [27]).

The product k ∗t l of two such kernels is the convolution product

(k ∗t l)(z, ξ) = ct

∫
H

k(z, η)l(η, ξ)[z, η, η, ξ]tdνt(η), z, ξ ∈ H.

Here [z, η, η, ξ] is the cross ratio
(z − ξ)(η − η)

(z − η)(η − ξ)
while dνt is the measure on

the upper half plane, H defined by dνt = (Imη)t−2dηdη, and ct is a constant.

For k, l in a weakly dense subalgebra Ât, that will be constructed later
in the paper, the following 2-Hochschild cocycle is well defined:

Ct(k, l) = the derivative at t, from above, of s → k ∗s l

Clearly

Ct(k, l) =
c′t
ct

(k ∗t l) + ct

∫
H

k(z, η)l(η, ξ)[z, η, η, ξ]t ln[z, η, η, ξ]dν0(η).

In what follows we will prove that Ct is always a completely positive
2-Hochschild cocycle (for example in the sense introduced in [13]). More

precisely, for all k1, k2, . . . , kN in Ât0 , l1, l2, . . . , lN in At, we have that∑
i,j

τAt(l
∗
i Ct(k

∗
i , kj)lj) ≤ 0.

This also holds true for more general, discrete, subgroups of PSL(2, R).
In the case of PSL(2, Z), it turns out that Ct(k, l) behaves like the corre-

sponding cocycle obtained from the generator of a quantum dynamical semi-
group, that is there exists a (necessary completely diffusive, i.e. completely
conditionally negative ) L such that

Ct(k, l) = Lt(k ∗t l)− k ∗t Lt(l)− Lt(k) ∗t l.
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It turns out that L is defined on a unital, dense subalgebra Dt of At, and
that L(k) belongs to the algebra of unbounded operators affiliated with At.
Moreover, by a restricting to a smaller, dense, but not unital subalgebra D0

t ,
the completely positive part of L will take values in the predual L1(At).

The construction of Lt is done by using automorphic forms. Let ∆ be
the unique (normalized) automorphic form for PSL(2, Z) in order 12. Then
∆ is not vanishing in H, so that the following expression

ln ϕ(z, ξ) = ln
(
∆(z)∆(ξ)[(z − ξ)/(−2i)]12

)
= ln ∆(z) + ln ∆(ξ) + 12 ln[(z − ξ)/(−2i)], z, ξ ∈ H

is well defined, and diagonally Γ-invariant, for a suitable choice of the loga-
rithmic function.

Let Λ be the multiplication operator on At, corresponding to pointwise
(Schurr) multiplication of a symbol k by ln ϕ. Then Λ is defined on a weakly
dense subalgebra Dt of At. If {a, b} denotes the Jordan product {a, b} =
ab + ba, then

L(k) = Λ(k)− 1/2{T, k}

where T is related to Λ(1) in a sense made explicit in 9. Moreover by adding
a suitable constant, times the identity operator to the linear map −Λ, we get
a completely positive map, defined on a weakly dense subalgebra.

By analogy with the Sauvageot’s construction ([31]), the 2-Hochschild
cocycle Ct corresponds to a construction of a cotangent bundle, associated
with the deformation. Moreover there is a “real and imaginary part” of
Ct. Heuristically, this is analogous to the decomposition, of d, the exterior
derivative, on a Kahler manifold, into δ and δ (we owe this analogy to A.
Connes).

The construction of the “real part” of Ct is done as follows. One considers
the “Dirichlet form” Et associated to Ct, which is defined as follows:

Et(k, l) = τAt(Ct(k, l)),

defined for k, l in weakly dense, unital subalgebra Ât. Out of this one con-
structs the operator Yt defined by

〈Yt(k), l〉L2(At) = Et(k, l), k, l ∈ Ât.
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The imaginary part of Ct is rather defined as 2-cyclic cohomology cocycle.
The formula for this cyclic ([27], [29]) cocycle is:

Ψt(k, l, m) = τAt([Ct(k, l)− (∇Yt)(k, l)]m), k, l, m ∈ Ât,

with
(∇Yt)(k, l) = Yt(k, l)− kYtl − Yt(k)l.

This is a construction similar to one used in [13].
Let χ be the antisymmetric form defined onD0

t , a weakly dense subalgebra
of At, by the formula

χt(k, l) =
1

2
[〈Λk, l〉 − 〈k, Λ(l)〉].

Then there is a nonzero constant β, depending on t, such that

Ψt(k, l, m) + βτAt(klm) = χt(kl, m)− χt(k, lm) + χt(mk, l),

for k, l, m in D0
t .

We will show in the paper that L2(At) can be identified with the Barg-
mann type Hilbert space of diagonally Γ− invariant functions on H×H, that
are square summable on F ×H, analyic in the second variable and analytic
in the first variable. Here F is a fundamental domain for PSL (2, Z) in H,
and on F ×H we consider the invariant measure

d(z, η)2tdν0(z)dν0(w) =

(
(Im z)1/2(Im η)1/2

|[(z − η)/(−2i)]|

)2t

dν0(z)dν0(w).

With this identification, the “real part” of Ct is implemented is imple-
mented (on Ât) by the analytic Toeplitz operator, on L2(At), (compression
of multiplication) of symbol ln d, The “imaginary part” of Ct is implemented
(on the smaller algebra D0

t ) by the Toeplitz operator, on L2(At), of symbol
1
12

ln ϕ.

The expression that we have obtain for Ct(k, l) = Lt(k ∗t l)− k ∗t Lt(l)−
Lt(k) ∗t l, L(k) = Λ(k)− 1/2{T, k}, is in concordance with known results in
quantum dynamics: Recall that in Christensen and Evans ([8]), by improving
a result due to Lindblad [22] and [16], it is proved that for every uniformly
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normic continuos semigroup (Φt)t≥0, of completely positive maps on a von

Neumann algebra A, the generator L =
d

dt
Φt has the following form:

L(x) = Ψ(x)− 1/2{Ψ(1), x}+ i[H, x],

where Ψ : A → A is a completely positive map and H is a bounded selfadjoint
operator.

For a semigroup of completely positive maps that is only strongly uni-
formly continuous, the generator has a similar form, although L(x), for x in
A is defined as quadratic form, affiliated to the von Neumann algebra A.

Conversely, given L, a minimal semigroup may be constructed under
certain conditions (see e.g. [7], [20], [23], [17] [14]), although the semigroup
might not be conservative (i.e unital) even if L(1) = 0.

If L(x) = Λ(x) + (G∗x + xG), let Λ̂tx = e−tG∗xe−tG. Then in the case of
A = B(H), the corresponding semigroup Φt, verifying the master equation

d

dt
〈Φt(x), ξ, n〉 = 〈L(Φt(x))ξ, η〉

for ξ, η in a dense domain is constructed, by the Dyson expansion ([20])

Φt(x) = Λ̂t(x) +
∑
n≥0

∫
· · ·
∫

0≤t1≤t2≤...≤tn<t

Λ̂t1 ◦Λ ◦ Λ̂t2−t1 ◦ · · · ◦Λ ◦ Λ̂t−tdt1dt2 . . . dtn

which is proved to be convergent ([7], [23]).
It is not clear if a minimal conservative semigroup exists for the quantum

dynamical generator Lt constructed in our paper. The quantum dynamical
generators Lt constructed in this paper have the following formal property:

Assume that there exists families of completely positive maps, (Φs,t)s≥t,
with Φs,t : At → As verifying the following variant of the master equation:

d

ds
(Ψs,t(Φs,t(X)))|s=s0 = Ls0(Ψs0,t(Φs0,t(X))). (1.1)

Then Φs,t would verify the Chapmann Kolmogorov condition:

Φs,tΦs,v = Φs,v; s ≥ t ≥ v, Φss = Id

Moreover
d

ds
(Φs,t(X) ∗s Φs,t(Y ))|s=s0
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would be

Cs0(Φs0,t(X), Φs0,t(Y ))+Ls0(Φs0,t(X))∗s0Φs0,t(Y )+Φs0,t(X)∗s0Ls0(Φs0,t(Y )),

which by the cocycle property would be

Ls0(Φs0,t(X ∗s0 Y )).

Thus
d

ds
(Φs,t(X) ∗s Φs,t(Y )) =

d

ds
Φs,t(X ∗t Y ). If unicity (conservativity)

holds, it would follow that Ψs,tΦs,t(X) would be a (unital) multiplicative map
from At into As.

At present we do not know if this conservativity condition of the minimal
solution and the subsequent considerations hold true.

Acknowledgement.This work was initiated while the author was vis-
iting the Erwin Schroedinger Institute in Wien. This work was completed
while the author was visiting IHP and IHES to which the author is greate-
full for the great conditions and warm receiving. The author acknowledges
enlightening discussion with L. Beznea, P. Biane, A. Connes, P. Jorgensen,
R. Nest, J.L. Sauvageot., L. Zsido

2. Definitions

We recall first some notions associated with the Berezin’s deformation
([4]) of the upper halfplane that were proved in [27] (see also [28]), in the
Γ-equivariant context.

We consider the Hilbert space Ht = H2(H, dνt), t > 1 of square summable
analytic functions on the upperhalf plane H, with respect to the measure
dνt = (=z)t−2dzdz. dν0 is the PSL2(R) invariant measure on H. This spaces
occur as the Hilbert spaces for the series of projective unitary irreducible
representations πt of PSL2(R) on Ht, t > 1 ([30], [26]).

Recall that πt(g), g =

(
a b
c d

)
in PSL2(R) are defined by means of left

translation (using the Möbius action of PSL2(R) on H) by the formula

(πt(g)f)(z) = f(g−1z)(cz + d)−t, z ∈ H, f ∈ Ht.
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Here the factor (cz + d)−t for g =

(
a b
c d

)
is defined by using a preselected

branch of ln(cz + d) on H, which is always possible ([30]). If t = n is an
integer, ≥ 2, then πt is actually a representation of PSL2(R), in the discrete
series.

Let Γ be a discrete subgroup of finite covolume in PSL2(R) and consider
the von Neumann algebra At = {πt(Γ)}′ ⊆ B(Ht)} consisting of all operators
that commute with πt(Γ).

By generalizing a result of [3], [10], [11], [18], it was proved in [27] that
{πt(Γ)}′′ (the enveloping von Neumann algebra of the image of Γ through πt)
is isomorphic to L(Γ, σt), which is the enveloping von Neumann algebra of
the image of the left regular, cocycle representation of Γ into B(l2(Γ))). Thus
L(Γ, σt) is a II1, factor. Here σt is the cocycle coming from the projective,
unitary representation πt.

Therefore, Ht, as a left Hilbert module over {πt(Γ)}′′ ' L(Γ, σt) has

Murray von Neumann dimension (see e.g. [GHJ]) equal to
t− 1

π
covol(Γ)

(this generalizes to projective, unitary representations, the formula in [3],
[10]). The precise formula is

dimL(Γ,σt)Ht = dim{πt(Γ)}′′Ht =
t− 1

π
covol(Γ).

Hence the commutant At is isomorphic to L(Γ, σt) t−1
π

covol(Γ). We use the

convention to denote by Mt, for a type II1 factor M , the isomorphism class
of eMe, with e an idempotent of trace t. If t > 1 then one has to replace M
by M ⊗MN(C) (see [24]).

When Γ = PSL(2, Z) the class of the cocycle σt vanishes (although not
in the bounded cohomology, see [6]). Consequently, since in this case [18]

t− 1

π
covol(Γ) =

t− 1

12
,

it follows that when Γ = PSL(2, Z) we have

At ' L(PSL(2, Z))(t−1)/12.

We want to analyze the algebrasAt by means of the Berezin’s deformation
of H. Recall that the Hilbert space Ht has reproducing vectors et

z, z ∈ H,
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that are defined by the condition 〈f, et
z〉 = f(z), for all f in H. The precise

formula is,

et
z(ξ) = 〈et

ξ, e
t
z〉 =

ct

[(z − ξ)/(−2i)]t
, ξ ∈ H, ct =

t− 1

4π
.

Each operator A in B(Ht) has then a reproducing kernel Â(z, ξ). To
obtain the Berezin’s symbol, one normalizes so that the symbol of A = Id is
the identical function 1.

Thus the Berezin’s symbol of A is a bivariable function on H × H, anti-
analytic in the first variable, analytic in the second and given by

Â(z, ξ) =
〈Aet

z, e
t
ξ〉

〈et
z, e

t
ξ〉

, z, ξ ∈ H.

We have that 〈Aet
z, e

t
ξ〉 is a reproducing kernel for A ∈ B(Ht) and hence

the formula for the symbol ÂB of the composition of two operators A, B in
B(Ht) is computed as

ÂB(z, ξ) · 〈et
z, e

t
ξ〉〈ABet

z, e
t
ξ〉 = 〈et

z, e
t
ξ〉
∫

H
〈Aet

z, e
t
η〉〈Bet

η, e
t
ξ〉dνt(η).

Definition 1.1 By making explicit the kernels involved in the product,
one obtains the following formula: Let Â(z, ξ) = k(z, ξ), B̂(z, ξ) = l(η, ξ),
and let (k ∗t l)(z, ξ) be the symbol of AB in Ht. Then

(k ∗t l)(z, ξ) = ct

∫
H
(k(z, ξ))(l(η, ξ))[z, η, η, ξ]tdν0(η) (2.1)

with [z, η, η, ξ] =
(z − ξ)(η − η)

(z − η)(η − ξ)
.

Here one uses the choice of the branch of ln(z− ξ) ∈ [−π, π] that appears
in the definition of et

z (see [30]).

The above definition can be extended, when the integrals are convergent,
to an (associative) operation on the space of bivariant kernels, by the formula
(2.1). One problem that remains open is to determine when a given bivariant
function represents a bounded operator on Ht.
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Let d(z, η) =
(
(Im z)1/2(Im η)1/2

)
/(|[(z − η)/(−2i)]|) for z, η in H. Then

d(z, η)2 is the hyperbolic cosine of the hyperbolic distance between z, η in H.
The following criteria was proven in [27]

Criterion 2.2 Let h be a bivariant function on H × H, antianalytic in
the first variable, and analytic in the second variable. Consider the following
norm: ‖h‖̂t is the maximum of the following two quantities

sup
z∈H

∫
|h(z, η)|(d(z, η))tdν0(η),

sup
η∈H

∫
|h(z, η)|(d(z, η))tdν0(z).

Then ‖h‖̂t is a norm on B(Ht), finer then the uniform norm, and the
vector space of all elements in B(Ht) whose kernel have finite ‖ · ‖̂t norm, is
an involutive weakly dense, unital, normal subalgebra of B(Ht). We denote

this algebra by B̂(Ht).

In [27] we proved a much more precise statement about the algebra B̂(Ht):

Proposition 2.3.([27]) The algebra of symbols corresponding to B̂(Ht)

is closed under all the product operations ∗s, for s ≥ t. In particular B̂(Ht)

embeds continuously into B̂(Ht) and its image is closed under the product in

B̂(Ht).

Since this statement will play an essential role in proving that the domains
of some linear maps in our paper, are algebras, we’ll briefly recall the proof
of this proposition:

Assume that k, l are kernels such that ‖k‖̂t, ‖l‖̂t < ∞. Consider the
product of k, l in As. We are estimating∫

|(k ∗s l)(z, ξ)||d(z, ξ)|tdν0(ξ).

This should be uniformly bounded in z.
The integrals are bounded by∫ ∫

H2

|k(z, η)||l(η, ξ)||[z, η, η, ξ]|s|d(z, ξ)|tdν0(η)dν0(ζ).

13



F. Rădulescu - Non-commutative Markov processes in free groups factor...

Since obviously

|[z, η, η, ξ]|s =

[
d(z, η)d(η, ξ)

d(z, ξ)

]s

,

the integral is bounded by∫ ∫
H2

|k(z, η)||d(z, η)|t|l(η, ξ)|d(η, ξ)t| ·M(z, η, ξ)dν0(η, ξ).

If we can show that M(z, η, ξ) is a bounded function on H×H×H, then
last integral will be bounded by ‖M‖∞‖k‖̂t‖l‖̂t.

But it is easy to see that

M(z, η, η, ξ) =

∣∣∣∣d(z, η)d(η, ξ)

d(z, ξ)

∣∣∣∣s−t

= |[z, η, η, ξ]|s−t.

This is a diagonally PSL(2, R)-invariant function on H × H × H. Since
d(z, η) is an intrinsic notion of the geometry on H we can replace H by D, the

unit disk. Then the expression of d(z′, ξ′) becomes:
(1− |z′|2)1/2(1− |ξ′|2)1/2

|1− z′ξ′|
,

z′, ξ′ ∈ D. We thus consider M as a function of three variables z′, η′, ξ′ ∈ D.
By PSL(2, R)-invariance when computing the maximum we may let η = 0
and we have

M(z′, 0, ξ′)=

∣∣∣∣d(z, 0)d(0, ξ′)

d(z′, ξ′)

∣∣∣∣s−t

=

∣∣∣∣(1− |z′|2)1/2(1− |ξ′|2)1/2

d(z′, ξ′)

∣∣∣∣s−t

= |(1− z′ξ′)|s−t ≤ 2

since t > 1. This completes the proof of Proposition 2.3.

In [27] we proved that there is a natural symbol map Ψs,t : B(Ht) →
B(Hs) defined as follows:

Definition 2.4. Let Ψs,t : B(Ht) → B(Hs) be the map that assigns to

every operator A in B(Ht), of Berezin’s symbol Â(z, η), z, η ∈ H, the operator

14
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Ψs,t(A) on B(Hs) whose Berezin’s symbol (as operator on Hs) coincides with
the symbol of A. Then Ψs,t is continuous on B(Hs).

A proof of this will be given in Section 4 and we will in fact prove even
more, that is that Ψs,t is a completely positive map.

Obviously one has

Ψs,tΨsv = Ψsv for s ≥ t ≥ v > 1
Ψs,s = Id for s > 1.

Assume k, l represent two symbols of bounded operators in B(Ht). Then
the product h ∗s l makes sense for all s ≥ t. The following definition of
differentiation of the product structure appears then naturally. In this way
we get a canonical Hochschild 2-cocycle associated with the deformation.

Definition-Proposition 2.5. ([27]) Fix 1 < t0 < t. Let k, l be op-

erators in B̂(Ht0). Consider k ∗s l for s ≥ t, and differentiate pointwise
the symbol of this expression at s = t. Denote the corresponding kernel by
Ct(k, l) = k ∗′t l. Then Ct(k, l) corresponds to a bounded operator in B(Ht).
Moreover Ct(k, l) has the following expression

Ct(k, l) =
d

ds
(k ∗s l)

∣∣∣∣
s=t

,

Ct(k, l)(z, ξ) =
ct
′

ct

(k∗sl)(z, ξ)+ct

∫
H

k(z, η)l(η, ξ)[z, η, η, ξ]t ln[z, η, η, ξ]dν0(η).

Moreover (by differentiation of the associativity property) it follows that Ct(k,l)

defines a two Hochschild cocycle on the weakly dense subalgebra B̂(Ht0) (viewed
as a subalgebra of B(Ht) through the symbol map).

We specialize now this construction for operators A ∈ At = {πt(Γ)}′,
that is, operators that commute with the image of Γ in B(Ht). We have the
following lemma, which was proved in [27].

Lemma 2.6. [27] Let Γ be a discrete subgroup of finite covolume in
PSL(2, R). Assume F is a fundamental domain of Γ in H (of finite area
ν0(F ) with respect to the PSL(2, R) - invariant measure dν0 on H). Let
At = {πt(Γ)}′, which is a type II, factor with trace τ . Then
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1) Any operator A in At has a diagonally Γ-equivariant kernel k = kA(z, ξ),
z, ξ ∈ H. (that is k(z, ξ) = k(γz, γξ), γ ∈ Γ, z, ξ ∈ H).

2) The trace τA(k) is computed by

1

ν0(F )

∫
F

k(z, z)dν0(z).

3) More general, let Pt be the projection from L2(H, dνt) onto Ht. Let
f be a bounded measurable function on H, that is Γ-equivariant and let Mf

be the multiplication operator on L2(H, dνt) by f . Let T t
f = PtMfPt be the

Toeplitz operator on Ht with symbol Mf .
Then T t

f belongs to At and

τ(T t
fA) =

1

ν0(F )

∫
F

kA(z, z)f(z)dν0(z).

4) L2(At) is identified with the space of all bivariable functions k on
H × H, that are analytic in the second variable, antianalytic in the first
variable and diagonally Γ-invariant. The norm of such an element k is given
by the formula

‖k‖2,t =
1

area (F )
ct

∫ ∫
F×H

|k(z, η)|2d(z, η)2tdν0(z)dν0(η).

We also note that the algebras B̂(Ht), and the map Ψs,t, s ≥ t, have
obvious counterparts for At. Obviously Ψs,t maps At into As for s ≥ t.

Definition 2.7 ([27]). Let At = B̂(Ht)∩At. Then Ât is a weakly dense
involutive, unital subalgebra of At.

Moreover Ât is closed under any of the operations ∗s, for s ≥ t. This
means that Ψs,t(k)Ψs,t(l) ∈ Ψs,t(Ât) for all k, l in Ât, s ≥ t.

More generally, As is contained in Ât if s < t − 2, and Âr is weakly
dense in At if r ≤ t. (and hence Âr is weakly dense in At if r ≤ t) ([27],
Proposition 4.6).

We also note that, as a consequence of the previous lemma, we can define
for 1 < t0 < t

Ct(k, l) =
d

ds
(k ∗s l)

∣∣∣∣
s=t

for k, l in Ât0
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and we have the expression (0.1) of the kernel.
Another way to define Ct(k, l) is to fix vectors ξ, η in Ht and to consider

the derivative

d

ds
〈(k ∗s l)ξ, η〉Ht = 〈Ct(k, l)ξ, η〉|Ht , ξ, η ∈ Ht.

For k, l in Ât0 , t0 < t this makes sense because k ∗s l is already the kernel

of an operator in Ât0 .

3. Outline of the paper

The paper is organized as follows:

In Section 4, we show, based on the facts proved in [27], that the symbol
maps Ψs,t : At → As, for s ≥ t, are completely positive, unital and trace pre-
serving. Consequently the derivative of the multiplication operation (keeping
the symbols fixed) is a positive, 2-Hochschild cocycle, (see [13]). In particu-
lar the trace of this Hochschild cocycle is a (noncommutative) Dirichlet form
(see [31]).

In Section 5 we analyze positivity properties for families of symbols in-
duced by intertwining operators. As in [18], let S∆ε is the multiplication
operator by ∆ε, viewed as an operator from Ht into Ht+12ε. Then S∆ε

is an intertwiner between πt|Γ and πt+12ε|Γ, with Γ = PSL(2, Z). Here
we use the following branch for ln(cz + d) = ln(j(γ, z)), which appears

in the definition of πt(γ), γ =

(
a b
c d

)
in PSL(2, Z), γ ∈ Γ. We define

ln(j(γ, z)) = ln(∆(γ−1z))− ln ∆(z), which is possible since there is a canon-
ical choice for ln ∆(z).

We use the fact that S∆εS∗∆ε is a decreasing family of operators, converg-
ing to the identity as ε → 0. Let

ϕ(z, ξ) = ∆(z)∆(ξ)[(z − ξ)/(−2i)]12.

Then
ln ϕ(z, ξ) = ln ∆(z) + ln ∆(ξ) + 12 ln[(z − ξ)/(−2i)],

17
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has the property that[(
− 1

12
ln ϕ(zi, zj) +

c′t
ct

)
[(zi − zj)/(−2i)]−t

]
i,j

is a positive matrix for all z1, z2, . . . , zn in H and for all t > 1.

In Section 6 we use the positivity proven in Section 5 to check that the
operator of symbol multiplication by (ln ϕ) (ϕε + Ct) (for a suitable constant
Ct, depending only on t) is well defined on a weakly dense subalgebra of At.
This operator gives a completely positive map on this subalgebra.

By a principal value procedure, valid in a in type II1 factor, we deduce
that multiplication by (− ln ϕ + ct,Ã) is a completely positive map Λ, on a

weakly dense unital subalgebra Ã of At (ct,Ã is a constant that only depends

on t and A). The multiplication by (ln ϕ) maps Ã into the operator affiliated
with At.In particular Λ(1) is affiliated with At. We obtain this results by

checking that the kernels −ϕε − Id

ε
, are decreasing as ε ↓ ε0, ε0 > 0 (up to a

small linear perturbation) to ϕε0 ln ϕ, plus a suitable constant.
This is not surprising as Λ(1) = ln ϕ(z, ξ) fails shortly the summability

criteria for L1(At).

In Section 7, we analyze the derivatives Xt, at t, of the intertwining maps
θs,t : At → As, s ≥ t, with θs,t(k) = S∆(s−t)/12kS∗

∆(s−t)/12 . The derivatives
(Xt) are, up to a multiplicative constant, the operators defined in Section 6.
The operator Xt is defined on a weakly dense unital subalgebra of At.

We take the derivative of the identity satisfied by θs,t, which is

θs,t(k ∗t T t
ϕ(s−t)/12 ∗t l) = θs,t(k) ∗s θs,t(l).

This gives the identity

Xt(k ∗t l) + k ∗t T t
ln ϕ ∗t ϕ = Ct(k, l) + Xtk ∗t l + k ∗t Xtl

which holds on a weakly dense (nonunital) subalgebra.

Based on an estimate, on the growth of the function | ln ∆(z)∆ε(z)|, z ∈
H, for fixed ε > 0, we prove in Section 8 that the positive, affiliated operators
−Λ(1) and −T t

ln ϕ are equal operators. We prove this by showing that there

18
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is an increasing family Aε in At and dense domains D0,D1 (where D0 is
affiliated to At) such that 〈Aεξ, ξ〉 → 〈−Λ(1)ξ, ξ〉 for ξ in D0 and 〈Aεξ, ξ〉 →
〈−Tln ϕξ, ξ〉 for ξ in D1.

In Section 9 we analyze the cyclic cocycle associated with the deformation,
which is obtained from the positive Hochschild cocycle, by discarding a trivial
part.

The precise formula is

Ψt(k, l, m) = τAt([Ct(k, l)− Yt(kl) + (Ytk)l + k(Ytl)]m),

for k, l, m in a dense subalgebra, and

〈Ytk, l〉 = −1/2τAt(Ct(k, l∗)).

We reprove a result in [27], that the cyclic cohomology cocycle Ψ(k, l, m)−
cst τ(klm) is implemented by χt(k, l∗) = 〈Xtk, l〉 − 〈k,Xtl〉 for k, l in a
dense subalgebra. Since the constant in the above formula is nonzero, this
corresponds to nontriviality of Ψt on this dense subalgebra.

In Section 10 we analyze a dual form of the coboundary for Ct(k, l), in
which multiplication by ϕ is rather replaced by the Toeplitz operator of (com-
pressed to L2(At)) multiplication by ϕ. It turns out that the roles of Λ(1)
and T t

ln ϕ are reversed in the functional equation verified by the coboundary.

In the appendix, giving up to the complete positivity requirement, and
on the algebra requirement on the domain of the corresponding maps, we
find some more general coboundaries for Ct, that were hinted in [27].

4. Complete positivity for the 2-Hochschild cocycle
associated with the deformation

In this section we prove the positivity condition on the 2-Hochschild co-
cycle associated with the Berezin’s deformation.

Denote for z, η in H the expression

d(z, η) =
(Imz)1/2(Imη)1/2

[(z − η)/(−2i)]
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and recall that |d(z, η)|2 is the hyperbolic cosine of the hyperbolic distance
between z, η ∈ H.

In [27] we introduced the following seminorm, defined for A ∈ B(Hs),
given by the kernel k = kA(z, ξ), z, ξ ∈ H.
‖A‖̂s = ‖k‖̂s =

= max

(
sup
z∈H

∫
|k(z, η)||d(z, η)|sdν0(η), sup

z∈H

∫
|k(z, η)||d(z, η)|sdν0(z)

)
.

The subspace of all elements A in B(Hs) (respectively As) such that ‖A‖̂s

is finite is a closed, involutive Banach subalgebra of B(Hs), (respectively As)

that we denote by B̂(Hs) (respectively Âs).

In [27] we proved that in fact Âs (or B̂(Hs)) is also closed under any of the
products ∗t, for t ≥ s, and that there is a universal constant cs,t, depending
on s, t, such that

‖k ∗t l‖̂s ≤ cs,t‖k‖̂s‖l‖̂s, k, l ∈ Âs.

Also Âs (or B̂(Hs)) is weakly dense in As (respectively B(Hs)).
Let Ψs,t, s ≥ t > 1, be the map that associates to any A in B(Ht) (re-

spectively At) the corresponding element in B(Hs) (respectively As) having
the same symbol (that is Ψs,t(A) ∈ As has the same symbol as A in At).
Then Ψs,t maps continuously At in As.

In the next proposition we prove that Ψs,t is a completely positive map.
This is based on the following positivity criteria proved in [27].

Lemma 4.1 (Positivity criterion). A kernel k(z, ξ) defines a positive
bounded operator in B(Ht), of norm less then 1, if and only if for all N in
N and for all z1, z2, . . . , zN in H we have that the following matrix inequality
holds

0 ≤
[

k(zi, zj)

[(zi − zj)/(−2i)]t

]N

i,j=1

≤
[

1

[(zi − zj)/(−2i)]t

]N

i,j=1

.

This criterion obviously holds at the level of matrices of elements in
Mp(C)⊗At.

Lemma 4.2 (Matrix positivity criteria). If [kp,q]
p
p,q=1 is a positive matrix

of elements in At then for all N in N, all z1, z2, . . . , zN in H the following
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matrix is positive definite:[
kp,q(zi, zj)

[(zi − zj)/(−2i)]t

]
(i,p),(j,q)∈{1,2,...,P}×{1,2,...,N}

.

Conversely, if the entries kp,q represent an element in At and if the above
matrix is positive, then [kp,q]p,q is a positive matrix in At.

Proof. Let [kp,q]
N
p,q=1 be a matrix in At. Then k = [kp,q] is positive if and

only if for all vectors ξ1, ξ2, . . . ξN in Ht we have that∑
p,q

〈kp,qξp, ξq〉Ht ≥ 0.

Since kp,q = Ptkp,qPt, where Pt is the projection from L2(H, νt) onto Ht it
turns out that this is equivalent with the same statement which new must
be valid for all ξ1, ξ2, . . . ξN in L2(H, νt).

Thus we have that∑
p,q

∫ ∫
H2

kp,q(z, w)

[(z − w)/(−2i)]t
ξp(z)ξq(w)dνt(z)dνt(w) ≥ 0

for all ξ1, ξ2, . . . ξN in L2(D, νt). We let the vectors ξp converge to the Dirac

distributions, for all p = 1, 2, ...N ,
∑

i

λipδzi
(Im zi)

−(t−2), for all p = 1, 2, ...N .

By the above inequality we get∑
i,j,p,q

kp,q(zi, zj)

[(zi − zj)/(−2i)]t
λipλjq ≥ 0

for all choices of {λij} in C. This corresponds exactly to the fact that the
matrix [

kp,q(zi, zj)

[(zi − zj)/(−2i)]t

]
(p,i),(q,j)

is positive.

Proposition 4.3. The map Ψs,t : At → As which sends an element
A in At into the corresponding element in As, having the same symbol, is
unital and completely positive.
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Proof. This is a consequence of the fact ([32], [30]) that the matrix[
1

[(zi − zj)/(−2i)]ε

]
i,j

is a positive matrix for all ε, all N , all z1, z2, . . . , zn in H. Indeed

1

[(z − ξ)/(−2i)]ε

(or 1/(1− zξ)ε) is a reproducing kernel for a space of analytic functions, even
if ε < 1/2.

We will now follow Lindblad’s ([22]) argument to deduce that Ct(k, l) is
a completely positive Hochschild 2-cocycle. We recall first the definition of
the cocycle Ct associated with the deformation.

Definition 4.4. Fix t > s0 > 1. Then the following formula defines a
Hochschild 2-cocycle on Âs0.

Ct(k, l)(z, ξ) =
d

ds

∣∣∣∣
s=t
s<t

(k ∗s l)(z, ξ) =

=
c′t
ct

(k ∗t l) (z, ξ) + ct

∫
H

k(z, η)l(η, ξ)[z, η, η, ξ]t ln[z, η, η, ξ]dν0(η).

Indeed, it was proven in [27] that the above integral is absolutely conver-

gent for k, l in Âs0, for any s0 < t.

The above definition may be taught of also in the following way. Fix
vectors ξ, η in Ht and fix k, l in As0 . Then k ∗t l, and k ∗s l make sense for all
s0 < s < t and they represent bounded operators in At. Thus the following
derivative makes sense:

d

ds

∣∣∣∣
s=t
s<t

〈k ∗s lξ, η〉Ht

and it turns out to be equal to

〈Ct(k, l)ξ, η〉Ht .
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In the following lemma we use the positivity of Ψs,t to deduce the complete
positivity of Ct. We recall the following formal formula for Ct that was proved
in [28], [29].

Lemma 4.5. [27] Let 1 < t0 < t and let k, l, m belong to Ât0. Then the
following holds:

τAt(Ct(k, l) ∗t m) =
d

ds
τAs((k ∗s l ∗s m)− (k ∗t l) ∗s m)

∣∣∣∣
s=t
s>t

.

In a more precise notation, the second term is

d

ds
τAs([Ψs,t(k) ∗s Ψs,t(l)−Ψs,t(k ∗t l)] ∗s Ψs,t(m))

∣∣∣∣
s=t
s>t

.

The proof of the lemma is trivial, as long as one uses the absolute con-
vergence of the integrals, which follows from the fact that the kernels belong
to an algebra Ât0 , for some t0 < t.

The positivity property that we are proving for Ct(k, l), is typical for
coboundaries of the form D(ab)−D(a)b− aD(b), where D is the generator
of dynamical semigroup. It is used by Sauvageot to construct the cotangent
bimodule associated with a dynamical semigroup, and much of the proper-
ties in [31] can be transferred to Ct with the same proof. Such positive (or
negative) cocycles appear in the work of Cunz and Connes (see also [9]).

Proposition 4.6. Fix 1 < t0 < t and for k, l in Ât0 define

Ct(k, l) :=
d

ds
(k ∗s l)

∣∣∣∣
s>t
s=t

.

Then for all k1, k2, . . . , kN in Ât0, l1, l2, . . . , lN in At, we have that∑
i,j

τAt(l
∗
i Ct(k

∗
i , kj)lj) ≥ 0.

This is the same as requiring for the matrix (Ct(k
∗
i , kj))i,j to be negative in

MN(At).
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Proof. For s ≥ t, let f(s) be defined by the formula

f(s) = τ

(∑
i,j

(k∗i ∗s kj − k∗i ∗t kj) ∗t (l∗i ∗t lj)

)
.

By using the Ψs,t notation, this is

f(s) =
∑
i,j

τ ((Ψs,t(k
∗
i )Ψs,t(kj)−Ψs,t(k

∗
i kj)) Ψs,t(l

∗
i lj)) .

By the previous lemma, f ′(t) is equal to τ(Ct(k
∗
i , kj)ljl

∗
i ). In this terms,

to prove the statement we must to prove that f ′(t) ≥ 0. Clearly f(t) = 0.
By the generalized Cauchy–Schwarz-Stinespring inequality for completely

positive maps, and since Ψs,t is unital, we get that the matrix

Dij = [Ψs,t(k
∗
i )Ψs,t(kj)−Ψs,t(k

∗
i kj)]

is non-positive. Since Zij = Ψs,t(ljl
∗
i ) is another positive matrix in Mn(As),

we obtain that
f(s) = τAs⊗MN (C)(DZ)

is negative.

So f(s) ≤ 0 for all s ≥ t, f(0) = 0. Hence
d

ds
f(s)

∣∣∣∣
s=t;s>t

is negative.

Appendix (to Section 4)

We want to emphasize the properties of the trace Et(k, l) = −τ(Ct(k, l)),
k, l ∈ At. Clearly Et is a positive form on At, and in fact it is obviously
positive definite. Following [31], one can prove that Et is a Dirichlet form.
The following expression holds for Et.

Lemma 4.7. For 1 < t0 < t, k, l ∈ Ât0 we have that

Et(k, l) =

∫ ∫
F×H

k(z, η)l(z, η)|d(z, η)|2t ln |d(z, η)|dν0(z, η),

where F is a fundamental domain for Γ in H, and

|d(z, η)| =
∣∣∣∣ Im z1/2Im η1/2

[(z − η)/(−2i)]

∣∣∣∣
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is the hyperbolic cosine of the hyperbolic distance between z and η in H.

Recall that L2(At) is identified ([27]) with the Bargmann type Hilbert
space of functions k(z, η) on H×H that are antianalytic in the first variable,
analytic in the second, diagonally Γ-invariant, (that is k(γz, γη) = k(z, η),
γ ∈ Γ, z, η in H), and square summable:

‖k‖2
L2(At)

= ct

∫ ∫
F×H

|k(z, η)|2|d(z, η)|2tdν0(z, η).

Let P t be the projection from the Hilbert space of square summable
functions f on H×H, that are Γ-invariant and square summable:

ct

∫ ∫
F×H

|f(z, η)|2|d(z, η)|2tdν0(η)dν0(z) < ∞.

The following proposition is easy to prove, but we won’t make any use of
it in this paper.

Proposition 4.8 Let ϕ be a bounded measurable Γ-invariant function on
H×H. Let Tϕ be the Toeplitz operator of multiplication by ϕ on the Hilbert
space L2(At), that is Tϕk = P(ϕk), k ∈ L2(At). Then Tϕk = PtkPt, where
the last composition is in At, by regarding k as an element affiliated to At.

Remark. In this setting the positive form Et may be identified with the
quadratic form on L2(At) induced by the unbounded operator Tln d where d =
|d(z, η)| is defined as above.

5. Derivatives of some one parameter families of positive
operators

In this section we consider some parametrized families of completely pos-
itive maps that are induced by automorphic forms (and fractional powers
of thereof). The automorphic forms are used as intertwining operators be-
tween the different representation spaces of PSL(2, Z), consisting of analytic
functions.
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It was proved in [18] that automorphic forms f for PSL(2, Z) of weight-k,
provide bounded multiplication operators Sf : Ht → Ht+k. The bounded-
ness property comes exactly from the fact that one of the conditions for an
automorphic forms f of order k is

sup
z∈H

|f(z)|2Im zk ≤ M,

which is exactly the condition that the operator of multiplication by f from
Ht into Ht+k be norm bounded by M .

Secondly, the automorphic forms, have the (cocycle) Γ-invariance prop-
erty as functions on H, that is

f(γ−1z) = (cz + d)−kf(z), z ∈ H, γ =

(
a b
c d

)
∈ PSL(2, Z).

Since πt(γ), πt+k(γ) act on the corresponding Hilbert space of analytic func-
tions on H, by multiplication with the automorphic factor (cz +d)−t, respec-
tively (cz + d)−t−k, this implies exactly that

πt+k(γ)Sf = Sfπt(γ).

Let f, g be automorphic forms of order k. Let F be a fundamental domain
for the group PSL(2, Z) in H. It was proved in [18] that the trace (in At) of
S∗fSg is equal to the Petterson scalar product

1

areaF
〈f, g〉 =

1

areaF

∫
F

f(z)g(z)(Im z)kdν0(z). (∗)

In the next lemma we will prove that the symbol of SfS
∗
g , as an operator

on Ht, belonging to At, (the commutant of PSL(2, Z)) is (up to a normaliza-
tion constant) f(z)g(ξ)[(z − ξ)/(−2i)]k.

In particular this shows that the above formula (∗) is explained by the

trace formula τAt(k) =
1

areaF

∫
F

k(z, z)dν0(z), applied to the operator k =

SfS
∗
g .

The role of the factor [(z−ξ)/(−2i)]k is to make the function f(z)g(ξ)[(z−
ξ)/(−2i)]k diagonally PSL(2, Z)-invariant. It is easy to observe that S∗fSg is

the Toeplitz operator on Ht with symbol f(z)g(z)(Im z)k. Note that, to form
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SfS
∗
g , we have the restriction k < t − 1, because S∗g has to map Ht into a

space Ht−k that makes sense.
We observe that the symbol of SfkS∗g for an operator k on Ht+k of symbol

k = k(z, ξ) is
ct−p

ct

f(z)g(ξ)[(z − ξ)/(−2i)]pk(z, ξ),

if f , g are automorphic forms of order p.
This also explains the occurrence of operators of multiplication with sym-

bols Φ(z, ξ) on the space L2(At), in this setting. In the terminology of the
Appendix in the previous chapter those are the Toeplitz operators with an-
alytic symbol Φ(z, ξ), a diagonally a PSL(2, Z)-invariant function. In the
present setting, to get a bounded operator, we map L2(At+k) into L2(At),
by multiplying by f(z)g(ξ)[(z − ξ)/(−2i)]k. In this chapter we will analyze
the derivatives of a families of such operators.

Let ∆(z) be the unique automorphic form for PSL(2, Z) in dimension 12
(this is the first order for which there is a non zero space of automorphic
form).

We rescale this form by considering the normalized function ∆1 =
∆

c
,

where the constant c is chosen so that

sup
z∈H

|∆1(z)|2(Im z)12 ≤ 1.

In the sequel we will omit the subscript 1 from ∆. This gives that the norm
‖S∆‖, as on operator from Ht into Ht+12 is bounded by 1.

As ∆ is a non zero analytic function on the upper halfplane, one can
choose an analytic branch for ln ∆. Consider the Γ-invariant function

ϕ(z, ξ) = ln ∆(z) + ln ∆(ξ) + 12 ln[(z − ξ)/(−2i)]

which we also write as

ϕ(z, ξ) = ln(∆(z)∆(ξ) · [(z − ξ)/(−2i)]12).

Defining πt(γ), for γ in PSL(2, Z) involves a choice of a branch for ln(cz+

d), γ =

(
a b
c d

)
. We define for πt(γ), γ ∈ PSL(2, Z), by using the factor

(cz+d)−t corresponding to the following choice of the logarithm for ln(cz+d) :

27
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ln ∆(γ−1z)− ln ∆(z) = ln(cz + d),

z ∈ H, γ =

(
a b
c d

)
in PSL(2, Z).

By making this choice for πt, restricted to Γ, we do not change the algebra
At, which is the commutant of {πt(Γ)}, but we have the following.

With the above choice for ln(cz + d) and thus for πt(γ), γ ∈ PSL(2, Z),
and for any ε > 0, we have that S∆ε is a bounded operator between Ht and
Ht+12ε, that intertwines πt and πt+12ε, for all t > 1, ε > 0.

In the following lemma we make the symbol computation for operators of
the form SfS

∗
g . Recall that Ht, t > 1 is the Hilbert space analytic functions

on H, that are square-summable under dνt = (Im z)t−2dzdz.

Lemma 5.1. Let f, g be an analytic functions on H, k a strictly positive
integer and t > 1. Assume that Mf = sup

z
|f(z)|2Im zk, Mg = sup

z
|g(z)|2Im zk

are finite quantities.
Let Sf , Sg be the multiplication operators from Ht into Ht+k by the func-

tions f, g. Then Sf , Sg are bounded operators of norm at most Mf , Mg

respectively.
Moreover the symbol of SfS

∗
g ∈ B(Ht) is given by the formula

ct−k

ct

f(z)f(ξ)[(z − ξ)/(−2i)]k.

Proof. Before starting the proof we’ll make the following remark that
should explain the role of the constant ct (= (t− 1)/4π) in this computation.

Remark. The quantity ct is a constant that appears due to the normal-
ization in the definition of Ht, where we have chosen

‖f‖2
Ht

=

∫
H
|f(z)|2(Im z)t−2dzdz.

Consequently the reproducing vectors et
z, (defined by 〈f, et

z〉 = f(z), f ∈ Ht,
z ∈ H), are given by the following formula: ([5], [25])

et
z(ξ) = 〈et

z, e
t
ξ〉 =

ct

[(z − ξ)/(−2i)]t
, z, ξ ∈ H.

28
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Consequently the normalized symbol of an operator A in B(Ht) is given

by the formula kA(z, ξ) =
〈Aet

z, e
t
ξ〉

〈et
z, e

t
ξ〉

, z, ξ in H.

In the product formula we have that the symbol kAB(z, ξ) of the product
of two operators A, B on Ht with symbols kA, kB is given by

〈et
z, e

t
ξ〉kAB(z, η) = 〈ABet

ze
t
ξ〉 =

∫
H
〈Aet

z, e
t
η〉〈Bet

η, e
t
ξ〉dνt(η).

Thus

kAB(z, ξ) = 〈et
z, e

t
ξ〉
∫

H
kA(z, η)〈et

z, e
t
η〉kB(η, ξ)〈et

η, e
t
ξ〉dνt(η)

=
[(z − ξ)/(−2i)]t

ct

∫
H

kA(z, η)
ct

[(z − η)/(−2i)]t
kB(η, ξ)

ct

[(η − ξ)/(−2i)]t
dνt(η)

= ct

∫
H

kA(z, η)kB(η, ξ)[z, η, η, ξ]dν0(η).

This accounts for the constant ct that occurs in front of the product
formula (otherwise if we proceed as in [5] and include the constant ct in the
measure dνt, the constant will still show up in the product formula).

In the proof of the lemma we use the following observation.

Observation 5.2. Let f, Ht, Sf be as in the statement of Lemma 5.1.
Let et

z, et+k
z be the evaluation vectors at z, in the spaces Ht and Ht+k. Then

S∗fe
t+k
z = f(z)et

z, z ∈ H.

Proof. Indeed, since we will prove the boundedness of Sf , we can check
this by evaluating on a vector g in Ht. We have

〈S∗fet+k
z , g〉Ht = 〈et+k

z , (Sf )g〉Ht+k
= 〈et+k

z , fg〉 = 〈fg, et+k
z 〉 = fg(z).

On the other hand:

〈f(z), et
z, g〉Ht = f(z)〈et

z, g〉Ht = f(z)〈g, et
z〉Ht = f(z)g(z).

29
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This shows the equality of the two vectors.

We can now go on with the proof of Lemma 5.1.
It is obvious that Sf , Sg unbounded operators of norms Mf , Mg. Indeed

for Sf we have that

|Sfg‖2
Ht+k

=

∫
H
|(Sfg)(z)|dνt+k(z)

=

∫
H
|(fg)(z)|2dνt+k(z)

=

∫
H
|f(z)|2|g(z)|2(Im z)k(Im z)t−2dzdz

=

∫
H
|g(z)|2(|f(z)|2(Im z)k)dνt(z)

≤ Mf

∫
H
|g(z)|2dνt(z).

Hence ‖Sf‖ ≤ Mf .
To prove the second assertion, observe that the symbol k(z, ξ) of SfS

∗
g ,

as an operator on Ht is given by the following formula:

k(z, ξ) =
〈SfS

∗
ge

t
z, e

t
ξ〉Ht

〈et
z, e

t
ξ〉Ht

=
〈S∗get

z, S
∗
fe

t
ξ〉

〈et
z, e

t
ξ〉Ht

=
g(z)〈et−k

z , f(ξ)et−k
ξ 〉Ht−k

〈et
z, e

t
ξ〉Ht

= g(z)f(ξ)
〈et−k

z , et−k
ξ 〉Ht−k

〈et
z, e

t
ξ〉

= g(z)f(ξ)

ct−k

[(z − ξ)/(−2i)]t−k

ct

[(z − ξ)/(−2i)]t

=
ct−k

ct

g(z)f(ξ)[(z − ξ)/(−2i)]k, z, ξ in H.

This also works also for k not an integer (as ln[(z − ξ)/(−2i)] is chosen
once for all).
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Let us finally note that the same arguments might be used to prove the
following more general statement.

Remark. Let f, g be analytic function as in the statement of the lemma,
and let k be an operator in At. Then SfkS∗g which belongs to At+k (if we
think of Sf , Sg as bounded operators mapping Ht into Ht+k) has the following
symbol

ct

ct+k

f(ξ)g(z)[(z − ξ)/(−2i)]kk(z, ξ).

Proof. We have to evaluate

〈SfkS∗ge
t+k
z , et+k

ξ 〉Ht+k

〈et+k
z , et+k

ξ 〉Ht

=
f(ξ)g(z)〈ket

z, e
t
ξ〉Ht

〈et+k
z , et+k

ξ 〉Ht+k

= f(ξ)g(z)
〈ket

z, e
t
ξ〉Ht

〈et
z, e

t
ξ〉Ht

·
〈et

z, e
t
ξ〉Ht

〈et+k
z , et+k

ξ 〉Ht+k

=
ct

ct+k

f(ξ)g(z)[(z − ξ)/(−2i)]kk(z, ξ).

In the next lemma we will deduce a positivity condition for kernels of opera-
tors that occur as generators of parametrized families SfεS∗gε , where f, g are
supposed to have a logarithm on H.

Lemma 5.3. Assume that f is a function as in Lemma 5.1. f is analytic
on H and we assume Mf = sup

z∈H
|f(z)|2(Im z)k is less than 1. Assume that

f is nonzero on H, and choose a branch for ln f and hence for f ε, ε being
strictly positive. Let ϕ(z, η) be the function ln f(z) + ln f(ξ) + k ln[(z − ξ)/
(−2i)] and use this as a choice for ln[f(z)f(ξ)[(z − ξ)/(−2i)]k] = ϕ(z, ξ).
Then for all ε > 0 the kernel:

kϕ(z, η) = kϕ,t,ε(z, ξ) = ϕε(z, ξ)

[
ct−kε

ct

ln ϕ− k
c′t
ct

]

is nonpositive in the sense of At, that is
kϕ(zi, zj)

[(zi − zj)/(−2i)]t
is a nonpositive

matrix for all choices of N ∈ N, z1, z2, . . . , zN ∈ N.
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Proof. By the choice we just made it is clear that the norm of the operator
Sfε is always less that 1. We will also denote by St

fε the corresponding
operators, which act as a contraction from Ht into Ht+kε.

Consider the following operator valued functions, with values in Ht

f(ε) = St−kε
fε

(
St−kε

fε

)∗
Obviously the symbol of f(ε) is (ct−kε/ct)ϕ

ε(z, ξ) and moreover f(0) =
1, f(ε) is a decreasing map because for 0 ≤ ε ≤ ε′, we have that

f(ε′) = St−kε′

fε′

(
St−kε′

fε′

)∗
= St−kε

fε

[
St−kε′

fε′−ε

(
St−kε′

fε′−ε

)∗] (
St−kε

fε

)∗
But the operator in the middle has norm less than 1, and hence we get

that
f(ε′) ≤ St−kε

fε

(
St−kε

fε

)∗
= f(ε).

Fix N , and z1, z2, . . . , zN in H. Then (since the corresponding operators
form a decreasing familly)

g(ε) =

[
f(ε)(zi, zj)

[(zi − zj)/(−2i)]t

]
i,j

is a decreasing family of matrices, and g(0) = Id. Hence g′(ε) must be a
negative (nonpositive) matrix. Note that f(ε)(zi, zj) = (ct−kε/ct)ϕ

ε(zi, zj).
But g′(ε) has exactly the formula stated above, that is

g′(ε) =

ϕε(zi, zj)

[
ln ϕ(zi, zj)

ct − kε

ct

− k
c′t
ct

]
[(zi − zj)/(−2i)]t

This completes the proof.

By collecting the terms together we, and since
c′t
ct

=
1

t− 1
, we obtain, for

all ε ≥ 0 the following

Lemma 5.4. With the notations from the previous lemma, for all ε ≥ 0,
the kernel

kϕ = kϕ,ε,t = ϕε

[
ln ϕ− 1

t− 1− kε

]
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is nonpositive in At. Precisely this means that is all choices of N in N and
z1, z2, . . . , zN in H we have that

kϕ(zi, zj)

[(zi − zj)/(−2i)]t

is a nonpositive matrix.

The following remark will be used later in the proofs.

Remark 5.5 For any s > 1, the identity

τAs(S
∗
gSg) =

cs

cs+k

τAt(SgS
∗
g ),

holds true for any automorphic form g of order k.

Proof. We have that (S∗gSg) is the Toeplitz operator (on Hs) with symbol

|g(z)|2(Im z)k. Hence the trace τAs(S
∗
gSg) is

1

area(F )

∫
F

|g|2(Im z)kdν0(z).

On the other hand the symbol of (SgSg∗) (which is viewed here as an
operator on Hs+k,) is equal to

(z, ξ) →
〈Sg∗e

s+k
z , Sg∗e

s+k
ξ 〉

〈S+k
z , ee+k

ξ 〉
=

cs

cs+k

g(z)g(ξ)[(z − ξ)/(−2i)]k

and hence the trace of later symbol is

cs

cs+k

1

area(F )

∫
F

|g(z)|2(Im z)kdν0(z).

6. Properties of the (unbounded) multiplication maps
by ln[∆(z)∆(ξ)[(z − ξ)/(−2i)]12] on different

spaces of kernels

Let ϕ(z, ξ) = ln(∆(z)∆(ξ)[(z − ξ)/(−2i)]12). In this chapter we want to
exploit the negativity properties of the kernels

ϕε/12

(
1

12
ln ϕ− 1

t− 1− ε

)
.
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By � we denote the operation of pointwise multiplication of symbols. It
is the analogue of Schurr multiplication on matrices or on a group algebra.
When no confusion is possible we will omit the symbol � and just replace it
by ·.

We want to draw conclusions on the properties of the multiplication maps,
defined on a suitable dense subspace of L2(At), by the formula

Λε(k)=k �
(

ϕε/12

[
1

12
ln ϕ− 1

t− 1− ε

])
.

For functions k(z, η) on H × H, that are positive, but do not necessary
represent a positive operator we will introduce the following definition.

Definition 6.1. A function k(z, η) on H×H that is analytic for η and
antianalytic for z will be called positive, for At, if the following matrix[

k(zi, zj)

[(zi − zj)/(−2i)]t

]n

i,j=1

is positive, for all choices of N ∈ N and z1, z2, . . . , zN in H. The space of
such kernels will be denoted by St.

The following remark is a trivial consequence of the fact that the Schurr
product of two positive matrices is positive, and a consequence of the de-
scription for positivity of kernels of operators in At given in Section 4.

Proposition 6.2 For all numbers r, s > 1, the vector space
(Ar)+ � Ss is contained in Sr+s and (Ar)+ ⊆ Sr.

Proof. Just observe that in fact Ss � Sr is contained in Ss+r.

The problem that we address in this chapter comes from the fact that the
operator

−Λε,r,s(k) = k � ϕε/12

[
− 1

12
ln ϕ +

1

r − 1− ε

]
,

maps k ∈ (As)+ into Sr+s. Also Λε,r,s(k)(z, z) is integrable on F , so it is
tempting to infer that Λε,r,s(k) belongs to L1(Ar+s). In fact we conjecture
that a kernel k(z, η) in St, that is also diagonally integrable on F , corresponds
to an element in L1(At)t. Since we are unable to prove directly the conjecture,
we will use monotonicity properties for the derivatives of ϕε.
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If no constants were involved, we would simply say that ϕε(− ln ϕ) is
the increasing limit of the derivatives, since the second derivative would be
negative. This doesn’t hold exactly, but the constants involved are small
enough and have a neglectable effect on the previous line of reasoning. This
is done in the following lemma.

Lemma 6.3. Let k be a positive kernel in As. Fix v > 1 and let ε > 0 be
small enough. Consider the following elements in As+ε defined by the kernels

λε,v,s(k)(z, ξ) =

[
v − 1− ε

v − 1
ϕε/12(z, ξ)

]
k(z, ξ).

Note that up to a multiplicative constant λε,v,s(k) is the kernel of S∆ε/12kS∗
∆ε/12

in As+ε. Let λ̃ε,v,s(k) be the image (through Ψv+2s,v+ε) of this kernel in Av+2s.

Then λ̃ε,v,s(k) is a decreasing family of positive kernels representing el-
ements in Av+2s and there exists a negative element M(k) = Mε,v,s(k) in
−L1(Av+2s)+, such that M(k) is the derivative with respect to ε:

M(k) =
d

dε
λ̃ε,v,s(k) (∗)

The derivative is computed in the strong convergence topology, on a dense
domain D ⊆ Hv+2s, affiliated with Av+2s.

The symbol of Mε,v,s(k) as an operator in Hv+2s is equal to

Λε,v,s(k)(z, ξ) =
v − 1− ε

v − 1
k(z, ξ)ϕε/12

[
1

12
ln ϕ− 1

v − 1− ε

]
.

Proof. For simplicity of the proof well use the notation ϕ1 = ϕ1/12. We
prove first that the family λε,v,s(k) is a decreasing family in Av+s+ε and hence
in Av+2s.

Indeed
v − 1− ε

v − 1
ϕε

1(z, ξ) is a decreasing family of operators in Av, and

hence by Proposition 6.2 it follows that

v − 1− ε

v − 1
ϕε

1(z, ξ)k(z, ξ)

is a decreasing family in Sv+s, and hence in Sv+s+ε. Since we know that these
operators are already bounded in Av+ε, the first part of the statement follows
immediately.
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Denote by G(ε) = G(ε)(z, ξ) the kernel represented by

v − 1− ε

v − 1
ϕε

1(z, ξ)k(z, ξ),

which represent therefore a (decreasing) family in Av+s+ε and hence in Av+2s.
Fix ε0 > 0 and let

gε(z, ξ) =
G(ε)(z, ξ)−G(ε0)(z, ξ)

ε− ε0

.

Then gε is a negative (nonpositive) element in Av+2s. We want to find a
formula for gε′−gε. Obviously when ε converges to ε0, the kernel gε converges
(at least pointwise) to the kernel Λε0,v,s(k)(z, ξ).

It is elementary calculus to find the following pointwise expression for
Hε′,ε(z, ξ) = gε′(z, ξ)− gε(z, ξ).

Hε,ε′ = (ε− ε′)

1∫
0

 1∫
0

tG′′(ε(t, s))ds

 dt (6.2)

where ε(t, s) = s[(1− t)ε0 + tε]+(1−s)[(1− t)ε0 + tε′] belongs to the interval
determined by ε, ε′, ε0.

This formula holds, at the level of kernels (that is by evaluating both
sides on any given points z, ξ ∈ H).

On the other hand we may compute immediately because

G(ε) =
1

v − 1
[(v − 1− ε)ϕε

1]k

that

G′(ε) =
1

v − 1
[(v − 1− ε)ϕε

1 ln ϕ1 − ϕε
1]k

G′′(ε) =
1

v − 1
[(v − 1− ε) ln2 ϕ1 − 2 ln ϕ1]ϕ

ε
1 · k.

Furthermore we have the following expression for G′′(ε)

G′′(ε) =
v − 1− ε

v − 1
ϕε

1 · k
[
ln2 ϕ1 −

2

v − 1− ε
ln ϕ1

]
=

v − 1− ε

v − 1

{
k

[
ϕ

ε/2
1

(
− ln ϕ1 +

1

v − 1− ε

)]2

− kϕε
1

(v − 1− ε)2

}
.
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Thus we obtain further that

G′′(ε) =
v − 1− ε

v − 1
k

[
ϕ

ε/2
1

(
− ln ϕ1 +

1

v − 1− ε

)]2

− kϕε
1

(v − 1− ε)(v − 1)
.

But because of the previous Propositions 6.2 and Lemma 6.4 we have
that[

ϕ
ε/2
1

(
− ln ϕ1 +

1

v − 1− ε

)]2

=

[
ϕ

ε/2
1

(
− ln ϕ1 +

1

v − ε/2− 1− ε/2

)]2

represents the square of an element:

ϕ
ε/2
1

(
− ln ϕ1 +

1

v − 1− ε

)
in Sv−ε/2. The square of the above element consequently belongs to S2v−ε.

Hence

R(ε) = k

[
ϕ

ε/2
1

(
− ln ϕ1 +

1

v − 1− ε

)]2

,

as a kernel, belongs to Ss+2v−ε ⊆ Ss+2v.
In conclusion we have just verified that

G′′(ε) = R(ε)− kϕε
1

(v − 1)(v − 1− ε)
,

where R(ε) belongs to S2v+s.
Moreover, it is obvious that

Q(ε) =
kϕε

1

(v − 1)(v − 1− ε)

is a bounded element in Av+2s, and that Q(ε) is consequently bounded by a
constant C, independent of all the variables v, s, ε.

Q(ε) ≤ C · Id in A2v+s

and hence
Q(ε) ≤ C · Id in S2v+s.
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We put this into the integral formula for

Hε,ε′ = g(ε)− g(ε′) =
G(ε)−G(ε0)

ε− ε0

− G(ε′)−G(ε0)

ε′ − ε0

to obtain that Hε,ε′ is of the form (ε− ε′) [R−Q] where R belongs to S2v+s

and Q belongs to (Av+2s)+ and 0 ≤ Q ≤ C · Id.
But then R belongs to Av+2s ∩ Sv+2s and hence R ∈ (Av+2s)+.
Thus, we obtain that in Av+2s, we have that (assuming ε− ε′ ≥ 0)

Hε,ε′ ≥ −(ε− ε′)Q ≥ −(ε− ε′)C

so
Hε,ε′ ≥ −(ε− ε′)C

and therefore
gε − gε′ ≥ C(ε′ − ε)

Hence for ε ≥ ε′ ≥ ε0 we have that gε + Cε ≥ gε′ + Cε′ in Av+2s, for a
fixed, positive constant C.

Now recall that

g(ε) =
G(ε)−G(ε0)

ε− ε0

and that G(ε) itself, was a decreasing family in Av+2s, so that g(ε) are neg-
ative elements in Av+2s.

Denote for simplicity h(ε) = −g(ε). Then what we just obtained is the
following:

The operators h(ε) are positive elements in (Av+2s)+. Moreover h(ε) −
Cε ≤ h(ε′) − Cε′ if ε ≥ ε′, i.e. h(ε) − Cε is a decreasing family. By adding
a big constant k to h(ε) we have that K + h(ε)− Cε is a decreasing family
of positive elements in (As+2v)+.

Thus as ε decreases to ε0 we have that K + h(ε) − Cε is an increasing
family of positive operators in Av+s.

Moreover, as the trace of h(ε) is equal to −τ(g(ε)), which is

−
∫

F

[
v − 1− ε

v − 1
ϕε

1(z, z)− ϕε0
1 (z, z)

v − 1− ε0

v − 1

]
k(z, z)

ε− ε0

dν.
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F. Rădulescu - Non-commutative Markov processes in free groups factor...

This integral converges, (in L1(Fdν0)), to∫
F

d

dε

v − 1− ε

v − 1
ϕε

1(z, z)

∣∣∣∣
ε=ε0

k(z, z)dν0(z)

= −v − 1− ε0

v − 1

∫
F

ϕε0
1 (z, z)

[
ln ϕ1 −

1

v − 1− ε0

]
k(z, z)dν0(z)

which is finite (the convergence is dominated here for example by Cϕε′
1 , for

some ε′ ≤ ε0).
Thus K + h(ε) − C(ε) are an increasing family in At (as ε decreases to

ε0) and the supremum of the traces (in L1(At)) is finite. By Lesbegue’s
Dominated Convergence Theorem in L1(At), the limit of K + h(ε) − C(ε)
exists in L1(At) and convergence is in the strong operator topology on a
dense domain, affiliated with At.

Corollary 6.4. Let Λε,v,s(k), be the map, defined in the previous
lemma, that associates to any positive k in As, a positive element in Av+2s,
whose kernel is given by the formula:

Λε,v,s(k)(z, ξ) =
v − 1− ε

v − 1
k(z, ξ)ϕε/12

[
− 1

12
ln ϕ +

1

v − 1− ε

]
.

Then −Λε,v,s is a completely positive map from As into L1(Av+2s).

Proof. From the previous lemma we know that Λε,v,s(k) is well defined
and belongs to L1(Av+2s). On the other hand Λε,v,s(k) is obtained by mul-
tiplication with a positive kernel in Sv, and hence (as in the proof of the
complete positivity for Ψs,t) we obtain that [Λε,v,s (kpq)]p,q is a positive in

MN(C)⊗ L1(Av+2s), if [kp,q] is a positive matrix in MN(C)⊗As.

Corollary 6.5. Let ε0 > 0 and t > 3 + ε0. Let Λε be defined, on the
space of all symbols k representing operators in

⋃
1<s<t−2−ε0

As, by the formula

Λε0(k) =
d

dε
(k � ϕε)

∣∣∣∣
ε=ε0

.

Note that pointwise derivative of kernels is (ϕε0 ln ϕ)� k.
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Then Λε0(k) belongs to L1(At) and moreover the derivative is valid in the
sense of strong operator topology, on a dense domain, affiliated to At.

Fixing 1 < s < t− 2− ε0, there exists a sufficiently large constant C (de-
pending on s, t, ε0), such that − [Λε0 + Ck � ϕε] (and hence − [Λε0 + C · Id])
becomes a completely positive operator from As into At.

Proof. Because of the condition s < t − 2 − ε0, we can always find a
constant C, by the previous lemma such that the previous lemma applies to
Λε0 + Ck � ϕε.

Corollary 6.6. Fix t > 3. For every 1 < s < t − 2 and for every
k in As there exists an (eventually unbounded) operator Λ(k) (of symbol
multiplication by ln ϕ) that is affiliated with At, and there exists a dense
domain D in Ht, that is affiliated with At, such that the derivative

d

dε
〈k � ϕεξ, η〉Ht

∣∣∣∣
ε=0

exists for all ξ, η in D and it is equal to

〈Λ(k)ξ, η〉.

Moreover there exists a constant, C, depending only on s, t, such that for any
positive matrix [kp,q]

p
p,q=1 in MN(As)+, the operator matrix

− [(Λ + C · Id)(kp,q)]
N
p,q=1

represents a positive operator, affiliated with At.

Remark. The operator k � ϕε appearing in the previous statement is
bounded. Indeed, modulo a multiplicative constant k � ϕε is the symbol of
S∆εkS∗∆ε. If k ∈ As, then S∆εkS∗∆ε belongs to As+12ε, and since s < t, by
choosing ε small enough, we can assume that S∆εkS∗∆ε represents a bounded
operator on Ht, and hence that the expression 〈k�ϕεξ, η〉Ht makes sense for
all ξ, η in Ht.

Before going to the proof of the statement of Corollary 6.6, we prove the
following lemma, (that will be used in the proof of Corollary 6.6), concerning
the operator k�ϕε and the range of the operator Λε,v,s(k) defined in Lemma
6.3.
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Lemma 6.7. With the notations from Lemma 6.3, let k be an operator
in As, v > 1, ε > 0. Let Mε,v,s(k) be the derivative (at ε), which belongs to
L1(Av+2s), of the decreasing family

λ̃ε,v,s(k) =
v − 1− ε

v − 1
ϕε(z, ξ)k(z, ξ).

Then the range and init space of the unbounded operator Mε,v,s(k) are con-
tained (and dense) in the closure of the range of S∆ε ⊆ H2v+s, (more precisely
in closure of the range of S2v+s−ε

∆ε ).

Proof. Indeed, by what we have just proved, Mε,v,s(k) is the strong op-
erator topology limit (on a dense domain affiliated with the von Neumann
algebra), as ε′ decreases to ε, of the operators

Gε′(z, ξ)−Gε(z, ξ)

ε′ − ε
.

Recall that Gε′(z, ξ) was the symbol (modulo a multiplicative constant) of
the operator S∆ε′kS∗

∆ε′ .
Then by applying (Gε′−Gε′)/(ε

′−ε) to any vector ξ in Ht, the outcome is
already a vector in the closure of the range of S∆ε . This property is preserved
in the limit. By selfadjointness the same is valid for the init space.

We proceed now to the proof of Corollary 6.6.

Proof of Corollary 6.6. We start by constructing first the domain D. For
ε0 > 0 let Dε0 ⊆ Ht be the range of (St

∆ε0 )
∗, considered as an operator from

Ht+12ε0 into Ht. D will be the increasing union (after ε0) of Dε0 .
Let Bε0 be a right inverse, as an unbounded operator for the operator

S∆ε0 . Thus Bε0 acts from a domain dense in the closure of range St
∆ε0 into

Ht. It is clear that Bε0 is an intertwiner affiliated with the von Neumann
algebras At and At+12ε0 (by von Neumann’s theory of unbounded operators,
affiliated to a II1 factor ([24])).

Thus, by denoting Pε0 to the projection onto the closure of the range of
St

∆ε0 in Ht+12ε0 , the following properties hold true:

(St
∆ε0 )Bε0 = Pε0.

By taking the adjoint, we obtain

B∗
∆ε0

(
St

∆ε0

)∗
= Pε◦ .
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All compositions make sense in the algebra of unbounded operators affil-
iated with At, and At+12ε0 . On Ht+12ε0 , we let Mε0(k) be the L1 operator,
given by Corollary 3.4, whose symbol is

k � ϕε0 ln ϕ,

for k in As.
We define Λε0(k) by the following composition:

Λε0(k) =
ct+12ε0

ct

Bε0Mε0(k)B∗
ε0

.

We want to prove that Λε0 does not depend on ε0. Obviously (by [24]),
the operator Λε0(k) is affiliated with At.

Moreover for ξ, η in Dε0 , which are thus of the form

ξ = S∗∆ε0ξ1, η = S∗∆ε0η1,

for some ξ1, η1 in Ht+12ε0 , we have that

〈Λε0(k)ξ, η〉 = 〈Λε0(k)S∗∆ε0ξ1, S
∗
∆ε0η1〉Ht .

This is equal to

ct+12ε0

ct

〈Bε0Mε0(k)B∗
ε0

S∗∆ε0ξ1, S
∗
∆ε0η1〉Ht

=
ct+12ε0

ct

〈Pε0Mε0(k)Pε0ξ1, η1〉Ht+12ε0
.

Because of Lemma 6.7, we know that this is further equal to

ct+12ε0

ct

〈Mε0(k)ξ1, η1〉.

We use the above chain of equalities to deduce that the definition of
Λε0(k) is independent on the choice of ε0.

Indeed assume we use another ε′0, which we assume to be bigger than ε0.
Assume ξ = S∗

∆ε′0
ξ2. This is further equal to S∗∆ε0S

∗
∆(ε′0−ε0)ξ2.

Then, by redoing the previous computations we arrive to the term

ct+12ε′0

ct

〈Mε′0
(k)ξ2, η2〉.
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But on the other hand in this situation

〈Mε0(k)ξ1, η1〉 =
ct+12ε0

ct

〈Mε0(k)S∗
∆(ε′0−ε0)ξ2, S

∗
∆(ε′0−ε0)η2〉

=
ct+12ε0

ct

〈S
∆(ε′0−ε0)Mε0(k)S∗

∆(ε′0−ε0)ξ2, η2〉.

To show independence on the choice of ε0, we need consequently to prove
that

ct+12ε0

ct

〈S
∆(ε′0−ε0)Mε0(k)S∗

∆(ε′0−ε0)ξ2, η2〉

is equal to
ct+12ε0

ct

〈Mε′0
(k)ξ2, η2〉.

Now all the operators are in L1. Moreover the symbol of

S
∆(ε′0−ε0)Mε0(k)S∗

∆(ε′0−ε0)

is
ct+12ε0

ct+12ε′0

ϕε′0−ε0

times the symbol of Mε0(k).

But the symbol of Mε0(k) is ϕε0 ln ϕ divided by
ct+12ε0

ct

.

This shows independence of the choice on ε0 (some care has to be taken
when choosing ξ1, η1, ξ2, η2 given ξ, η). We always choose them in the init
space of S∗∆ε0 , respectively S∗

∆ε′0
. By the von Neumann theorem we will be

able to choose a common intersection domain for these operators.
Consequently to check that the derivative of 〈h � ϕεξ, η〉Ht at ε = 0 is

equal to the operator Λ(k) introduced in the statement of Corollary 6.6, we
only have to check this for vectors ξ, η, that we assume to be of the form

ξ = S∗∆ε0ξ1, η = S∗∆ε0η1.

Then, modulo a multiplicative constant 〈k � ϕεξ, η〉Ht becomes

〈k � ϕε+ε0ξ1, η1〉Ht+ε .

By a change of variables the derivative at 0 of 〈k � ϕεξ, η〉Ht becomes
the derivative at ε0 of the later expression: 〈k � ϕεξ1, η1〉Ht+ε . Up to a
multiplicative constant, this derivative exists and it is equal to 〈M(k)ξ1, η1〉,
which is by definition 〈Λ(k)ξ1, η1〉.

43
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Finally observe that for any constant C, 〈(Λ(k) + C)ξ1, η1〉 is equal to

Bε0(Mε0(k) + C ′S∆ε0kS∗∆ε0 )B
∗
ε0

for a constant C ′ obtained from C by multiplication by a normalization factor
depending on t and ε0.

Consequently, if [kp,q]p,q is a positive matrix in As, then by using the
complete positivity result of Lemma 6.3, we infer that the matrix

− [Mε0 (kp,q) + C ′ϕε0 � kp,q]p,q

represents a positive operator in Mp(C)⊗ (At+ε0)+.
Since ϕε0 � kp,q is S∆ε0kp,qS

∗
∆ε0 , we get that − [Λ(kp,q)]

p
p,q=1 is a positive

matrix of operators affiliated to Mp(C)⊗At.

Remark 6.8. If want to deal with less general operators, (paying the
price of not including the identity operator in the domain of Λ), then we
can take operators of the form S∆ε0kS(∆ε0 )∗ that belong to As, s < t − 2,
s−ε0 > 1, and then Λ(k) will be in L1(At), for such a kernel k, directly from
the Lemma 3.3.

7. Construction of an (unbounded) coboundary for the
Hochschild cocycle in the Berezin’s deformation

In this section we analyze the 2-Hochschild cocycle

Ct(k, l) =
d

ds
(k ∗s l)

∣∣∣∣
s=t
s>t

that arrises in the Berezin deformation. We prove that the operator in-
troduced in the previous section (6) may be used to construct an operator
L (defined on a dense subalgebra of At), taking values in the algebra of un-
bounded operators affiliated with At. L will be defined on a dense subalgebra
of At.

The equation satisfied by L is

Ct(A, B) = Lt(A ∗t B)− A ∗t Lt(B)− Lt(A) ∗t B
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F. Rădulescu - Non-commutative Markov processes in free groups factor...

and this will be fulfilled in the form sense (that is by taking the scalar product
with some vectors ξ, η in both sides).

The fact that L takes its values in the unbounded operators affiliated with
At presents some inconvenience, but we recall that in the setting of type II1
factors, by von Neumann theory [24], the algebra of unbounded (affiliated)
operators is a well behaved algebra (with respect composition, sum and the
adjoint operations).

In fact we will prove that L comes with two summands

L(k) = Λ(k)− 1/2{T, k}

where −T is positive affiliated with At and −Λ a completely positive (un-
bounded) map. In the next chapter we prove that T is Λ(1).

For technical reasons (to have an algebra domain for L ), we require that

k ∈ Âs, s < t− 2, since we know (by [27]) that the space of operators in At,
represented by such kernels, is closed under taking the ∗t multiplication (the
multiplication in At).

The operator Λ will be (up to an additive multiple of the identity), mul-
tiplication of the symbol by ln ϕ. This operation is made more precise in
3.6.

If k is already of the form S∆ε0kS∗∆ε0 , for some k in As−ε0 , s − ε0 > 1,
s < t− 2, then Λ(k) is an operator in L1(At). In order to have the identity I
in the domain) we allow Λ to take its values in the operators affiliated with
At.

Consequently Λ(1) is just positive operator, affiliated with At, which cor-
responds to the symbol ln ϕ = ln(∆(z)∆(ξ)[(z − ξ)/(−2i)]12) plus a suitable
multiple of the identity.

To deduce the expression for Ct(k, l) one could argue formally as follows:

Ct(k, l)(z, ξ) =
c′t
ct

(k ∗t l)(z, ξ)

+ ct

∫
H

k(z, η)l(z, ξ)[z, η, η, ξ]t ln[z, η, η, ξ]dν0(η).

(7.1)

At this point to get a Γ-invariant expression, we should decompose ln[z, η,
η, ξ] = ln [((z − ξ)(η − η))/((z − η)(η − ξ))] as a sum of Γ-invariant func-
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tions. The easier way to do that would be to write

ln ϕ[z, η, η, ξ] =
1

12
[ln ϕ(z, ξ) + ln ϕ(η, η)− ln ϕ(η, ξ)− ln ϕ(z, η)].

If we use this expression back in (7.1) we would get four terms which are
described as follows.

The term corresponding to ln ϕ(z, ξ) will come in front of the integral and
give

1

12
ln ϕ(z, ξ)(k ∗t l)(z, ξ).

The term corresponding to ln ϕ(z, η) would multiply k(z, η) and would
correspond formally to 1

12
[(ln ϕ)k] ∗t l.

The term corresponding to ln ϕ(η, η) would give the following integral:

ct

∫
H

k(z, η)(ln ϕ(η, η))l(η, ξ)[z, η, η, ξ]tdν0(η).

This is formally
1

12
k ∗t T

t
ln ϕ ∗t l. If ln ϕ were a bounded function and T t

ln ϕ

the Toeplitz operator with this symbol, this expression would make perfect
sense.

Putting this together we would get

k ∗′t l = Ct(k, l) =
c′t
ct

k ∗t l +
1

12
ln ϕ(k ∗t l)−

[(
1

12
ln ϕ

)
k

]
∗t l

− k ∗t

[(
1

12
ln ϕ

)
l

]
+ k ∗t T t

1/12 ln ϕ ∗t l.

This would give that Ct(k, l) is implemented by the operator

L(k) =

(
1

12
ln ϕ− c′t

ct

)
k − 1

2

{
T(1/12) ln ϕ, k

}
where, by {a, b}, we denote the Jordan product ab + ba.

This means that Ct(k, l) is implemented by the operator L(k), which
resembles to the canonical form of a generator of a dynamical semigroup:
a positive map (− ln ϕ is positive kernel, when adding a constant) minus a
Jordan product.
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To justify such a formula and the convergence of the integrals involved
seems to be a difficult task, so we will follow a somehow different but more
rigorous approach, which consists into defining the operator (− ln ϕ)k, as in
the previous section, as a strong operator topology derivative.

To that end we introduce a family of completely positive maps that canon-
ically connect the fibers of the deformation. These maps arise from automor-
phic forms, viewed (as in [18]) as intertwining operators.

In the next lemma we give a precise meaning for the operator T t
ln ϕ, which

is the (unbounded) Toeplitz operator acting on Ht with symbol ln ϕ.

Lemma 4.1. We define T = T t
ln ϕ, as a quadratic form, by

〈T t
ln ϕξ, ξ〉Ht =

∫
H
(ln ϕ)|ξ|2dνt,

on the domain

D =

{
ξ ∈ Ht |

∫
(ln ϕ)|ξ|2dνt < ∞

}
.

Clearly D is dense in Ht as it contains D0 = ∪
ε>0

Range S∆ε, where S∆ε is

viewed as the operator of multiplication by ∆ε from Ht−ε into Ht.
Moreover T t

ln ϕ is the restriction to Ht of the multiplication operator by
ln ϕ on L2(H, νt). For ξ, η in D0 we have that

〈T t
ln ϕξ, η〉Ht =

d

dε
〈T t

ϕεξ, η〉Ht

∣∣
ε=0

.

Proof. All what stated above is obvious: the last statement is justified
because, if S∆ε0 : Ht−12ε0 → Ht, then S∗∆ε0T

t
ln ϕS∆ε0 is obviously equal to

T t−ε0
ln ϕϕε0 .

In the next lemma we explain the role of automorphic form as comparison
operators between different algebras At (it is a sort of tool for making a
differentiable field out of the algebras At).

Definition 7.2. For s ≥ t, let θs,t : At → As be the completely positive
map associating to k in At the bounded operator in As defined as

θs,t(k) = (S∆(s−t)/12) k (S∆(s−t)/12)
∗
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Clearly the symbol of θs,t(k) is

ct

cs

k(z, ξ)(ϕ(z, ξ))(s−t)/12.

Also we have θs,t(θt,v(k)) = θs,v(k) for all s ≥ t ≥ v.

The following property is a trivial consequence of the definition of θs,t. It
expresses the fact that θs,t has an almost multiplicative structure, as follows.

Lemma 7.3. For s ≥ t the following holds for all k, l in At:

θs,t

(
k ∗t T t

ϕ(s−t)/12 ∗t l
)

= θs,t(k) ∗s θs,t(l).

Proof. This is obvious since θs,t(k)θs,t(l) (with product in As) is equal to

S∆(s−t)/12kS∗∆(s−t)/12S∆(s−t)/12lS∗∆(s−t)/12 .

But an obvious formula (see, e.g., [27]) shows that S∗
∆(s−t)/12S∆(s−t)/12 is equal

to T t
ϕ(s−t)/12 .

We intend next to differentiate the above formula, in s, by keeping t-fixed.
In order to do this we will need to differentiate θs,t(k). One problem that
arrises, is the fact that a priori θs,t(k) belongs rather to As than At. But
if k belongs to some At0 , with t0 < t, and s is sufficiently closed to s, then
θs,t(k) will be (up to a multiplicative constant) represented by the symbol of
θs+t−t0,t0(k). Since s was small, this defines (via Ψt,t−t0+s) a bounded operator
in At. Thus for such k it makes sense to define 〈θs,t(k)ξ, η〉Ht for all vectors
ξ, η in Ht.

We derivate this expression after s. The existence of the derivative, in
the strong operator topology, was already done in the previous chapter. We
reformulate Corollary 6.6, in the new setting.

Lemma 7.4. Let t > 3 and let k belong to As0, where 1 < s0 < t − 2.
Then there exists a dense domain D0 (eventually depending on k), that is
affiliated with At such that the following expression:

〈Xt(k)ξ, η〉Ht =
d

ds

∣∣∣∣
s=t

〈θs,t(k)ξ, η〉Ht
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defines a linear operator Xt on D, that is affiliated (and hence closable) with
At.

Moreover, for a sufficiently large constant C, (depending on s, t) −Xt+C ·
Id becomes a completely positive map with values in the operators affiliated
to At.

Consider the (non-unital) subalgebra Ãs0 ⊆ As0, which is also weakly
dense, consisting of all operators k in As0 that are of the form S∆ε0kS∗∆ε0

(where S∆ε0 maps Hs0−12ε0 into Hs), k belongs to As0−12ε0 and s0 − 12ε0 is
assumed bigger than 1.

Then Xt also maps Ãs into L1(At). For such a k the limit in the definition
of Xt is the strong operator topology on a dense, affiliated domain.

Before going into the proof we make the following remark. (which is not
required for the proof).

Remark. Since the kernel of the operator θs,t(k) (in As) is equal to

ct

cs

· k(z, ξ)[ϕ(z, ξ)](s−t)/12

it follows that Xt(k) is associated (in a sense that doesn’t have to be made
precise for the proof) to (

−ct

c′t
+

1

12
ln ϕ

)
k

which appeared in the formula in the introduction.

Proof of Lemma 4.4. Because of the form of the symbol we may use the
Corollary 6.6.

The main result of our paper shows that, by accepting an unbounded
coboundary, the 2-Hochschild cocycle appearing in the Berezin’s deformation,
is trivial, and the coboundary (which is automatically dissipative) has a
form very similar to the canonical expression of a generator of a quantum
dynamical semigroup.

First we deduce a direct consequence out of the formula in Lemma 7.3.

Proposition 7.5. Fix a number t > 3. Consider the algebra Ãt ⊆ At

consisting of all k ∈ As for some s < t− 2 that are of the form S∆ε0k1S
∗
∆ε0 ,
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for some ε0, (such that s − ε0 > 1) and k1 ∈ As0−ε. Let Xt be the operator
defined in the previous lemma. Then

d

ds

∣∣∣∣
s=t

θs,t

(
k ∗t T t

ϕ(s−t)/12 ∗t l
)

= Xt(k ∗t l) + k ∗t T t
1
12

ln ϕ
∗t l, (7.2)

d

ds

∣∣∣∣
s=t

[θs,t(k) ∗s θs,t(l)] = Xt(k) ∗t l + Ct(k, l) + k ∗t Xt(l), (7.3)

for all k, l ∈ Ãt. Consequently the two terms on the right hand side of (7.2)
and (7.3) are equal, that is

Xt(k ∗t l) + k ∗t T t
(1/12) ln ϕ ∗t l = Xt(k) ∗t l + Ct(k, l) + k ∗t Xt(l).

Before proceeding to the the proof of Proposition 7.5, we note that Ãt

is indeed an algebra (see also the end of this chapter). Assume k, l are
given, but that they correspond to two different choices of s, say s, s′, with
s′ < s. Because Ψs,s′ maps As′ into As, we can assume s = s′. Then when
k = S∆ε0k1S

∗
∆ε0 , l = S ′

∆ε′0
l1S

∗
∆ε′0

, and say ε′0 > ε0. Then we replace the

expression of l as S∆ε0

[
S

∆ε′0−ε0
l1

(
S

∆ε′0−ε0

)∗]
S∗∆ε0 , and choose the new l1 to

be S
∆ε′0−ε0

l1

(
S

∆ε′0−ε0

)∗
.

Proof of Proposition 7.5. We will give separate proofs for each of the
equalities (7.2), (7.3). Of course these are the product formula for derivatives,
but the complicated nature of the operator functions, obliges us to work on
the nonunital algebra Ãt. This might be just a technical condition, that
perhaps could be dropped.

Proof of equality (7.2).

d

ds
θs,t

(
k ∗t T t

ϕ(s−t)/12 ∗t l
)

= Xt(k ∗t l) + k ∗t T t
(1/12) ln ϕ∗ ∗t l

We start with left hand side: Denote Ps = k ∗t T t
ϕ(s−t)/12 ∗t l, for fixed

h, l ∈ Ãt.
We have to evaluate (against 〈·, ξ〉η, where ξ, η belong to a suitable dense

domain D affiliated with At), the expression:

θs,t(Ps)− Pt

s− t
= θs,t

(
Ps − Pt

s− t

)
+

θs,t(Pt)− Pt

s− t
.
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The second term converges when s ↘ t, since Pt = k∗t l, to
d

ds

∣∣∣∣
s=t

θs,t(Pt)

which is by definition Xt(k∗tl). Here we rely on the fact that Ãt is an algebra,
so that k ∗t l belongs to the domain of Xt.

For the limit of the expression θs,t

(
Ps − P

s− t

)
, we note that

Ps − Pt

s− t
= k ∗t T l

hs,t
∗t l,

with

hs,t =
ϕ(s−t)/12 − Id

s− t
.

Assume now that k = S∆ε0k1S
∗
∆ε0 , l = S∆ε0 l1S

∗
∆ε0 .

Then θs,t(k ∗t T t
hs,t

∗t l) is equal to

S∆(s−t)/12

(
(S∆ε0k1S

∗
∆ε0 ) ∗t T t

hs,t
∗t (S∆ε0 l1S

∗
∆ε0 )

)
S∗∆(s−t)/12 .

This is easily seen to be equal to

S∆((s−t)/12)+ε0

[
k1 ∗t−ε0 T t

ϕε0hs,t
∗t−ε l1

]
S∗

∆((s−t)/12)+ε0
=

= θs,t−ε0

(
k1 ∗t−ε0 T t

ϕε0hs,t
∗t−ε0 l1

)
.

Denote P̃s = k1 ∗t−ε0 T t
ϕε0hs,t

∗t−ε0 l1.

As s decreases to t, we have (as ϕε0 ln ϕ is bounded) that P̃s converges
in the uniform operator topology, to k1 ∗t−ε0 T t

1/12ϕε0 ln ϕ ∗t−ε0 l1. This is be-

cause ϕε0(ϕ(s−t)/12 − Id)/(s− t) converges uniformly to
1

12
ϕε0 ln ϕ; since ϕ is

a bounded function.
Also if s is sufficiently closed to t, θs,t−ε(k1) defines for every k1 ∈ At−ε0 a

bounded operator onAt. Indeed θs,t−ε0(k1) has symbol (up to a multiplicative
constant) equal to ϕ(s−t+ε0/12k1. This is well defined as the kernel of an
operator in At, since k1 ∈ At0−ε0 ,

Thus θs,t0−ε can be taught of as a completely positive map from At0−ε

into At. Moreover, θs,t−ε0(1), which is S∆(s−t0+ε)/12S∗∆(s−t0+ε)/12, is less than a

constant C (not depending on s) times the identity.
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Hence the linear maps θs,t0−ε, acting from At0−ε into At, are uniformly
bounded. Consequently, when evaluating∣∣∣〈(θs,t0−ε(P̃s)− θt,t0−ε(P̃t)

)
ξ, η
〉∣∣∣

we can majorize by∣∣∣〈θs,t0−ε(P̃s − P̃t)ξ, η〉
∣∣∣+ ∣∣∣〈(θt,t0−ε − θs,t0−ε) (P̃t)ξ, η〉

∣∣∣ .
The first term goes to zero by uniform continuity of the θs,t0+ε after s,

(and since ‖P̃s − P̃t‖ → 0). The second goes to zero because of pointwise
strong operator topology continuity of the map s → θs,t0−ε.

Thus θs,t ((Ps − Pt)/(s− t)) converges to θt,t0−ε(P̃t) which was

S∆ε0

(
k1 ∗t−ε0 T t

(1/12)ϕε0 ln ϕ ∗ l1
)
S∗∆ε0

which is equal to k ∗t T t
ln ϕ ∗t l.

Proof of the equality (7.3).

d

ds

∣∣∣∣
s=t

θs,t(k) ∗s θs,t(l) = Xtk ∗t l + Ct(k, l) + k ∗t Xt.

We verify this equality by evaluating it on 〈·, ξ〉η, ξ, η ∈ D, where D is a
dense domain, affiliated to At.

We write the expression

θs,t(k) ∗s θs,t(l)− k ∗t l

s− t

as
θs,t(k) ∗s θs,t(l)− θs,t(k) ∗t θs,t(l)

s− t
+

θs,t(k) ∗t θs,t(l)− k ∗t l

s− t
.

We will analyze first the first summand and prove that

θs,t(k) ∗s θs,t(l)− θs,t(k) ∗t θs,t(l)

s− t
(7.4)

converges to Ct(k ∗t l).
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We use the symbols of k, l, and then the symbols of θs,t(k), θs,t(l) are
ϕ(s−t)/12k, ϕ(s−t)/12l, up to multiplicative constants, that we ignore here (be-
cause the argument has a qualitative nature).

Then the symbol of the expression in (7.4) is∫
H

(
kϕ(s−t)/12

)
(z, η)

(
lϕ(s−t)/12

)
(η, ξ)

[z, η, η, ξ]s − [z, η, η, ξ]t

s− t
dν0(η). (7.5)

By the mean value theorem, with αs(v) = sv + (1 − v)t, the expression
becomes∫ 1

0

∫
H

(
kϕ(s−t)/12

)
(z, η)

(
lϕ(s−t)/12

)
(η, ξ)[z, η, η, ξ]αs(v) ln[z, η, η, ξ]dν0(η)dv.

Similarly (by ignoring the numerical factors due to the constants cs) we
have that

Ct(θs,t(k), θs,t(l))

contains the integral∫
H

(
kϕ(s−t)/12

)
(z, η)

(
lϕ(s−t)/12

)
(η, ξ)[z, η, η, ξ]t ln[z, η, η, ξ]dν0(η). (7.6)

Taking the difference, we obtain the following integral:

∫
H

(
kϕ(s−t)/12

)
(z, η)

(
lϕ(s−t)/12

)
(η, ξ)·

·
(

[z, η, η, ξ]s − [z, η, η, ξ]t

s− t
− [z, η, η, ξ]t ln[z, η, η, ξ]

)
dν0(η). (7.7)

By Taylor expansion, this is (s− t) times a term involving the integral:∫
H

(
kϕ(s−t)/12

)
(z, η)

(
lϕ(s−t)/12

)
(η, ξ)[z, η, η, ξ]s

′
(ln[z, η, η, ξ])2 dν0(η) (7.8)

where s′ is the interval determined by s and t.
We have to prove that the integral of the absolute values of the integrands

in the above integral, are bonded by a constant independent on the choices
of s′ (and s).
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We write |[z, η, η, ξ]| = d(z, η)d(η, ξ)/d(z, ξ). Then

| ln |[z, η, η, ξ]|| ≤ | ln |d(z, η)||+ | ln |d(η, ξ)||+ | ln |d(z, ξ)||.

Also we note that the logarithm in ln[z, η, η, ξ] has bounded imaginary part,
as the branches in

ln[(z − η)/(−2i)], ln[(η − ξ)/(−2i)], ln[(z − ξ)/(−2i)]

have imaginary part in the fixed segment [0, 2π].
Thus the term that we have to evaluate will involve terms of the form∫

H

|k′(z, η)||l′(η, ξ)||d(z, η)|s′|d(η, ξ)|sdν0(η)

where k′(z, η) could be kϕ
s−t
12 (z, η), eventually multiplied by a power (1 on 2)

of ln d(z, η) A similar assumption holds for l.
By the Cauchy Schwarz inequality, this expression is bounded by products

of: (∫
|k′(z, η)|2|d(z, η)|2s|d(s)

)1/2(∫
|l′(z, ξ)|2|d(η, ξ)|2sdν0

)1/2

. (7.9)

But such expressions are finite, because we know that k, l are in At0 for
some fixed t0 < t, and hence in L2(At0) and consequently the integral∫

H

|k(z, η)|2|d(z, η)|2t0dν0(η) (7.10)

is finite.
Moreover ϕ(z, ξ) = ∆(z)∆(ξ)[(z − ξ)/(−2i)]12. This term is bounded in

absolute value by |d(z, ξ)|−12, so that |ϕ(z, ξ)|(s−t)/12 is bounded by |d(z, ξ)|s−t

Also | ln |d(z, η)|||d(z, η)|ε is bounded for a any choice of ε.
Thus, by choosing ε small enough, the finiteness of the integral in 7.10

implies the finiteness of the integral in 7.9
Thus the integral in 7.7 tends to zero. This completes the proof that

θs,t(k)xsθs,t(l)− θs,t(k)xtθs,t(l)

s− t
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converges to Ct(k, l)
The remaining term, to be analyzed, is

d

ds

∣∣∣∣
s=t

θs,t(k) ∗t θs,t(l)− k ∗t l

s− t
.

We have to show that the limit is (Xt(k)) ∗t l + k ∗t (Xt(l)) (evaluated on
vectors ξ, η in a dense domain affiliated to At).

Fix the vector ξ, η. Then we have to analyze the following sum〈
θs,t(l)− l

s− t
ξ, θs,t(k

∗)η

〉
+

〈
θs,t(k)− k

s− t
lξ, η

〉
The second term obviously converges to < [Xt(k)∗t]lξ, η > and the first
term, is also convergent to < Xt(l)ξk

∗, η >, because ((θs,t(l) − l)/(s − t))ξ,
for ξ in a dense domain D converges in norm to Xt(l)ξ. Indeed in Corollary
6.6 we proved that (θs,t(l) − l)/(s − t) converges strongly to Xt, on a dense
domain topology, because the convergence (for l = S∆ε0 l1(S

∗
∆ε0 ), l1 ∈ At0−ε0)

comes by proving that the partial fractions −(θs,t(l) − l)/(s − t) increase
(modulo(s− t) times a constant) to −Xtl.

This completes the proof.

We are now able to formulate of our main result. We recall first the
context of this result. The algebras At are the von Neumann algebras ( type
II1 factors) associated with the Berezin’s deformation of H/PSL(2, Z). These
algebras can be realized as subalgebras of B(Ht) where Ht is the Hilbert space
H2(H, (Imzt−2 dzdz).

As such, every operator A in At (or B(Ht)) is given by a reproducing ker-
nel: kA, which is a bivariable function on H, analytic in the second variable,
antianalytic in the first and PSL(2, Z)-invariant. The symbols are normalized
so that the symbol of the identity is the constant function 1.

By using these symbols (that represent the deformation) we can define
the ∗t product of two symbols k, l by letting k ∗t l be the product symbol, in
the algebra At.

The 2- Hochschild cocycle associated with the deformation is defined by

Ct(k, l) =
d

ds
(k ∗s l)

∣∣∣∣
s=t

.
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The Hochschild cocycle condition is obtained by differentiation of the asso-
ciativity identity.

The cocycle Ct is well defined on a weakly dense, unital subalgebra Ât of
At. A sufficient condition that an element in At, represented by a symbol k,
belongs to Ât, is that the quantity ‖k‖t̂, defined as the maximum of

sup
z∈H

∫
|k(z, η)||d(z, η)|tdν0(η)

and

sup
η∈H

∫
|k(z, η)||d(z, η)|tdν0(z),

be finite.
The algebra Ât is the analogue of Jolissaint algebra [19] for discrete

groups.
We proved in Section 5 that the applications Ψs,t which map the operator

A in At into the corresponding operator in As, having the same symbol, are
completely positive.

This property proves that Ct is completely negative, that is for all l1, l2 . . . lN
in At, for all k1, k2 . . . kN in Ât, we have that∑

l∗i c(k
∗
i , kj)lj ≤ 0

This property could be used to construct, as in [31], the cotangent bundle.
In fact, here Ct, or rather −Ct, plays the role of ∇L, where L should be a

generator of a quantum dynamical semigroup Φt, (thus L =
d

ds
Φs

∣∣∣∣
s=0

) and

we have ∇L(a, b) = L(a, b)− aL(b)− L(a)b.
It is well know that ∇L is completely negative ([22]). In our case, the

role of the quantum dynamical semigroup is played by the completely positive
maps Ψs,t that have the property Ψs,tΨt,v = Ψs,v, s ≥ t ≥ v. The generator
L doesn’t make sense here, since Ψs,t takes its values in different algebras,
depending on s.

Instead we use the derivative of the multiplication operation, which for-
mally is

d

ds
Ψ−1

s,t (Ψs,t(k) ∗s Ψs,t(l))

∣∣∣∣
s=t

.

as a substitute for ∇L.
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F. Rădulescu - Non-commutative Markov processes in free groups factor...

All the above is valid for the general Berezin’s deformation of H/Γ, where
Γ is any discrete subgroup of PSL(2, R), of finite covolume.

When specializing to Γ = PSL(2, Z) we construct also the diffusive oper-
ator L, which plays the role of the generator of a dynamical semigroup.

In the next theorem we formulate our main result. We construct explicitly
an operator L such that

L(ab)− L(a)b− aL(b) = Ct(a, b).

We will show that L is well defined on a weakly dense (non-unital) subal-
gebra D0

t and the above relation holds for a, b ∈ D0
t . (which is obtained

by considering suitable subalgebras of Âs, s < t − 2). Moreover L has an
expression that is very similar to the Lindblad ([22],[8],[16], [21]) form of the
generator L of a uniformly continuos semigroup. Recall that this expression
is in the uniform continuous case

L(x) = Φ(x)− 1

2
{Φ(1), x}+ i[H, x],

where Φ is completely positive and H is selfadjoint.
In our case (which is certainly not ([14]) corresponding to the uniformly

continuous case) the generator L(x) is defined rather as a an unbounded
operator (which is the approach taken in ([14], [7], [20], [17], [23]).

We prove that there exists a weakly dense, unital algebra Dt containing
D0

t , and a linear map Λ from Dt into the operators affiliated with At, and a
positive operator that is also a affiliated to At, such that

L(x) = Λ(x)− 1

2
{T, x}.

Also Λ maps D0
t into L1(At)

Moreover Λ has properties that are very similar to a completely posi-
tive map. We prove that there exists an increasing filtration (Brt)1<r<t−2

of Dt, consisting of weakly dense subalgebras, such that, for a constant C0
rt

depending on r, −[Λ + C0
rt·Id] is a completely positive map on Brt

This means that when restricted to Brt, L has the form L(x) = Λ′(x) −
(1/2){T ′, x}, where −Λ′ = −[Λ + C0

r Id] is a completely positive map and
T = T + C0

rt · Id.

Theorem 7.6. Let At, t > 1, with product operation ∗t be the von
Neumann algebra (a type II1 factor) associated with the Berezin’s deformation
of H/PSL(2, Z).
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Let Ct be the 2- Hochschild cocycle associated with the deformation

Ct(k, l) =
d

ds
k ∗s l

∣∣∣∣
s=t

,

which is defined on the weakly dense subalgebra Ât.
Then there exists a weakly dense (non-unital) subalgebra D0

t in Ât ⊆ At

and Lt, a linear operator on D0
t , with values in the algebra of operators

affiliated with At, such that

Ct(k, l) = Lt(kl)− kLt(l)− Lt(k)l, k, l ∈ D0
t .

Note that −Lt is automatically completely dissipative.
Moreover Lt has the following expression. There exists a weakly dense,

unital subalgebra Dt, such that D0
t ⊆ Dt ⊆ Ât, there exists Λt defined on

Dt with values in the operators affiliated to At, and there there exists T , a
positive unbounded operator, affiliated with At such that

Lt(k) = Λt(k)− 1

2
{T, k}, k ∈ D0

t .

Moreover Λt has the following completely positivity properties
1) Λt maps D0

t into L1(At)
2) There exists an increasing filtration of weakly dense, unital subalgebras

(Bs,t)1<s<t−2 of Dt, with ∪sBs,t = Dt and there exist constants Cs,t, such that
−[λt + Cs,t · Id] is completely positive on Bs,t.

Remark. At the level of symbols the operator Λt has a very easy expres-
sion, namely Λt(k) is the pointwise multiplication (the analogue of Schurr
multiplication) of k with the Γ- eqivariant symbol

ln(∆(z)∆(ξ)[(z − ξ)/(−2i)]12).

We identify as in Section 4, L2(At) with a Hilbert space of Γ bivariable func-
tions, analytic in the first variable, and antianalytic in the second. Then
Λ corresponds to the (unbounded) analytic Toeplitz operator with symbol
ln(∆(z)∆(ξ)[(z − ξ)/(−2i)]12).

Proof of Theorem 7.6. This was almost proved in Lemma 6.3 and Propo-
sition 7.5, but we have to identify the ingredients. Here the algebra D0

t is the
union (with respect to s, ε0)

∪
1<s−ε0<s<t−2

S∆ε0As−ε0S
∗
∆ε0 .
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It is obvious that D0
t is an algebra (under the product on At. The algebra

Dt is the union ∪
1<s<t−2

At, viewed as an algebra of At). The algebra Bs,t is

the union (after ε) of ∪
1<s−ε0

S∆ε0As−ε0S
∗
∆ε0 .

The operator T is the Toeplitz operator with symbol (1/12) ln ϕ, while
Λt is Xt, where Xt was defined in Lemas 7.6 and 7.4. In proposition 7.5 we
also proved that

Ct(a, b) = Xt(a ∗t b)−Xt(a) ∗t b− a ∗t Xtb + a ∗t T t
(ln ϕ)/12∗tb, for all a, b ∈ D0

t .

Clearly the term a∗tT
t
(ln ϕ)/12∗tb is a cohomolgicaly trivial term, and hence

Ct(a, b) is implemented by Lt(a) = Xt(a) − 1/2{a, T t
ln(ln ϕ)/12}. Hence Ct is

implemented by Lt = Λt(a) − 1/2{a, T t
(ln ϕ)/12}. All the other properties for

Λt where proven in Section 6.
One also needs to show that the vector spaces Dt = ∪

s<t−2
Âs and

D0
t = ∪

1<s−ε0<s<t−2
S∆ε0 Âs−12ε0S

∗
∆ε0

are indeed algebras (in At). Dt is obviously an algebra, since we proved ([27])

that Âs is closed under ∗v for all v ≥ s. Of course, if we take the product of
different Âs1 and Âs2 we may embedded them in Âmax(s1,s2).

To prove that D0
t is an algebra (in At) we will need to show first that

we are reduced to proving that S∆ε0 ÂS−12ε0S
∗
∆ε0 , for fixed s and ε0 is closed

under the product ∗t in At.
Indeed if we do product for different s, we may simply take the maximum

of s,′ s. If we do a product corresponding to different ε′0s, say ε0 and ε1, then
we choose ε1, to be the largest.

Then observe that for k ∈ As−12ε1

S∆ε1kS∗∆ε1 = S∆ε0 (S∆ε1−ε0kS∗∆ε1−ε0 )S
∗
∆ε0 .

Now S∆ε1−ε0kS∗
∆ε1−ε0

has symbol equal to, (modulo a multiplicative con-
stant) ϕε1−ε0k. Since |ϕ| ≤ d−12, if follows |ϕ|ε ≤ d−12ε and hence that

ϕε1−ε0k belongs to Âs−12ε1+12(ε1−ε0) which is Âs−12ε0 .

Thus S∆ε1 Âs−12ε1S
∗
∆ε1 is contained in S∆ε0 Âs−12ε0S

∗
∆ε0 .

Now we are reduced to show that the product of two elements: S∆ε0k1S
∗
∆ε0

and S∆ε0 l1S
∗
∆ε0 , k, l1 ∈ Âs−12ε0 is again an element in S∆ε0 Âs−12ε0S

∗
∆ε0 .
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But
(S∆ε0 )k1S

∗
∆ε0 ) ∗t (S∆ε0 l1S

∗
∆ε0 )

coincides with
S∆ε0 [k1 ∗t−12ε0 S∗∆ε0S∆ε0 ∗t−12ε0 l1]S∆ε0

Because Âs−12ε0 is closed under the product ∗t−12ε0 it is sufficient to show
that

T t−ε0
ϕε0 = S∗∆ε0S∆ε0

belongs to Âs−12ε0 . But this is a general fact contained in the following
lemma.

Lemma 7.7. Assume f is a bounded, measurable, Γ- equivariant function
on H. Let T t

f be the Toeplitz operator on Ht, with symbol f . Then T t
f belongs

to Ât. Moreover ‖T t
f ‖̂t ≤ ‖f‖∞, where C is a constant depending on t.

Proof. Note the symbol of T t
f is given by the formula [27]

sf (z, ξ) =

∫
H

f(a)[z, a, a, ξ]tdν0(a), z, ξ ∈ H

We have to check that the quantity:

sup
z∈H

∫
H

|Sf (z, ξ)||d(z, ξ)|tdν0(ξ) ≤ ‖f‖∞

(and a similar one) is finite.
But the above integral is bounded by∫∫

H2

|f(a)| | [z, a, a, ξ]|t |d(z, ξ)|t dν0(a, ξ)

=

∫∫
H2

|f(a)|(d(z, a))t(d(a, ξ))tdν0(a, ξ)

=

∫
H2

f(a)(d(z, a))t

(∫
H2

d(a, ξ)tdν0(ξ)

)
dν0(a).
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But the inner integral is a constant Kt, depending just on t and not on
z. Thus we get

Kt

∫
H2

f(a)(d(z, a))tdν0(a) ≤ K2
t ‖f‖∞.

8. Comparison of T t
ln ϕ and Λ(1)(z, ξ) = ” ln ϕ(z, ξ)− (c′t/ct)”

In this chapter we compare Λ(1), which was constructed in Section 6,
with T t

ln ϕ

We recall that Λ(1) is (up to an additive constant depending on the
deformation parameter t)

(S∆ε0 )−1

(
d

dε
S∆εS∗∆ε

∣∣∣∣
ε=ε0,ε>ε0

)
((S∆ε0 )

∗)
−1

where S∆ε is acting on Ht+12ε0 , while S∆ε0 acts from Ht into Ht+12ε0 . The
inverse (S∆ε0 )−1 is an unbounded operator with domain dense is closure of
range of S∆ε0 . We have explained in Section 7 that Λ(1) corresponds, in a
non-specified way, to the kernel: ln ϕ(z, ξ)− (c′t/ct).

Both Λ(1) and T t
ln ϕ are positive and affiliated with At. Also recall from

Section 6, that the above definition for Λ(1) translates into the fact that for
W =

⋃
ε0

Range (St
∆ε0 )

∗
we have that (up to constant)

Λ(1) =
d

dε
〈St

∆ε
(
St

∆ε
)∗

w, w〉Ht = lim
ε↘0

〈S∆εS∗∆ε − Id

ε
w, w〉

Our main result proves that there exists (a possibility different domain)
where T t

ln ϕ is given by the same formula.
The main results is as follows:

Proposition 8.1. There exists a densely defined S0 ⊆ Ht, which is a
core for T t

ln ϕ (though not affiliated with At) such that the following holds
true:
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Let Gε be the bounded operator in At given by (1/ε) (S∆εS∗∆ε − Id). Clearly

Gε has kernel Ĝε(z, ξ) = (1/ε) ((ct/(ct + ε))ϕ(z, ξ)− Id), and the kernels
converge pointwise (as ε tends to 0) to ln ϕ(z, ξ)− (c′t/ct).

Then, for all v1, v2 in S0, we have that

〈Tln ϕv1, v2〉 = lim
ε↘0

〈Gεv1, v2〉

Remark. By comparison, the same holds true for Λ(1), the only differ-
ence is that this happens on a different domain W (in place of S0) which is
affiliated to At.

This will be proved in several steps, divided in the following lemmas.

Lemma 8.2. Let

S =

{
N∑

i=1

λi

(z − ai)
αie

iεiz

∣∣∣∣∣ Reαi > 3, εi > 0, λi ∈ C, N ∈ N

}
.

Then S is contained in all Ht, and dense in all Ht, t > 1.

Proof. Actually Re αi > 1 would be sufficient for the convergence, but
for latter considerations we take 3 instead of 1. It is sufficient to consider a
single term (so N = 1). We omit all the indices for α, a, ε and let λ = 1. We

prove first that f(z) =
1

(z − a)α
eiεz belongs to any Ht. Indeed we have

∫
H

∣∣∣∣ 1

(z − a)α
eiεz

∣∣∣∣2 dνt(z) =

∫
H

1

|z − a|Re α
e−(Im z)ε(Im z)t−2dzdz

which is obviously convergent as Re α ≥ 2.

In the next lemma, we enlarge that space S to exhaust the range of all
S∆ε .

Lemma 8.3. Let S0,t =
⋃
ε>0

∆εS, t− ε > 1. Then S0,t is dense in all Ht,

t > 1.
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Proof. We need only look at S ⊆ Ht−ε and apply the operator S∆ε .

Next we need a bound on Im(ln ∆(z)). Recall that we are using a choice
for ln ∆(z) which comes from that fact that ∆(z) is non zero in H.

Lemma 8.4. Let ln ∆(z) be the principal branch of the logarithm of the
function ∆. Then |Im ln(∆(z))| is bounded by a constant times C

(
Re z + (1/(Imz)2)

)
,

as Imz ↓ 0.

Proof. We let q = e2πiz and use the following expansion for ln ∆(z)

ln ∆(z) =
πiz

12
+
∑
n≥1

ln(1− qn).

When r = |q| = |e2πiz| = e−πy tends to 1 we have, with q = reiθ, z = x+iy
that

Im ln ∆(z) =
πx

12
+
∑
n≥1

arg((1− rn cos nθ) + irn sin nθ) =

=
πx

12
+
∑
n≥1

tan−1

[
rn sin(nθ)

1− rn cos nθ

]
.

As r → 1 this is dominated by

πx

12
+
∑
n≥1

rn sin nθ

1− rn cos nθ

which in turn is dominated by

πx

12
+
∑
n≥1

rn

1− rn

This turns out to be
πx

12
+ (r + r2 + r3 +. . .)

+ (r2 + r4 + r6 + r8)

+ (r3 + r6 + r9+. . .)

+ (r4 + r8 +. . .)

+ (r5 + r10 +. . .)

+. . .
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and this is dominated by
πx

12
+

c

(1− r)2
,

for some constant c.

Letting r = e−2πy, and using that lim
y→0

1− e−2πy

y
is finite, it follows that

|Im ln ∆(x)| ≤ c

(
x +

1

y2

)
= c

(
Re z +

1

(Imz)2

)

Corollary 8.5.. For any ε > 0, then exists a constant cε such that

|∆ε(z) ln ∆(z)| ≤ cε

(
1 +

1

Imz

)(
1 + Re z +

1

(Imz)2

)

Proof. We write

|∆ε(z) ln(∆(z))| ≤ |∆|ε ln |∆(z)|+ |∆(z)|ε|Im(ln ∆(z))

We note that |∆(z)|2Imz12 is a bounded function and hence

|∆(z)| ≤ c1

(Imz)6
.

Also, since |xε ln x| ≤ const ([xε1 , xε2 ]) for x > 0, where ε1 > ε > ε2, we have
that

|∆(z)|ε ln |∆(z)| ≤ const (|∆(z)|ε1 , |∆(z)|ε2)

≤ c max

(
1

(Imz)6ε1
,

1

(Imz)6ε2

)
≤ c

(
1 +

1

(Imz)

)
Similarly

|∆(z)|ε|Im(ln(∆(z)))| ≤ c

(Imz)6ε

[
x +

1

(Imz)2

]
Putting the two inequalities together we get

|∆ε(z) ln(∆(z)))| ≤ c

(
1 +

1

(Imz)
+

1

(Imz)6ε

[
x +

1

(Imz)2

])
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which is thus smaller than

c

((
1 +

1

(Imz)

)
+ x

(
1 +

1

(Imz)

)
+

(
1 +

1

(Imz)

)
1

(Imz)2

)
= c

(
1 +

1

(Imz)

)(
1 + Re z +

1

(Imz)2

)

Corollary 8.6. Because |∆(z)| has the order of growth of |e2πiz| =
e−2πy, y = Imz, it follows, by first splitting ∆ε(z) = ∆ε1(z)∆ε2(z), that the
growth of |∆ε(z) ln ∆(z)| will come from 1/Imz as Imz → 0. Thus the above
estimate can be improved to

|∆ε(z) ln ∆(z)| ≤ c
Rez

(Imz)3

(
e−ε1Imz

)
.

In the next lemma we establish the integral formula for 〈T t
ln ϕv, v〉.

Lemma 8.7. Fix t ≥ 10. For v in S0,t, the integral∫∫
H2

ln ϕ(z, ξ)

(z − ξ)t
v(z)v(ξ)dνt(z, ξ),

is absolutely convergent and equal to∫
H

ln ϕ(z, z)|v(z)|2dνt(z) = 〈T t
ln ϕv, v〉.

Proof. We will make use of the fact that v ∈ S0,t, so that

v(z) = ∆ε(z)v1(z),

for some ε > 0 and for some v1 ∈ S, (which is contained in Ht−ε).
We start by establishing the absolute convergence of the integral. The

integral of the absolute value of the integrands is∫∫
H2

| ln ϕ(z, ξ)||∆ε(z)|
|z − ξ|t

|v1(z)|∆ε(ξ)||v1(ξ)|dνt(z, ξ).
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We expand this into three terms, by using the expression

ln ϕ(z, ξ) = ln ∆(z) + ln ∆(ξ) + 12 ln(z − ξ), for z, ξ ∈ H.

We will analyse each term separetely. Since the situations are similar will do
only the computation for the term involving | ln ∆(z)|. The corresponding
integral is ∫∫

H2

| ln ∆(z)||∆ε(z)|
|z − ξ|t

|v1(z)||∆ε(ξ)||v1(ξ)|dνt(z, ξ) (8.1).

Because (Imz)t/2(Imξ)t/2/|z − ξ|t is bounded above 1, the previous inte-
gral is in turn bounded by the integral∫∫

H2

| ln ∆(z)∆ε(z)||v1(z)||∆ε(ξ)||v2(ξ)|(Imz)t/2−1(Imξ)t/2−1dzdzdξdξ

We use the estimate from Corollary 8.5 to obtain that this integral is
further bounded (up to a multiplicative constant c) by

c

∫∫
H2

Re z

(Imz)3
|v1(z)||v2(ξ)|e−ε1Imze−ε(Imξ)(Imz)t/2−2(Imξ)t/2dzdzdξdξ.

This comes to

c

∫∫
H2

(Rez)|v1(z)||v2(ξ)|e−ε1(Imz)e−ε(Imξ)(Imz)t/2−5(Imξ)t/2dzdzdξdξ.

As long as t/2−5 ≥ 0, the term e−ε1(Imz)(Imz)t/2−5 will be bounded by some
e−ε′1(Imz).

Thus if t ≥ 0, and with the price of replacing ε, ε1 with some smaller
ones, in order to kill growth of (Imz)t/2−5 and (Imξ)t/2−2, we get a multiple
of ∫∫

H2

(Re z)|v1(z)||v2(ξ)|e−ε1Imze−ε2Imξdzdzdξdξ.

But for z = x+iy, |v1(z)| involves powers of 1/x3 which makes the integral
absolutely convergent. Hence the integral in (8.1) is absolutely convergent.
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In the next lemma we will prove that for v ∈ S0, the integral

ct

∫∫
H2

ln[(z − ξ)/(−2i)]

[(z − ξ)/(−2i)]t
v1(z)v2(ξ)dνt(z, ξ)

is absolutely convergent and equal to∫
v1(z)v2(ξ) ln(z − z)dνt(z) +

c′t
ct

.

We now complete the proof of Lemma 8.7:∫
H

ln ϕ(z, z)|v(z)|2dνt(z) =

∫
[ln ∆(z) + ln ∆(z) + 12 ln(z − z)]|v(z)|2dνt(z).

We analyze each term separately:
We have∫
ln ∆(z)v(z)v(z)dνt(z) =

∫
ln ∆(z)v(z)ct

(∫
v(ξ)

(z − ξ)t
dνt(ξ)

)
dνt(z) =

= ct

∫∫
H2

ln(∆(z))v(z)v(ξ)

(z − ξ)t
dνt(z, ξ) = ct

∫∫
H2

ln ∆(ξ)v(ξ)v(z)

[(z − ξ)/(−2i)]t
dνt(z, ξ).

Similarly∫
ln ∆(z)v(z)v(z)dνt(z) = ct

∫∫
H2

ln ∆(z)v(ξ)v(z)

[(z − ξ)/(−2i)]t
dνt(z, ξ).

We know that the integrals are absolutely convergent and that we may
integrate in any order. Finally using the next lemma, we will have that∫
H

ln(Imz)|v(z)|2dνt(z) = ct

∫∫
H2

ln[(z − ξ)/(−2i)]

[(z − ξ)/(−2i)]t
v(z)v(ξ)dνt(z, ξ)−

c′t
ct

〈v, v〉Ht .

Putting this together we get that

〈T(1/12) ln ϕv, v〉

= ct

∫∫
H2

[1/12 ln(∆(z)∆(ξ)[(z − ξ)/(−2i)]12]

[(z − ξ)/(−2i)]t
v(z)v(ξ)dνt(z, ξ)−

c′t
ct

〈v, v〉Ht .
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This completes the proof of Lemma 8.7.

The following lemma was used above.

Lemma 8.8. For v in S0,t, we have that∫
H

ln(Im z)|v(z)|2dνt = ct

∫∫
H2

ln[(z − ξ)/(−2i)]

[(z − ξ)/(−2i)]t
v(z)v(ξ)dνt(z, ξ)−

c′t
ct

〈v, v〉Ht .

Proof. Start with the identity

v(ξ) = cs

∫
H

v(z)

[(z − ξ)/(−2i)]s
dνt(z) = 〈v, et

ξ〉Ht .

We differentiate this after s, at s = t (which is allowed because of the fast
decay of the functions in S0,t).

This gives us

0 =
c′t
ct

v(ξ) + ct

∫
H

v(z)[ln(Im z)− ln[(z − ξ)/(−2i)]]

[(z − ξ)/(−2i)]s
dνt(s).

Now we integrate on H, with respect to the measure v(ξ) · dνt(ξ).
We get

0 =
c′t
ct

‖v‖2
Ht

+ ct

∫∫
H2

v(z)v(ξ) ln Im z

[(z − ξ)/(−2i)]t
dνt(z, ξ)

−
∫∫

H2

ln[(z − ξ)/(−2i)]v(z)v(ξ)

[(z − ξ)/(−2i)]t
dνt(z, ξ).

The second integral is∫
H
|v(z)|2 ln(Im z)dνt(z).

So we get the required identity.
This completes the Lemma 8.7 and also the proof of Lemma 8.8.
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We now prove that the reproducing kernel

1

12
ln
(
∆(z)∆(ξ)[(z − ξ)/(−2i)]12

)
− c′t

ct

is the derivative of (ct/(ct+12(s−t)))S∆(s−t)/12S
∗
∆(s−t)/12 on the space S0,t.

Lemma 8.9. For v1, v2 ∈ S0,t, we have that∫∫
H2

ln ϕ(z, ξ)v1(z)v2(ξ)

[(z − ξ)/(−2i)]t
dνt(z, ξ)

is the limit, when ε ↘ 0, of∫∫
H2

1/ε(ϕ(z, ξ)ε − Id)

[(z − ξ)/(−2i)]t
v1(z)v2(ξ)dνt(z, ξ).

Proof. The convergence of the integrals involved in the limits was proved
in the Lemma 8.7. To check the value of the limit we will evaluate the
difference. This is∫∫

H2

[1/ε(ϕ(z, ξ)ε − Id)− ln ϕ(z, ξ)]

[(z − ξ)/(−2i)]t
v1(z)v2(ξ)dνt(z, ξ).

We use the Taylor formula to express∫∫
H2

[1/ε(ϕ(z, ξ)ε − 1)− ln ϕ(z, ξ)]v1(z)v2(ξ)dνt(z, ξ) =

=

∫∫
H2

ε

1∫
0

ϕεr(z, ξ) ln2 ϕ(z, ξ)]

[(z − ξ)/(−2i)]t
v1(z)v2(ξ)drdνt(z, ξ).

The same type of arguments as in Lemma 8.7, because of the rapid decay
of the vectors v1, v2 in S0,t, proves that the integral

1∫
0

∫∫
H2

ϕεr(z, ξ) ln2 ϕ(z, ξ)

[(z − ξ)/(−2i)]t
v1(z)v2(ξ)dνt(z, ξ)dr
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is absolutely convergent with a bound independent of ε. This completes the
proof of Lemma 8.9.

To complete the proof of Proposition 8.1, it remains to check the fact the
operators Gε = (S∆εS∗∆ε − Id)/ε are decreasing (after making a correction of
the form −Gε + εK, for a constant K. This is done in the following lemma

Lemma 8.10 Consider the bounded operators Gε = (S∆εS∗∆ε − Id)/ε,
which are represented by the kernels

1

ε

[
ct−12ε

ct

ϕ(z, ξ)ε − 1

]
.

Then, there exists a constant K such that −Gε +Kε is, (as ε decreses to 0),
an increasing family of positive operators in A2t+1.

Proof. Note that the kernel of S∆εS∗∆ε is

ct−12ε

ct

[
∆(z)∆(ξ)[(z − ξ)/(−2i)]12

]ε
Hence the derivative is

−12
c′t
ct

+ ln
[
∆(z)∆(ξ)[(z − ξ)/(−2i)]12

]
.

Clearly S∆εS∗∆ε is a decreasing family. We will proceed as in Lemma 6.3.
Let sε = S(ε) be the kernel of S∆εS∗∆ε (as an operator on Ht). Then

sε(z, ξ) =
ct−12ε

ct

(ϕ(z, ξ))ε.

Let Gε = (sε − Id)/ε.
The first derivative of sε (after ε) is

−12
c′t
ct

ϕε +
ct−12ε

ct

ϕε ln ϕ.

The second derivative is

24
c′t
ct

ϕε ln ϕ− ct−12ε

ct

ϕε(ln ϕ)2.
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This is equal to (as c′t = 1)

ct−12ε

ct

ϕε

[
(ln ϕ)2 − 24 ln ϕ

ct−12ε

]
=

ct−12ε

ct

ϕε

[
(ln ϕ) +

12 ln ϕ

ct−12ε

]2

−ct−12ε

ct

ϕε 144

(ct−12ε)2
.

This is further equal to

ct−12ε

ct

ϕε

[
ln ϕ +

12 ln ϕ

ct−12ε

]2

− 144

ct(ct−12ε)
ϕε.

For every r > 1, Sr
∆ε (Sr

∆ε)
∗ = f(ε) is a decreasing family in Ar. By

evaluating the kernel, which is

f(ε)(z, ξ) =
cr−12ε

cr

[ϕ(z, ξ)]ε

we get that
d

dε
f(ε)(z, ξ) is a positive kernel for Ar. Since

cr−12ε =
r − 12ε− 1

π
,

we obtain that
cr−12ε

cr

ϕε ln ϕ− 12
c′r
cr

ϕε

represents a negative kernel for Ar.
We recall, from Section 6, that a kernel k = k(z, ξ) is positive for Ar (even

if k does not necessary represent an operator in Ar), if

[
k(zi, zj)

(zi − zj)r

]N

i,j=1

is a

positive matrix for all choices of z1, z2 . . . zN in H, and for all N in N
We get that

ϕε

(
ln ϕ− 1

cr+12ε

)
represents a negative (nonpositive) kernel for Ar.

Thus ϕε/2 [ln ϕ + (12/(r − 12(ε/2)− (ε/2)− 1))] is negative for Ar+12 ε
2
,

and hence the square

ϕε

ln ϕ +
12

r − 12
ε

2
− ε

2
− 1

2

= ϕε

ln ϕ
12

r − 12
ε

2
− ε

2
− 1

2
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is positive for A2r−12ε.
Consequently the kernels

ct − 12ε

ct

ϕε

[
ln ϕ− 12

t− 12ε− 1

]2

are positive for A2t+13ε

Now we note the trivial calculus formulae

Gε =
S(ε)− Id

ε
=

∫ 1

0

S ′(εv)dv

Gε′ =
S(ε′)− Id

ε′
=

∫ 1

0

S ′(ε′v)dv

The above equalities hold pointwise, that is when evaluating the corre-
sponding kernels on points in H2. Hence

Gε −Gε′ =

∫ 1

0

(S ′(εv)− S ′(ε′v))dv

=

∫ 1

0

(εv − ε′v)

∫ 1

0

S ′′(p(εv) + (1− p)ε′v)dpdv

= (ε− ε′)

∫ 1

0

∫ 1

0

vS ′′(α(v, p))dpdv

where α(v, p) = p(εv) + (1− p)ε′v ≤ max(ε, ε′).
We haved proved that S ′′(α(v, p)) is represented by a positive kernel R,

from which one has to subtract a quantity Q (which is precisely
const

cv−12α(v,p)

ϕα(v,p)).

As such by integration we obtain

Gε −Gε′ = (ε− ε′)[R−Q],

where R represents a positive kernel for A2t−12min(ε,ε′). Moreover Q is pos-

itive element in A2t + 12min(ε, ε′)) and Q is bounded by c·Id, where c is a
universal constant.

Assume that ε ≥ ε′, then in the sense of inequalities in A2r+1 we have
that

Gε −Gε′ ≥ (ε− ε′)(−Q)
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Since 0 ≤ Q ≤ c · Id · Id, we have that 0 ≥ −Q ≥ c · Id · −Id (in A2t+1),
Consequently, in A2t+1, we have that

Gε −Gε′ ≥ (ε− ε′)(−c)

Therefore, the following inequality holds in A2t+1.

Gε + εc ≥ Gε′ + ε′c.

If we take in account that Gε was negative and replace Gε by Hε = −Gε

then we get that in A2t+1 we have that

(−Gε)− εc ≤ (−Gε′)− ε′c

i.e. that if ε ≥ ε′

Hε − εc ≤ Hε′ − εc

We have consequently proved that, in A2t+1, the kernels

Hε(z, ξ) = −Gε(z, ξ) = −

ct − 12ε

ct

ϕε + Id

ε

are positive and they increase (when ε decreases to zero, modulo an infintes-
imal term) to −(c′t/ct) + ln ϕ(z, ξ).

Lemma 8.11. Let M ⊆ B(H) be a type II1 factor and assume that
(Hn)n∈N is an increasing family of positive operators in M . Let

D(X) = {ξ ∈ H | sup 〈Hnξ, ξ〉 < ∞}

and assume that D(X) is weakly dense in H. Then D(X) is affiliated with
M , and 〈Xξ, ξ〉 = supn 〈Hnξ, ξ〉 , ξ ∈ D(X), defines an operator affiliated
with M .

Proof. Clearly D(X) =
{

ξ ∈ H | supn ||H
1/2
n ξ|| < ∞

}
and such that

D(X) is a subspace, because if ||H1/2
n ξ|| ≤ A, ||H1/2

n η|| ≤ B for all n then

||H1/2
n (ξ+η)|| ≤ A+B. Moreover D(X) is clearlyinvariant under u′ ∈ U(M ′),

and hence D(X) is affiliated with M .
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The quadratic linear form qX(ξ) = supn 〈Hnξ, ξ〉 is weakly lower semicon-
tinous, thus qX defines a positive unbounded operator X, affiliated with M ,
with domain D(X).

Corollary 8.12. The following holds:

T t
ln ϕ +

c′t
ct

· Id = Λ(1).

Proof. Let Hε = −Gε + K · Id + Cε, where Gε are as in Lemma 8.10.
Then by definition X = −Λ(1) + K · Id coincides with the supremum of Hε

on S0 = ∪S∗∆ε .
On S0, which is a core for T t

ln ϕ + K · Id, the same holds for T t
ln ϕ + K · Id.

Thus T t
ln ϕ|S0 ⊆ X, hence T t

ln ϕ ⊆ X and so T t
ln ϕ = X = −Λ(1), by [24].

9. The cyclic cocycle associated to the deformation

In [27] we introduced a cyclic cocycle Ψt, which lives on the algebra ∪
s<t
Âs,

and we proved a certain form of non-triviality for this cocycle.
We recall first the definition of the cocycle Ψt and then we will show the

non-triviality of Ψt by using a quadratic form deduced from the operator
introduced in Lemma 6.6 and Lemma 7.4. The main result of this paragraph
will be the following:

Theorem 9.1. Let t > 1, let Bt = ∪
s<t
Âs, which is a weakly dense

subalgebra of At and let Rt be defined on Bt (with values in Bt) by the formula

〈Rtk, l〉L2(At) = −1

2
τAt(Ct(k, l∗)), k, l ∈ Bt

(that is Rt implements the Dirichlet form τt(Ct(k, l∗)).
Let (∇Rt)(k, l) = Rt(k, l)−kRtl−Rt(k)l, which belongs to Bt, if k, l ∈ Bt,

and let Ψt be the cyclic cocycle associated with the deformation ([27])

Ψt(k, l, m) = τAt([Ct(k, l)− (∇Rt)(k, l)]m), k, l,m ∈ Bt.
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Let Λ0 be the operator, on the weakly dense (non-unital subalgebra) D0
t ⊆

At, introduced in Theorem 7.6, by requiring that Λ0(k) is the derivative
at 0, of the operator represented in At by the kernel ϕε(z, ξ)k(z, ξ). Thus
Λ0(k)(z, ξ) is formally k(z, ξ) ln ϕ(z, ξ).

Let χt(k, l) = 〈Λ0k, l∗〉L2(At)− 〈k, Λ0(l
∗)〉L2(At) be the antisymmetric form

associated with Λ0. Then

Ψt(k, l, m) =
c′t
ct

τAt(klm) + χt(k ∗t l,m) + χt(l ∗t m, k) + χt(m ∗t k, l)

for k, l, m ∈ D0
t .

We will split the proof of this result in several steps: First we prove some
properties about Λ0 and its formal adjoint Λ+. We start with the definition
of Λ+. The first lemma collects the definition and basic properties of Λ+.

Lemma 9.2. Let f be a bounded measurable function, that is PSL(2, Z)-
equivariant .

We define Λ+(T t
f ) = T t

f ln ϕ. Then Λ+ has the following properties:
1) Assume in addition that f ln ϕ(z, z) is a bounded function. Then

(Λ0|Dt)
∗ ⊆ Λ+ and

τAt(Λ0(k)(T t
f )
∗) = τAt(kΛ+(T t

f )) =
1

area F

∫
F

k(z, z)f(z) ln ϕ(z, z)dν0(z).

2) For k, l be in D0
t , we have that

τ(kΛ+(T t
f )l) = τ(Λ0(l ∗ k)T t

f ).

Proof. The proof of this propositions is obvious, since integrals are abso-
lutely summable. For part 2 we remark that kΛ+(T t

f )l has symbol

ct

∫
H

k(z, η)[f(η, η) ln ϕ(η, η)]ϕ(η, ξ)dνt(η).

Hence by summability, the trace is

ct

area F

∫ ∫
F×H

k(z, η)l(η, z)f(η, η) ln ϕ(η, η)dνt(z, η)
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which is exactly τ
(
Λ(l ∗ k)T t

f ln ϕ

)
. This completes the proof.

Recall that in Section 5 we introduced the, densely defined, operator Tln d,
on L2(At), given by the formula

〈Tln dk, l〉 =
ct

area F

∫ ∫
F×H

k(z, η)l(z, η) ln d(z, η)|d(z, η)|2tdν0(t, η),

which is well defined for k, l in algebra B̂t. We note that Tln d acts like
a Toeplitz operator on L2(At), with symbol ln d. In the next lemma we
establish the relation between the operator Tln d and the operator Rt.

Lemma 9.3. The operator Rt, defined by the property

〈Rtk, l〉 = −1

2
τ(Ct(k, l))

has the following simple expression in terms of Tln d:

Rt = −1

2

c′t
ct

− 〈Tln dk, l〉, k, l ∈ B̂t.

Proof. Indeed we have that for k, l ∈ Bt ⊆ Ât

Ct(k, l) =
c′t
ct

(k ∗t l) + ct

∫
H

k(z, η)l(η, ξ)[z, η, η, ξ]t ln[z, η, η, ξ]dνt(η).

If we make ξ = z in the above expression and then integrate over F to
get the trace of Ct(k, l), we get

τ(Ct(k, l)) =
c′t
ct

τ(k ∗t l) +
ct

area F

∫ ∫
F×H

k(z, η)l(z, η)|d(z, η)|2t ln d2dνt(η)

=
c′t
ct

τ(k ∗t l) + 2〈Tln ϕk, l〉.

This completes the proof.

In the next lemma we prove a relation between Λ0 + Λ+ and the other
terms (remark that Λ+ is not necessary the adjoint of Λ0, rather we define
Λ+(T t

f ) = T t
f ln ϕ whenever possible).
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Proposition 9.4. For all k, l in D0
t we have:

〈Λ0k, l∗〉+ 〈k, Λ0l
∗〉 = τ(kT t

f ln ϕl) + τ(lT t
f ln ϕk)− 2〈Tln ϕk, l〉. (9.1)

Consequently if we define “ReΛ0” (formwise) by the relation

〈(Re Λ0)k, l〉 =
1

2
(〈Λ0k, l〉+ 〈k, Λ0(l)〉),

then

〈(Re Λ0)k, l∗〉 =
1

2
τ(kT l + lTk) + 〈Rtk, l∗〉+ 1/2

c′t
ct

〈k, l∗〉L2(At) (9.2)

Proof. We prove first the relation (9.1). For k, l ∈ D0
t , we have that

〈Λ0k, l∗〉L2(At) + 〈k, Λ0l
∗〉L2(At)

is equal to

ct

area F

∫ ∫
F×H

[ln ϕ(z, η) + ln ϕ(η, z)]k(z, η)l(η, z)d(z, η)2tdν0(z, η).

Since

ln ϕ(z, η) + ln ϕ(η, z) = ln ϕ(z, z) + ln ϕ(η, η)− ln[d(z, η)]2

we get the relation (9.1).
Dividing by 2 we get

1

2
[〈Λ0k, l∗〉+ 〈k, Λ0(l)

∗〉] =
1

2
[τ(kT t

ln ϕl) + τ(lT t
ln ϕk)]− 〈Tln dk, l∗〉L2(At).

The definition of Rt and previous lemma completes the proof.

Recall that in Section 7 we proved that for all k, l in D0
t we have that

Ct(k, l) =
c′t
ct

Id + kT t
ln ϕl + Λ0(kl)− Λ0(k)l − kΛ0(l). (9.3)

We want to use (9.3) to find an expression for

Ct(k, l)− (∆Rt)(k, l)
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by taking the trace of the product of m ∈ D0
t with the previous expression.

Notation. We denote T = T t
ln ϕ and let 〈Symϕk, l〉 = 1/2[τ(kT l∗) +

τ(l∗Tk)], for k, l ∈ D0
t . Hence

τAt(Symϕ(k)l) =
1

2
[τ(kT l) + τ(lTk)].

In this terminology the relation in Proposition 9.4 becomes

〈(Re Λ0)k, l∗〉 = 〈Symϕk, l〉+ 〈Rtk, l∗〉+
1

2

c′t
ct

〈k, l∗〉.

Note that in the relation above, the scalar product refers to the scalar product
on L2(At). Moreover the following relations hold true.

τ(Symϕ(kl)m) =
1

2
[τ(klTm) + τ(mTkl)] (9.4)

τ((Symϕk)lm) = τ(Symϕ(k)(lm)) =
1

2
[τ(klTm) + τ(lmTk)] (9.5)

τ(k(Symϕ(l))m) = τ(Symϕ(mk)l) =
1

2
[τ(lTmk) + τ(mkTl)]. (9.6)

Lemma 69.5. For all k, l, m in D0
t we have that

E = Symϕ(kl)− (Symϕk)l − k(Symϕl) + kT tl = 0.

To check this, one has to verify that τ(Em) = 0 for all m in D0
t .

Proof. We have to check that the expression

τ(klTm)+τ(mTkl)−τ(kT lm)−τ(lmTk)−τ(lTmk)−τ(mkTl)+2τ(kT lm)

vanishes. But
τ(mTkl) = τ(lmTk),

τ(klTm) = τ(lTmk).

After cancelling the above terms we are left to check that

−τ(kT lm)− τ(mkTl) + 2τ(kT lm)
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is equal to zero, which is obvious since k, l, m ∈ D0
t . This completes the

proof.

We now decompose τ(Λ0(k)l) in the following way

τ(Λ0(k), l∗) = 〈(Re Λ0)(k), l〉+ i〈(Im Λ0)(k), l〉

where
〈(Im Λ0)(k), l∗〉 = (1/2i)[〈Λ0(k), l∗〉 − 〈k, Λ0(l

∗)〉].

We now can proceed to the proof of Theorem 9.1.

Proof of Theorem 9.1. We have

Ct(k, l) =
c′t
ct

kl + kT l + Λ0(kl)− Λ0(k)l − kΛ0(l).

Hence by taking scalar product with an m inAt, i.e. computing τ(Ct(k, l)m)
we obtain

τ(Ct(k, l)m) =
c′t
ct

τ(klm) + τ(kT lm) + τ(Λ0(kl)m)− τ(Λ0(k)lm)− τ(Λ0(k)mk)

=
c′t
ct

τ(klm) + τ([kT l]m) + 〈Re Λ0(kl), m∗〉

− 〈Re Λ0(k), (lm)∗〉 − 〈Re Λ0(l), (mk)∗〉
+ i〈Im Λ0(kl), m∗〉 − i〈Im Λ0(k), (lm)∗〉 − i〈Im Λ0(l), (mk)∗〉.

By using the relation

〈Re Λ0(k), l∗〉 = 〈Rtk, l∗〉+
1

2

c′t
ct

〈k, l∗〉+ 〈Symϕk, l∗〉.

we obtain that τ(Ct(k, l)m) is equal to

τ([(∆Rt)(k, l)]m)

plus the following terms

〈Symϕ(kl), m∗〉 − τ(Symϕ(k)lm)− τ(Symϕ(l)mk), (9.8)
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plus the terms

c′t
ct

τ(klm) +

(
1

2

c′t
ct

− 1

2

c′t
ct

− 1

2

c′t
ct

)
τ(klm), (9.9)

plus the terms

i〈Im Λ0kl,m∗〉 − i〈Im Λ0(k), (lm)∗〉 − i〈Im Λ0(l), (mk)∗〉. (9.10)

The terms in (9.8) add up to zero, as it was proved in Lemma 9.5. The

terms in (9.9) add up to
1

2

c′t
ct

τ(klm).

Since χt(k, l) = 1
2
[〈Λ0k, l∗〉 − 〈k, Λ0l

∗〉] = i〈Im Λ0(k), l∗〉 we obtain by
adding the terms from (9.8), (9.9) (9.10) that

τ(Ct(k, l)m) = τ([(∆Rt)(k, l)]m)+
1

2

c′t
ct

τ(klm)+χt(kl, m)−χt(k, lm)−χt(l,mk).

Thus

Ψt(k, l, m) =
1

2

c′t
ct

+ χt(kl,m)− χt(k, lm)− χt(l,mk).

Lemma 9.6. Let t > 1. Assume that k, l are such that k = k1 ∗t k2,
l = l1 ∗t l2, ki, li ∈ D0

t . Then

τ(k2Lt(l)k1) + τ(l2Lt(l)l1) + τ(Ct(k, l)) = −c′t
ct

τ(k ∗t l).

Proof. Recall that

Lt =

(
Λ0 −

c′t
ct

· Id
)
− 1

2
{T, ·}. (9.11)

Also τ(Ct(k, l)) = (c′t/ct)τ(k ∗t l) + 2〈Tln dk, l〉. Also

τ(Λ0(k) · l) + τ(kΛ0(l)) = τ(kT l) + τ(lTk)− 2〈Tln dk, l〉. (9.12)

Moreover,

τ(kT l) = τ(Λ0(l ∗t k)) =

∫
F

ln ϕ · (l ∗t k)(z̄, z)dν0(z). (9.13)
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Hence by (9.11),

τ(k2Lt(l)k1) = τ(k2Λ0(l)k1)−
c′t
ct

τ(kl)− 1

2
τ(k2T lk1)−

1

2
τ(k2lTk1)

and

τ(l2Lt(k)l1) = τ(l2Λ0(k)l1)−
1

2
(−τ(l2Tkl1)− τ(l2kT l1))−

c′t
ct

τ(kl).

So by (9.11), (9.12),

τ(k2Lt(l)k1) + τ(l2Lt(k)l1) + τ(Ct(k, l))

= τ(Λ0(k)l) + τ(Λ0(l)k)− 2
c′t
ct

τ(kl)− τ(kT l)− τ(lTk) + τ(Ct(k, l))

= τ(kT l) + τ(lTk)− 2
c′t
ct

τ(kl)− τ(kT l)− τ(lTk)

−2〈Tln dk, l〉+ 2〈Tln dk, l〉+
c′t
ct

τ(kl)

= −c′t
ct

τ(kl).

10. A dual solution; closability of Λ

In this chapter we analyze the Hilbert space dual of the operator Λ(k), k ∈
Dt

0, introduced in the Section 7. This is achieved by analyzing the derivative
of the one parameter family of completely positive maps χs,t : At → As,
1 < s ≤ t, defined as follows:

χs,t(k) = S
∆

s−t
12

k
(
S

∆
s−t
12

)∗
, k ∈ At

Recall that Hilbert space L2(At) is naturally identified with the Hilbert space
of all kernels k = k(z, ξ) on H × H, that are diagonally Γ- equivariant,
Γ = PSL(2, Z). The kernels are also required to be square summable with
respect to the the measure [|d(z, ξ)|]2tdν0(z)dν0(ξ) on F ×H. (Recall that F
is a fundamental domain for Γ in H).

Consider the Hilbert space Lt, of all measurable functions on H×F , that
are, square summable with respect to the measure d2tdν0 × dν0. This space
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is obviously identified with a space of Γ- invariant (diagonally) functions on
H×H, square summable over F ×H.

We let P be the orthogonal projection from Lt into L2(At). Let Φ be a
measurable, (diagonally), Γ- equivariant function on H×H. With the above
identification let MΦ be the (eventually unbounded operator) on Lt, defined
by multiplication with Φ on Lt. Correspondingly, there is a Toeplitz operator
TΦ = PMΦP , densely defined on L2(At).

For example, the map Λ, constructed in Section 7, is TΦ with Φ = ln ϕ.
In Section 9, Lemma 9.3, we have proved that the operator Rt defined by

< Rtk, l >L2(At)= −1

2

d

ds
τAs(k ∗s l∗),

defined for k, l in an algebra, is exactly −Tln d − 1
2
(c′t/ct) · Id.

Let also Pt be the orthogonal projection from L2(H, dνt) onto Ht. Recall
that the formula for πt has a trivial extension to a projective unitary repre-
sentation, π̃t (given by the same formula as πt), on functions on L2(H, dνt).

Moreover Pt = Ptπ̃t = π̃tPt = Ptπ̃tPt. Let Ãt ⊆ B(L2(H, νt)) be the com-

mutant of π̃t(Γ). By [A], this is a type II∞ factor, such that L2(Ãt) is a

canonically identified with Lt. Consequently, at least, for k in L2(Ãt) ∩ Ãt,
it makes sense to consider P(k) = PtkPt.

Lemma 10.1. Let Pt be the orthogonal projection from Lt (identified with

L2(Ãt)) into L2(At).
Then Pt(k) is given by the formula PtkPt, which is well defined for k ∈

L2(Ãt) ∩ Ãt and then extended by continuity. For such a k, the kernel of
(Ptk)(z, ξ), z, ξ in H, is given by the formula

(Pt)(z, ξ) = c2
t [(z − ξ)/(−2i)]t

∫∫
H2

k(η1, η2)

(z − η1)t(η1 − η2)t(η2 − ξ)t
dνt(η1)dνt(η2)

Proof of the lemma. One can check imediately that the map P(k) =

PtkPt, for k in L2(Ãt), defines an orthogonal projection on L2(At).
The formula for P(k) follows by writing down the corresponding kernels,

and it holds as long as k is in L2(Ãt).

In the next lemma we will prove that the Toeplitz operators of symbols
ln ϕ and ln ϕ, have dense domain (in L2(At)) and that they are adjoint to
each other.
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Lemma 10.2. Let ϕ(z, ξ) =
1

12
ln[∆(z)∆(ξ)[(z − ξ)/(−2i)]12] (as in Sec-

tion 7). Let D̃0
t be the union of S∆εÂt−3−εS

∗
∆ε, after ε > 0, t− 3− ε > 1.

Then Dom(Mϕ) ∩ Ht contains the weakly dense subalgebra D̃0
t . Con-

sequently D̃0
t is contained in the domain of PMϕP, which is the Toeplitz

operator Tϕ.

Before beginning the proof of the lemma, we note the following conse-
quence:

Corollary 10.3 The operator Λ introduced in Section 7, (restricted to

D̃0
t ) coincides M(1/12) ln ϕk, acting on the same domain. Morever, the oper-

ators Tln ϕ and Tln ϕ are densely defined and Tln ϕ ⊆ (Tln ϕ)∗, Tln ϕ ⊆ (Tln ϕ)∗.
Consequently, this operators are closable, in L2(At).

Proof. The fact that Λ(k) is equal to M(1/12) ln ϕk for k in D0
t , is a con-

sequence of the fact that Mϕ(k) is the L2-valued derivative at 0, of the
differentiable, Lt-valued function ε → Mϕε(k). This is based on the argu-
ments in the proof (below) of Lemma 10.2. Hence, Tln ϕ(k) is the derivative
at 0, of the differentiable, L2(At)-valued function function ε → Tϕε .

Proof of Lemma 10.2. We have to check that for k in D̃0
t having the

expression k = S∆εk1S
∗
∆ε , with k1 ∈ Ât−2−ε (so that up to a constant k(z, ξ) =

ϕεk1(z, ξ), z, ξ ∈ H), the following integral:∫ ∫
F×H

| ln ϕ(z, ξ)|2|∆(z)∆(ξ)(z − ξ)12|ε|k1(z, ξ)|d2tdν0(z) (10.1)

is (absolutely) convergent.

Since k1 belongs to Ât−2−ε we may free up a small power α of d, so that
the integral ∫ ∫

F×H

|k1(z, ξ)|d2t−4−αdνo(z, ξ)

is still convergent. We proved in Section 8 that for any ε < ε′, there exists a
positive constant Cε,ε′ , such that

| ln ∆(z)∆ε(z)| ≤ Cε,ε′
Rez

(Im z)2
e−ε′ Im z.
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When evaluating the integral in (10.1), we will have to find an estimate for
each of the terms that arrise by writting

ln ϕ(z, ξ) = ln ∆(z) + ln ∆(ξ) + 12 ln(z − ξ)

After taking the square, we see that it remains to prove that the integrals,
containing the following quadratic terms, are finite:

| ln ∆(z)|2|∆(z)|εdα,

| ln ∆(ξ)|2|∆(ξ)|εdα,

| ln[(z − ξ)/(−2i)]|2|∆ε(ξ)|.

We analyze for example the term involving | ln ∆(z)|2. By using Corollary
8.6, we note that the integral is consequently bounded by∫ ∫

F×H

(Re z)2

(Im z)6
e−ε′Im ze−εIm ξ|z − ξ|12ε · (d(z, ξ))2t|k1(z, ξ)|2dν0(z)

We write (d(z, ξ))2t = (d(z, ξ))2(t−3) · d(z, ξ)6 to get that the above integral
is bounded by∫ ∫

F×H

e−ε′Im ze−εIm ξ (Im ξ)6

|z− ξ|12−12ε
· (d(z, ξ))2(t−3)|k1(z, ξ)|2dν0(z, ξ)

Because of the term e−εIm ξ, by eventually multiplying with a a constant, we
can neglect the term (Im ξ)6.

Thus we are led to analyze the following integral

∫ ∫
F×H

(Re z)2e−ε′Im ze−εIm ξ 1

|z − ξ|12−12ε
(d(z, ξ))2(t−3)|k1(z, ξ)|2dν0(z)

Because (z, ξ) ∈ F × H, it follows that there is a constant C such that
|z − ξ| ≥ C, for z, ξ ∈ F × H. Also (Re z)2/|z − ξ|2 is bounded from above
on this region.

Thus the above integral is bounded by a constant times
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∫ ∫
F×H

(d(z, ξ))2(t−3)|k1(z, ξ)|2dν0(z, ξ)

which is finite if k1 ∈ At−3−ε.
The terms involving | ln[(z−ξ)/(−2i)]| are solved by absorbing | ln[(z−ξ)/

(−2i)]| into some power of |z − ξ|.
Clearly PMln ϕ has the same domain PMln ϕ. This is precisely the vector

space of all k ∈ L2(At) such that |k(ln ϕ)|2 = |k(ln ϕ)|2 is summable on F×H,
with respect to the measure dtdν0 × dν0. This completes the proof.

We introduce the following definition which will be used in the dual so-
lution for the cohomology problem, corresponding to Ct.

Definition 10.4. Let χs,t : At → As be defined by the formula

χs,tk = S∗∆(t−s)/12kS∆(t−s)/12 ,

for k in At. Here s ≤ t.

In the next proposition we analyze the relation between the derivative of
χs,t at s = t, s ↗ t with the derivative of θs′,t, at s′ = t, (s′ ↘ t) introduced
in Section 7.

Definition 10.5 For t > 1, we let D+
t be the algebra consisting of all k

in As that for some s < t, are of the form S∗∆εk1S∆ε, for some ε > 0, such
that s + ε < t, and k1 ∈ As+ε.

Clearly D+
t is a weakly dense, unital subalgebra of At.

Lemma 10.6. Fix t > 1. Assume that k in D+
t has the expression k =

S∗∆εk1S∆ε, k1 ∈ As, ε > 0, ε + s < t. Then

k = Tϕε(k1)T∆ε(z)∆ε(ξ)[(z−ξ)/(−2i)]12ε
(k1).

Remark Note that by putting the variables z, ξ, we indicated that k1

is multiplied by a function, that contrary to k1, is antianalytic in the second
variable and analytic in the first. Thus Tϕε corresponds to a Toeplitz operator
with an “antianalytic” symbol.
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Proof of Lemma 10.6. Let T (k) = S∗∆εkS∆ε . The statement follows
immediately from the fact that the adjoint of T , as a map on L2(At), is
l → S∆εlS∗∆ε .

In the next proposition we clarify the relation between the operator Ytk

defined as
d

ds
χs,t(k)

∣∣∣∣
s=t
s↗t

and the operator Xt introduced in Section 7.

First we recall that the ”real part” associated with the deformation is

given by the Dirichlet form Es(k, l) =
d

ds
τAs(k ∗s l) = τAscs(k, l).

Definition 10.7 Recall (from Section 9), that the real part of the cocycle
Ct is the operator Rt given by by the formula:

< Rtk, l∗ >= −1

2

d

ds
· τAs(k ∗s l)

∣∣∣∣
s=t
s↘t

= −1

2
Es(k, l).

This holds for all k, l in ∪
r<t

L2(Ar), (where L2(Ar)) is identified with a vector

subspace of L2(At) via the symbol map Ψt,r

Moreover, in Section 9 we proved that Rt has the following expression:

Rt = Tln d −
1

2

c′t
ct

· Id.

In the next proposition we construct the dual object for the generator
used in Section 7.

Proposition 10.8 For any k in D+
t ⊆ At the limit

Yt(k) =
d

ds
Ψt,s(χs,tk))

∣∣∣∣
s=t
s↗t

,

exists in L2(At). Moreover, we have that

Yt = −
(
T

(1/12) ln ϕ

)∗
− c′t

ct

Id + 2Rt.

The adjoint (T(1/12) ln ϕ)∗ is obtained by first restricting T(1/12) ln ϕ to D̃0
t and

then taking the adjoint.
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Proof. Indeed χs,t(k) may be identified with the Toeplitz operator (on
L2(As)) with symbol

ϕ(t−s)/12 = [∆(t−s)/12(z)∆(t−s)/12(ξ)[(z − ξ)/(−2i)](t−s)]

Thus χs,t(k) is (modulo a multiplicative constant)

Ps[Mϕ(t−s)/12k]

and hence Ψt,sχs,t(k) is

Ψt,sPs[Mϕ(t−s)/12(k)]

The derivative at s = t involves consequently two components:

One component is the derivative
d

ds
Ψt,s(Psk)

∣∣∣∣
s↗t

which gives the sum-

mand corresponding to Rt, i.e. −(c′t/ct) + 2Rt.

The other component is
d

ds
Pt(Mϕ(t−s)/12(k)) which gives the multiplica-

tion by ϕ part. Indeed, recall that k belongs to D+
t ⊆ At, and hence k is of

the form S∗∆εk1S∆ε
0
, for some ε0 > 0, such that s + ε0 < t, and k1 ∈ As+ε0 .

But then

Pt(Mϕ(t−s)/12(k)) = Pt(Mϕ(t−s)/12(Ps(Mϕε0 (k1)))).

Since, ϕ plays the role of an antianalytic symbol, it follows that this is further
equal to

Pt

(
M

ϕ[(t−s)/12+ε0](k1)
)

.

The derivative (in the s variable) of s → ϕ[(t−s)/12+ε0] at s = t exists, by the
method in Lemma 10.2 in Lt and it is equal to

− 1

12
ln ϕ · ϕε0 · k1.

Thus, in the Hilbert space L2(At), we have that

d

ds
Pt(Mϕ(t−s)/12(k)) = −Pt(M(1+/12) ln ϕϕε0 (k1))

= −Pt(M(1+/12) ln ϕ(Pt+12ε0ϕ
ε0(k1)))

= −Pt(M(1+/12) ln ϕ(k)).
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This completes the proof.

We use above arguments to prove that also the operator Yt = d
ds

χs,t

implements a coboundary for Ct.

Lemma 10.9. For k, l in D+
t , we have that

d

ds
χs,t(k ∗t ϕt−s(z, ξ) ∗t l)

∣∣∣∣
s↗t

is equal to Yt(k ∗t l)− k ∗t Λ(1) ∗t l.

Proof. Since k, l are in D+
t , there exists ε0 > 0 and there are k1, l1 ∈

At+12ε0 such that k = S∗∆ε
0
k1S∆ε0 , l = S∗∆ε

0
l1S∆ε0 . This gives that

k ∗t Λ(1) ∗t l = S∗∆ε [k1 ∗t+ε ϕε ln ϕ ∗t+ε l1]S∆ε

where by ϕε ln ϕ we understand the unbounded operator defined in Section
6, corresponding to

ϕ(z, ξ)ε ln ϕ(z, ξ)

As in the proof of Proposition 7.6, when computing this derivative, we
have a trivial summand plus a more complicated summand, corresponding
to the symbol

lim
s↗t

Ψt,s

[
Psϕt−s

[
k ∗t

ϕt−s − Id

t− s
∗t l

]]
Because of the assumptions, the inside term

k ∗t
ϕt−s − Id

t− s
∗t ϕ

is equal to

S∆ε0

[
k1 ∗t+ε0 ϕε0

ϕt−s − Id

t− s
∗t+ε0 l1

]
S∗∆ε0

= Pt

(
ϕε0

(
k1 ∗t+ε0 ϕε0

ϕt−s − Id

t− s
∗t+ε0 l1

))
(10.2)

But the methods in the proof of the density of the domain of Mln ϕ, may
also be used to prove that

ϕε0

(
ϕt−s − Id

t− s

)
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converges, as s ↗ t in L2(At+12ε0) to −ϕε0 ln ϕ.
Since Ψt,sPs converges strongly to the identity, and the norm of Ψt,sPs

as an operator from L2(Âs) into L2(At) is bounded by 1, it follows that the
expression in 10.2 converges to

Pt(ϕε0
[k1 ∗t+ε0 ϕε0(− ln ϕ)∗t+ε0 ])

which is k ∗t (−Λ(1)) ∗t l.
Similarly we have the following lemma

Lemma 10.10. For k, l in D+
t we have that

d

ds
[χt,s(k) ∗s χt,s(l)]

∣∣∣∣
s↗t

= Yt(k) ∗t l + Ct(k, l) + k ∗t Yt(l).

Proof. Again this derivative has three summands: the first summand is

lim
s↗t

χt,s(k) ∗s χt,s(l)− χt,s(k) ∗t χt,s(l)

t− s

The same type of argument as in Proposition 7.5 gives that this is Ct(k, l).
From the remaining two summands, the only one that is complicated is

χs,t(k) ∗t
χs,t(l)− l

t− s
.

Because for l in Dt
+, we have that

χs,t(l)− l

t− s
converges in L2(At) to Ytl,

and since χs,t(k) is bounded in L2(At) as s ↗ t, it follows that this term
converges too, to k ∗t Ytl. The remaining term trivially converges to Ytk ∗t l.

This completes the proof of the lemma.
As a corollary we obtain the following result:

Proposition 10.11. Let D+
t be as in Definition 10.5. Assume t > 3,

then for all k, l in D+
t , we have that

Yt(k ∗t l)− Ytk ∗t l − k ∗t Ytl − k ∗t
1

12
ln ϕ ∗t l = Ct(k, l).

Here by
1

12
ϕ(z, ξ) we understand Λ(1) = Mln ϕ(1), the operator con-

structed in Corollary 6.6 and in Lemma 7.4.
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Proof. Indeed the following identity:

χs,t(k ∗t ϕt−s ∗t l) = χs,t(k) ∗s χs,t(l)

is obvious, valid for all k, l in D+
t , s ≤ t.

By differentiation, and using the two previous lemmas, we get our result.

Remark. Recall that in Proposition 9.3 we proved that if Λ0(k) =
Mln ϕk, (for k in Dt

0), then, denoting S = Symϕ, we have

< Λ0(k), l > +〈k, Λ0(l) >= 2 < Sk, l > +2 < Rtk, l > +
c′t
ct

< k, l >

If k would belong to D̃0
t (which is the domain of Λ0) and also to the

domain of Yt, which is D+
t , then the above relation could be rewritten as

Λ0 + Λ∗0 = 2S + 2Rt +
c′t
ct

(10.3).

Recal that S = Symϕ is the operator defined by

< Sk, l >= τAt(kT l∗) + τAt(l
∗Tk)

But on the intersection of the domains we have (from Proposition 10.8)
that

Yt = −Λ∗0 + 2Rt −
c′t
ct

Id. (10.4)

Consequently Λ∗0 = −Yt + 2Rt −
c′t
ct

Id. Thus, by (10.3), for k in D̃0
t ∩ D+

t we

get that Λ0 = 2S + Yt + 2
c′t
ct

Id. and hence that

Xt = Λ0 −
c′t
ct

Id = 2S + Yt +
c′t
ct

Id (10.5)

where equality holds on D̃0
t ∩ D+

t

Now we compare the way Xt Yt implement a coboundary for Ct(k, l) Recall
the notation (∇Φ)(k, l) = Φ(k, l)− kΦ(l)− Φ(k)l

Thus we have proved that
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∇Xt(k, l) = Ct(k, l)− kT t
ln ϕϕ, k, l inD̃0

t (10.6)

∇Yt(k, l) = Ct(k, l)− kΛ(1)l, k, l in D+
t (10.7)

Now if k, l would be in D̃0
t ∩ D+

t , it would follows, by substituting (10.5)
in (10.6), that

2∇St(k, l) +∇Yt(k, l)− c′t
ct

k ∗t l = Ct(k, l)− kT t
ln ϕl. (10.8)

By using (10.7) in (10.8) we get

2(∇St)(k, l)− kΛ(1)l − c′t
ct

(k ∗t l) = −kT t
ln ϕl,

and thus that for k, l in D̃0
t ∩ D+

t we would get that

k

[
T t

ln ϕ −
(

Λ(1) +
c′t
ct

)]
l = 2∇St(k, l) (7.9)

for all k, l in D̃0
t ∩ D+

t . But recall that < St(k), l∗ >= τ(kT l∗ + l∗Tk) This
corresponds, at least formally, to the fact that Stk = kT + Tk and hence
(∇St)(k, l) is 2kT t

ln ϕl.

Thus (10.9) would imply directly that T t
ln ϕ = Λ(1) +

c′t
ct

if D̃0
t ∩ D+

t is

nonzero.

11. Appendix
A more general coboundary for Ct

In this appendix, we want to construct a more general solution for a
coboundary (which is necessary unbounded, see ([27]) for Ct. This will be
constructed out a measurable function g, that has the same Γ- invariance
properties as ln ∆(z). By this construction we will lose the completely posi-
tivity properties of the solution.

Recall that Lt consists of all kernels k or H × H, that are diagonally Γ-
invariant and square summable on F ×H, against the measure dtdν0 × dν0.
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Also recall that the elements in Lt are canonically identified with operators in
the II∞ factor, of all operators that commute with π̃t(Γ), acting on L2(H, dνt).

Proposition 11.1. Let g be a measurable function H such that the
bivariable function θ in H×H defined by θ(z, ξ) = g(z) + g(ξ) + ln[(z − ξ)/
(−2i)] be Γ-invariant. (It is this point which makes the problem sovable, by
this method, only for PSL(2, Z).)

Let Dg, D̃g consist of all k in L2(At) (respectively Lt) such that k · θ

still belongs to Lt. Let Mθ the (unbounded operator) with domain D̃g, of
multiplication by θ. Let Tθ = PtMθ|L2(At) and let T t

θ be the Toeplitz operator
with symbol θ(z, z) = Reg(z) + ln(z − z).

Let k, l be in Dg such that k, l also belong to the domain of Ct(k, l). Then

Mθ(k ∗t l)−Mθk ∗t l − k ∗t Mθl + Mθ(k, l) = Ct(k, l),

where Mθ(k, l) is a bimodule map, equal to k ∗t T t
θ ∗t l, if T t

θ exists.
Consequently, by taking Pt on the left and right hand side, the same will

hold true for Tθ = PtMθ|L2(At).

Proof. Indeed Ct(k, l) is given by the kernel

Ct(k, l)(z, ξ) =
c′t
ct

(k ∗t l)(z, ξ)

+ ct

∫
H

k(z, η)l(z, ξ)[z, η, η, ξ]t ln[z, η, η, ξ]dν0(η).

On the other hand Mθ(k ∗t l)−Mθk ∗t l − k ∗t Mθl has the kernel

ct

∫
H

k(z, η)l(z, ξ)[z, η, η, ξ]t(θ(z, ξ)− θ(z, η)− θ(η, ξ))dν0(η).

Since θ(z, ξ)− θ(z, η)− θ(η, ξ) is equal to θ(η, η), it follows that

Ct(k, l)− [Mθ(k ∗t l)−Mθk ∗t l − k ∗t Mθl]

is given by the kernel

[(z − ξ)/(−2i)]t
∫
H

k(z, η)l(η, ξ)

[(z − η)/(−2i)]t[(η − ξ)/(−2i)]t

(
θ(η, η) +

c′t
ct

)
dνt(η)
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which indeed corresponds to T t
θ + (c′t/ct) · Id , as long as we can make sense

of the unbounded Toeplitz operator T t
θ .

A dual version could be obtained if we consider

〈2Rtk, l∗〉L2(At) = − d

ds
τAs(k ∗s l∗)

∣∣∣∣
s=t

,

which is in other terms 2Rt = −c′t
ct

− 2Tln d

One can check immediately that

[Ct(k, l)− (∇2Rt)(k, l)](z, ξ)

=
c′t
ct

τ(k ∗t l) + ct

∫
H

(k(z, η)l(η, ξ) ln[z, η, η, ξ][z, η, η, ξ]tdν0(η)

+ [

∫
H

k(z, η)l(η, ξ)[− ln(d(z, ξ))2 + ln(d(z, η))2 + ln(dη, ξ))2]

−
(
−c′t

ct

+
c′t
ct

+
c′t
ct

)
τ(k ∗t l)

= ct

∫
H

k(z, η)l(η, ξ)[z, η, η, ξ]t

· {ln([z, η, η, ξ]− 2 ln d(z, ξ) + 2 ln d(z, η) + 2 ln d(η, ξ)}dν0(η)

= −ct

∫
H

k(z, η)l(η, ξ)[z, η, η, ξ]. ln[z, η, η, ξ]dν0η

Then consider g such that

θ(z, ξ) = g(z) + g(ξ) + ln(z − ξ)

is Γ-invariant.
The same argument as above gives that for k, l in D(Mθ), s.t. k ∗t l ∈

D(Mθ) and k, l in Dom(Rt), k ∗t l in Dom(Rt) we have that

Mθ(k ∗t l)−Mθk ∗t l − k ∗t Mθl + k ∗t T t
θ ∗t l

is equal to Ct(k, l)− 2∇Rt(k, l).
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F. Rădulescu - Non-commutative Markov processes in free groups factor...

Finally remark that we have proved that for k, l in D+
t , which is the vector

space of all k that are of the form Pt(k1ϕε) we have that the expression:

Mϕ(k ∗t l)−Mϕk ∗t l − k ∗t Mϕl + k ∗t Λ(1) ∗t l − Ct(k, l)

is orthogonal to Pt(L
t) (otherwise if we apply Pt to the left and right we get

0).
If we could extend the above relation to all k, l in Dom(Mϕ)∩DomRt,

such that k ∗t l belongs to the same domain, then the above relation, by the
considerations at the end of Section 10, would imply that Λ(1) − (c′t/ct)·Id
coincides (on an affiliated domain) with T t

ln ϕ.
Note that this corresponds formally to the fact that

T t
ln ϕ = T t

ln(η−η) + T t
ln ∆

+ T t
ln∆.

On the other hand T t
ln(η−η) = Pln(z−ξ) − (c′t/ct)·Id, while T t

ln ∆
, is clearly, on

its domain, St
ln∆

(and similarly for T t
ln∆).

If the domains would have nonzero intersection one could directly con-
clude that

St
ln ∆

+ St
ln ∆ + Pln(z−ξ) = Λ(1).

References

[1]Accardi, L., Hudson, R., Quantum Stochastic flows and Non Abelian
Cohomology, in Quantum Probability and applications V, L. Accardi, W.
von Waldenfelds (Eds.), Lect. Notes in Math., 1442, Springer Verlag, 1990.

[2] Atiyah, M. F. Elliptic operators, discrete groups and von Neumann
algebras, Colloque ”Analyze et Topologie” en l’Honneur de Henri Cartan
(Orsay, 1974), pp. 43–72. Asterisque, No. 32-33, Soc. Math. France, Paris,
1976.

[3] Atyiah, M.F., Schmidt, W., A geometric construction of the discrete
series for semisimple Lie groups, Invent. Math. 42, (1977), pp. 1-62.

[4] Berezin, F.A., General Concept of Quantisation, Comm. Math. Phys,
40(1975), 153–174.

[5] Bargmann, V., Irreducible unitary representations of the Lorenz group,
Annals of Mathematics, 48 (1947), 568-640.

94
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