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NON-COMMUTATIVE MARKOV PROCESSES IN FREE
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QUANTIZATION AND AUTOMORPHIC FORMS
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ABSTRACT. In this paper we use the description of free group factors as
the von Neumann algebras of Berezin’s deformation of the upperhalf plane,
modulo PSL(2,Z).

The derivative, in the deformation parameter, of the product in the cor-
responding algebras, is a positive — 2 Hochschild cocycle, defined on a dense
subalgebra. By analyzing the structure of the cocycle we prove that there
is a generator, £, for a quantum dynamical semigroup, that implements the
cocycle on a strongly dense subalgebra.

For z in the dense subalgebra, £(z) is the (diffusion) operator

L(x) = A(x) = 1/2{T, x},

where A is the pointwise (Schurr) multiplication operator with a symbol
function related to the logarithm of the automorphic form A. The operator
T is positive and affiliated with the algebra 4; and T corresponds to A(1),
in a sense to be made precise in the paper. After a suitable normalization,
corresponding to a principal value type method, adapted for II; factors, A
becomes (completely) positive on a union of weakly dense subalgebras. More-
over the 2- cyclic cohomology cocycle associated to the deformation may be
expressed in terms of A
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1. INTRODUCTION

In this paper we analyze the structure of the positive Hochschild cocy-
cle that determines the Berezin’s deformation [4] of the upper halfplane H,
modulo PSL(2,Z).

As described in [27], the algebras A;;~1, in the deformation are II; fac-
tors, (free group factors, by [15] and [27], based on [33]) whose elements are
(reproducing) kernels k, that are functions on H x H, analytic in the second
variable and antianalytic in the first variable, diagonally PSL(2,Z) invariant
and subject to boundedness conditions (see [27]).

The product k *; [ of two such kernels is the convolution product

(ks )(z€) = / kG, (T, OZ 0,7, €)' dn(n), =€ € H.
Z-8®m—n)

Z=nm-29)
the upper half plane, H defined by dv; = (Imn)"~2d7dn, and ¢ is a constant.

Here [z, 7,7, £] is the cross ratio while dv; is the measure on

For k,l in a weakly dense subalgebra A;, that will be constructed later
in the paper, the following 2-Hochschild cocycle is well defined:

Ci(k, 1) = the derivative at t, from above, of s — k ;[

Clearly

Ct(ka l) = &Uf *¢ l) + ct/Hk(za 77)“@ 6)[2777aﬁ7 ﬂtln[zﬂnaﬁ7 5]d1/0(77)

Cy

In what follows we will prove that C; is always a completely positive
2-Hochschild cocycle (for example in the sense introduced in [13]). More
precisely, for all ky, ko, ..., ky in Ay, l1,ls, ...,y in A;, we have that

Z TAtU:Ct(k;‘kv k])l]) <0.
(2]

This also holds true for more general, discrete, subgroups of PSL(2, R).

In the case of PSL(2,Z), it turns out that C,(k,l) behaves like the corre-
sponding cocycle obtained from the generator of a quantum dynamical semi-
group, that is there exists a (necessary completely diffusive, i.e. completely
conditionally negative ) £ such that

Colle, 1) = Lok, 1) — ko Lo(1) — Lo(k) 5, 1.
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It turns out that £ is defined on a unital, dense subalgebra D; of A;, and
that £(k) belongs to the algebra of unbounded operators affiliated with A;.
Moreover, by a restricting to a smaller, dense, but not unital subalgebra DY,
the completely positive part of £ will take values in the predual L'(A;).

The construction of L; is done by using automorphic forms. Let A be
the unique (normalized) automorphic form for PSL(2,Z) in order 12. Then
A is not vanishing in Hl, so that the following expression

n(z,€) = In (AEAEQ( - €)/(-20)]2)

=InA(z)+InA(§) +12In[(z — &) /(-2i)], z,{€H
is well defined, and diagonally I'-invariant, for a suitable choice of the loga-
rithmic function.

Let A be the multiplication operator on A;, corresponding to pointwise
(Schurr) multiplication of a symbol &k by In¢. Then A is defined on a weakly
dense subalgebra D, of A;. If {a,b} denotes the Jordan product {a,b} =
ab + ba, then

L(k)=A(k)—1/2{T, k}

where T is related to A(1) in a sense made explicit in 9. Moreover by adding
a suitable constant, times the identity operator to the linear map —A, we get
a completely positive map, defined on a weakly dense subalgebra.

By analogy with the Sauvageot’s construction ([31]), the 2-Hochschild
cocycle C; corresponds to a construction of a cotangent bundle, associated
with the deformation. Moreover there is a “real and imaginary part” of
C;. Heuristically, this is analogous to the decomposition, of d, the exterior
derivative, on a Kahler manifold, into § and & (we owe this analogy to A.
Connes).

The construction of the “real part” of C; is done as follows. One considers
the “Dirichlet form” &; associated to C;, which is defined as follows:

gt(k’ l) = TA, (Ct(k7 l)),

defined for k,[ in weakly dense, unital subalgebra ./Zl\t. Out of this one con-
structs the operator Y; defined by

Yi(k), D2y = &k, 1), k1€ A,
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The imaginary part of C; is rather defined as 2-cyclic cohomology cocycle.
The formula for this cyclic ([27], [29]) cocycle is:

Uk, 1,m) = 7.4,([Co(k, 1) — (VY2) (K, D]m),  k,l,m € A,

with
This is a construction similar to one used in [13].

Let x be the antisymmetric form defined on DY, a weakly dense subalgebra
of A;, by the formula

1
Then there is a nonzero constant (3, depending on ¢, such that
Uy (k,l,m) 4 B1a, (klm) = xi(kl, m) — xi(k, Im) + x:(mk, 1),

for k,1,m in D).

We will show in the paper that L?*(A;) can be identified with the Barg-
mann type Hilbert space of diagonally I'— invariant functions on H x H, that
are square summable on F' x H, analyic in the second variable and analytic
in the first variable. Here F' is a fundamental domain for PSL (2,7Z) in H,
and on F' x H we consider the invariant measure

(1m 2)/2(Im )2
1 — m)/(—20)]

With this identification, the “real part” of C; is implemented is imple-
mented (on A;) by the analytic Toeplitz operator, on L?(A;), (compression
of multiplication) of symbol Ind, The “imaginary part” of C; is implemented
(on the smaller algebra DY) by the Toeplitz operator, on L*(A;), of symbol

% In .

The expression that we have obtain for Cy(k, 1) = Li(k*: 1) — k%, Li(1) —
Li(k) = 1, L(k) = A(k) — 1/2{T, k}, is in concordance with known results in
quantum dynamics: Recall that in Christensen and Evans ([8]), by improving
a result due to Lindblad [22] and [16], it is proved that for every uniformly

d(z, 1) dvp(2)dvo (w) = ( )Qt dvp(2)dv(w).
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normic continuos semigroup (®;);>o, of completely positive maps on a von

Neumann algebra A, the generator £ = E(I)t has the following form:
L(z) = V() = 1/2{¥(1), z} +i[H, z],

where U : A — A is a completely positive map and H is a bounded selfadjoint
operator.

For a semigroup of completely positive maps that is only strongly uni-
formly continuous, the generator has a similar form, although £(z), for z in
A is defined as quadratic form, affiliated to the von Neumann algebra A.

Conversely, given £, a minimal semigroup may be constructed under
certain conditions (see e.g. [7], [20], [23], [17] [14]), although the semigroup
might not be conservative (i.e unital) even if £(1) = 0.

If £(z) = A(z) + (G*z + 2G), let Az = e~'C ze~'¢. Then in the case of
A = B(H), the corresponding semigroup ®;, verifying the master equation

d

T e(),€,m) = (L(Pi(@))€.m)

for £, 7 in a dense domain is constructed, by the Dyson expansion (][20])

Oy(w) = Ar(@) + ) // Ay oANoRAy, 4 0 -0NoN,_,dtydtsy. .. dt,

n20 g<py<ta<. Sta<t

which is proved to be convergent ([7], [23]).

It is not clear if a minimal conservative semigroup exists for the quantum
dynamical generator L£; constructed in our paper. The quantum dynamical
generators L; constructed in this paper have the following formal property:

Assume that there exists families of completely positive maps, (®s4)s>t,
with &, : A; — A, verifying the following variant of the master equation:

d
ds

Then @, would verify the Chapmann Kolmogorov condition:

(\IJS,t((I)s,t(X))) |8180 = ‘CSO (\IISO,t((I)SO,t(X)))- (1-1)

q)s,tq)s,fu = (I)s,v; s>t> v, (I)ss =1d
Moreover
d

&(q)s,t(X) *s CPS,t(Y)HSZSO
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would be
Coo (P t(X), Pt (Y)) + Lisg (P 1(X)) 50 Psg 1 (Y) + P 1 (X)) 5 L (s (Y ),
which by the cocycle property would be

Loy (gt (X x5, V).

d d
Thus d—(CID&t(X) *s Ds 1 (Y)) = d_(I)s,t(X %, Y'). If unicity (conservativity)
s s

holds, it would follow that W, ;@ ,(X) would be a (unital) multiplicative map
from A; into A,.

At present we do not know if this conservativity condition of the minimal
solution and the subsequent considerations hold true.
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while the author was visiting IHP and IHES to which the author is greate-
full for the great conditions and warm receiving. The author acknowledges
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2. DEFINITIONS

We recall first some notions associated with the Berezin’s deformation
([4]) of the upper halfplane that were proved in [27] (see also [28]), in the
[-equivariant context.

We consider the Hilbert space H; = H?(H, dv;), t > 1 of square summable
analytic functions on the upperhalf plane H, with respect to the measure
dyy = (S2)"2dzdz. duy is the PSLy(R) invariant measure on H. This spaces
occur as the Hilbert spaces for the series of projective unitary irreducible
representations m; of PSLy(R) on Hy, t > 1 ([30], [26]).

Recall that m(g), g = b ) in PSLy(R) are defined by means of left

d
translation (using the Mébius action of PSLy(R) on H) by the formula

(m(9)f)(2) = flg2)(cz +d)", 2 € H, f € H,.

10
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Here the factor (cz+d)~" for g = J

branch of In(cz + d) on H, which is always possible ([30]). If ¢ = n is an
integer, > 2, then 7, is actually a representation of PSLy(R), in the discrete
series.

Let I" be a discrete subgroup of finite covolume in PSLy(R) and consider
the von Neumann algebra A; = {m(I")}) C B(H;)} consisting of all operators
that commute with m(T).

By generalizing a result of [3], [10], [11], [18], it was proved in [27] that
{m(I")}" (the enveloping von Neumann algebra of the image of I through ;)
is isomorphic to L£(T',0;), which is the enveloping von Neumann algebra of
the image of the left regular, cocycle representation of I' into B(I*(T"))). Thus
L(T,0,) is a Iy, factor. Here oy is the cocycle coming from the projective,

unitary representation ;.
Therefore, Hy;, as a left Hilbert module over {m (")} ~ L(I',0;) has

—covol(T)

(this generalizes to projective, unitary representations, the formula in [3],
[10]). The precise formula is

b > is defined by using a preselected

Murray von Neumann dimension (see e.g. [GHJ]) equal to

t—1

dimﬁ(r’gt)Ht = dim{ﬂt(r)}qug = COVOI(F).
Hence the commutant A; is isomorphic to L(I',0¢) =1 ). We use the
convention to denote by M;, for a type II; factor M, the isomorphism class
of eMe, with e an idempotent of trace ¢. If ¢ > 1 then one has to replace M
by M @ Mn(C) (see [24]).

When I" = PSL(2,Z) the class of the cocycle o vanishes (although not
in the bounded cohomology, see [6]). Consequently, since in this case [18]

t—1 o t—1

- COVOl(F) T,

it follows that when I" = PSL(2,Z) we have

At ~ L(PSL(Z, Z))(tfl)/lg.

We want to analyze the algebras A; by means of the Berezin’s deformation
of H. Recall that the Hilbert space H; has reproducing vectors €', z € H,

z?

11
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that are defined by the condition (f,el) = f(z), for all f in H. The precise
formula is,

Ct t—1

G-g/ap CS% T

Each operator A in B(H,) has then a reproducing kernel A(z,¢). To
obtain the Berezin’s symbol, one normalizes so that the symbol of A = Id is
the identical function 1.

Thus the Berezin’s symbol of A is a bivariable function on H x H, anti-
analytic in the first variable, analytic in the second and given by

e2(§) = (eg,el) =

R Aet et
Az = L <efze§>

We have that (Ael,ef) is a reproducing kernel for A € B(H,;) and hence

, 2,6 € H.
the formula for the symbol AB of the composition of two operators A, B in
B(H,) is computed as

AB(7,€) - (!, et} (ABel, et) = (e, et) /H (Aet, el)(Bet et)duy(n).

DEFINITION 1.1 By making explicit the kernels involved in the product,
one obtains the following formula: Let A(Z,§) = k(zZ,£), B(z,€) = 1(7,),
and let (k*,1)(Z,&) be the symbol of AB in H,. Then

(k+ 1)(z,€) = Ct/(k’(Z ))U@, ) [Z .7, €] do () (2.1)

o= =001

Here one uses the choice of the branch of In(Z — &) € [—m, x| that appears
in the definition of €. (see [30]).

The above definition can be extended, when the integrals are convergent,
to an (associative) operation on the space of bivariant kernels, by the formula
(2.1). One problem that remains open is to determine when a given bivariant
function represents a bounded operator on H;.

12
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Let d(z,1) = ((Im z)l/Z(Imn)lﬂ) J/(|[(Z=n)/(=21)]|) for z,n in H. Then
d(z,n)? is the hyperbolic cosine of the hyperbolic distance between z,7 in H.
The following criteria was proven in [27]

CRITERION 2.2 Let h be a bivariant function on H x H, antianalytic in
the first variable, and analytic in the second variable. Consider the following
norm: ||h|, is the mazimum of the following two quantities

sup / 11z, )] (A(z 7)) dvo(n),

zeH

sup / Iz, m)|(d(z 7)) duo ).

neH

Then ||h|[, is a norm on B(H,), finer then the uniform norm, and the

vector space of all elements in B(H,) whose kernel have finite || - |[, norm, is
an involutive weakly dense, unital, normal subalgebra of B(H;). We denote

this algebra by B(Hy).

—

In [27] we proved a much more precise statement about the algebra B(H,):

—

PROPOSITION 2.3.([27]) The algebra of symbols corresponding to B(Hy)

is closed under all the product operations *g, for s > t. In particular B(H;)
embeds continuously into B(Hy) and its image is closed under the product in

—

B(H,).

Since this statement will play an essential role in proving that the domains
of some linear maps in our paper, are algebras, we’ll briefly recall the proof
of this proposition:

Assume that k,l are kernels such that ||k|,, [/, < oo. Consider the
product of k,1 in A,. We are estimating

[ 105 D@ OlldCz. ) 6)

This should be uniformly bounded in z.
The integrals are bounded by

/ / kG, )17, )12 7.7, €]1°|d(z, ) dvo () Ao ©).

HZ

13
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Since obviously

\[Z,n,7,€]° =

the integral is bounded by

/ / kG 1A I L, €A, €)' - M(z,m,O)dun(n, €).

If we can show that M(z,n,&) is a bounded function on H x H x H, then
last integral will be bounded by || M ||oo |||, I1Z]I;-
But it is easy to see that

d(z,m)d(T7,€) |
(7,€)

This is a diagonally PSL(2, R)-invariant function on H x H x H. Since
d(z,n) is an intrinsic notion of the geometry on H we can replace H by D, the
(1= )2 = |g]P) 2

1 —2'¢| ’
2/ & €. We thus consider M as a function of three variables 2/, 7/, &' € D.
By PSL(2,R)-invariance when computing the maximum we may let n =0
and we have

ME,7.€) = \ B

unit disk. Then the expression of d(z/, £’) becomes:

s—t

M(Z',0,¢&")

s—t

Z,¢)

‘ /’ 1/2 |€/’2)1/2
(1 )IS t< 2

since t > 1. This completes the proof of Proposition 2.3.

In [27] we proved that there is a natural symbol map VU,, : B(H;) —
B(Hy) defined as follows:

DEFINITION 2.4. Let VW, : B(H;) — B(H;) be the map that assigns to
every operator A in B(Hy), of Berezin’s symbol A(Z,n), Z,n € H, the operator

14
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U, (A) on B(Hs) whose Berezin’s symbol (as operator on Hy) coincides with
the symbol of A. Then U, is continuous on B(Hj).

A proof of this will be given in Section 4 and we will in fact prove even
more, that is that W, is a completely positive map.
Obviously one has

U Wey =V, fors>t>v>1
U,s=1d fors>1.

Assume k, [ represent two symbols of bounded operators in B(H;). Then
the product h *, [ makes sense for all s > ¢t. The following definition of
differentiation of the product structure appears then naturally. In this way
we get a canonical Hochschild 2-cocycle associated with the deformation.

DEFINITION-PROPOSITION 2.5. ([27]) Fiz 1 < ty < t. Let k,l be op-

erators in B/([-?O) Consider k x4 1 for s > t, and differentiate pointwise
the symbol of this expression at s = t. Denote the corresponding kernel by
Ci(k,l) =k, 1. Then Ci(k,l) corresponds to a bounded operator in B(H;).

Moreover Ci(k,l) has the following expression

d

Ci(k, 1) = —S(k g 1)

Y
s=t

Ct/

Clk 1)(7.€) = (k) (7, €) 0 / k(z, )@, €)[2, 7,7, €] Infz, 1,7, E)dvo ().

Cy H

Moreover (by differentiation of the associativity property) it follows that Cy(k,1)

defines a two Hochschild cocycle on the weakly dense subalgebra B(Hy,) (viewed
as a subalgebra of B(Hy;) through the symbol map).

We specialize now this construction for operators A € A, = {m(T")},
that is, operators that commute with the image of I' in B(H;). We have the
following lemma, which was proved in [27].

LEMMA 2.6. [27] Let I" be a discrete subgroup of finite covolume in
PSL(2,R). Assume F is a fundamental domain of I' in H (of finite area
vo(F) with respect to the PSL(2,R) - invariant measure dvy on H). Let
Ay = {m(D)}, which is a type 11, factor with trace T. Then

15
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1) Any operator A in Ay has a diagonally T-equivariant kernel k = k4 (Z,§),
Zag € H. (that is k(za g) = k‘(’y—Z, '76); S F; Zag € H)
2) The trace Ta(k) is computed by

1 -
W/Fk:(z,z)duo(z).

3) More general, let Py be the projection from L*(H, dv;) onto Hy. Let
f be a bounded measurable function on H, that is I'-equivariant and let My
be the multiplication operator on L*(H, dv,) by f. Let Tt = P,M;P; be the
Toeplitz operator on H, with symbol M.

Then T} belongs to A; and

tay L -
T(TFA) = m/FkA(z,z)f(z)duo(z).

4) L*(A;) is identified with the space of all bivariable functions k on
H x H, that are analytic in the second wvariable, antianalytic in the first
variable and diagonally I'-invariant. The norm of such an element k is given
by the formula

Ibllas = mrzmer [ [ bz ) e dnz) ).

area
FxH

We also note that the algebras B(H,), and the map U ,, s > ¢, have
obvious counterparts for A;. Obviously ¥, maps A; into A for s > t.

DEFINITION 2.7 ([27]). Let A; = (Ht) NA,. Then A, is a weakly dense
involutive, unital subalgebra of Ay.

Moreover .At is closed under_any of the operations xs, for s > t. This
means that W, (k)W (1) € \Ifst(.At) for all k,1in Ay, s > t.

More generally, A, is contained in .At if s <t—2, and Ar s weakly
dense in Ay if r < t. (and hence A, is weakly dense in A, if r < t) ([27],
Proposition 4.6).

We also note that, as a consequence of the previous lemma, we can define
forl <tg<t

d —
— (k% 1) for k,1in Ay,

Ct(kJ l) = ds

s=t

16
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and we have the expression (0.1) of the kernel.
Another way to define C;(k, 1) is to fix vectors &, n in H; and to consider
the derivative

d
&((k *s l)£7 T]>Ht = <Ct<k7 l>§7 n>|Hu 57 ne Ht‘

For k,[ in .Zl;o, to < t this makes sense because k %, [ is already the kernel
of an operator in Ay,.

3. OUTLINE OF THE PAPER

The paper is organized as follows:

In Section 4, we show, based on the facts proved in [27], that the symbol
maps Uy, : Ay — A, for s > t, are completely positive, unital and trace pre-
serving. Consequently the derivative of the multiplication operation (keeping
the symbols fixed) is a positive, 2-Hochschild cocycle, (see [13]). In particu-
lar the trace of this Hochschild cocycle is a (noncommutative) Dirichlet form
(see [31]).

In Section 5 we analyze positivity properties for families of symbols in-
duced by intertwining operators. As in [18], let Sa- is the multiplication
operator by Af viewed as an operator from H; into H; is.. Then Sae
is an intertwiner between m|r and myy12:|r, with I' = PSL(2,Z). Here
we use the following branch for In(cz + d) = In(j(v, z)), which appears
Z in PSL(2,Z), v € I'.  We define
In(j(~, 2)) = In(A(y'2)) — In A(z), which is possible since there is a canon-
ical choice for In A(z).

We use the fact that Sa<SA- is a decreasing family of operators, converg-
ing to the identity as ¢ — 0. Let

p(2,6) = A(2) Az — €)/(=20)]".

in the definition of m(y), v =

Then

Inp(z,&) =InA(z) + InA(€) + 121n[(z — &) /(—21)],

17
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has the property that

1 _ AN N
[(~gpmetss + ) - s
is a positive matrix for all zq, z9,..., 2z, in H and for all t > 1.

In Section 6 we use the positivity proven in Section 5 to check that the
operator of symbol multiplication by (In ¢) (¢° + C;) (for a suitable constant
C, depending only on ) is well defined on a weakly dense subalgebra of A4;.
This operator gives a completely positive map on this subalgebra.

By a principal value procedure, valid in a in type II; factor, we deduce
that multiplication by (—Inp + (o 1) is a completely positive map A, on a

weakly dense unital subalgebra A of A; (c, 7 is a constant that only depends

on t and A). The multiplication by (In ¢) maps A into the operator affiliated
with A;.In particular A(1) is affiliated with 4;. We obtain this results by

€

checking that the kernels — Ld

, are decreasing as ¢ | £g, €9 > 0 (up to a

€
small linear perturbation) to ¢ In ¢, plus a suitable constant.
This is not surprising as A(1) = lnp(z,¢) fails shortly the summability
criteria for L*(A;).

In Section 7, we analyze the derivatives X;, at t, of the intertwining maps
Ost + As — As, s > t, with 0,,(k) = Sae-0/12k8%(,—/12- The derivatives
(X;) are, up to a multiplicative constant, the operators defined in Section 6.
The operator X; is defined on a weakly dense unital subalgebra of A;.

We take the derivative of the identity satisfied by 6., which is

EY T;(s_t)/m ko 1) = Og4 (k) % 04(1).
This gives the identity
Xi(k s 1) + K # Tﬁw ki 0 = Cp(k, 1) + Xik s U+ k% X3l
which holds on a weakly dense (nonunital) subalgebra.

Based on an estimate, on the growth of the function |In A(2)A®(2)], z €
H, for fixed € > 0, we prove in Section 8 that the positive, affiliated operators
—A(1) and T}, ,», are equal operators. We prove this by showing that there

18
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is an increasing family A. in A; and dense domains Dy, D; (where Dy is
affiliated to A;) such that (A.£, &) — (—A(1)&,€) for € in Dy and (A, &) —
(—Tn &, &) for € in Dy.

In Section 9 we analyze the cyclic cocycle associated with the deformation,
which is obtained from the positive Hochschild cocycle, by discarding a trivial
part.

The precise formula is

Uy (k,l,m) = 74,([Ci(k, 1) — Yi(kl) + (Yik)l + k(Yi))]m),
for k,l,m in a dense subalgebra, and
<Y;‘/k7 l> = _1/27At(ct(k7 l*>>

We reprove a result in [27], that the cyclic cohomology cocycle W(k, 1, m)—
cst 7(klm) is implemented by x(k,l*) = (Xik, 1) — (k, X3l) for k,l in a
dense subalgebra. Since the constant in the above formula is nonzero, this
corresponds to nontriviality of ¥; on this dense subalgebra.

In Section 10 we analyze a dual form of the coboundary for Ci(k,[), in
which multiplication by ¢ is rather replaced by the Toeplitz operator of (com-
pressed to L?(A;)) multiplication by . It turns out that the roles of A(1)

and Ty,  are reversed in the functional equation verified by the coboundary.

In the appendix, giving up to the complete positivity requirement, and
on the algebra requirement on the domain of the corresponding maps, we
find some more general coboundaries for C;, that were hinted in [27].

4. COMPLETE POSITIVITY FOR THE 2-HOCHSCHILD COCYCLE
ASSOCIATED WITH THE DEFORMATION

In this section we prove the positivity condition on the 2-Hochschild co-
cycle associated with the Berezin’s deformation.
Denote for z,7 in H the expression

(1111,2)1/2(111177)1/2

[(Z —n)/(=20)]
19

d(z 77) =



F. Radulescu - Non-commutative Markov processes in free groups factor...

and recall that |d(z,n)|? is the hyperbolic cosine of the hyperbolic distance
between z,n € H.

In [27] we introduced the following seminorm, defined for A € B(Hy),
given by the kernel k = k4(Z, &), z,£ € H.

AL = %[, =
- <sup [ il vty s [ Gtz o)z >)

The subspace of all elements A in B(H,) (respectively A,) such that || Alf,
is finite is a closed, involutive Banach subalgebra of B(Hy), (respectively As;)

that we denote by B/(\Hs) (respectively A,).

In [27] we proved that in fact A, (or B(H,)) is also closed under any of the
products *;, for t > s, and that there is a universal constant c,;, depending
on s,t, such that

I 1, < codll I, K.1 € A,

Also A, (or m) is weakly dense in Ay (respectively B(Hj)).

Let We4, s >t > 1, be the map that associates to any A in B(H;) (re-
spectively A;) the corresponding element in B(H,) (respectively Ay) having
the same symbol (that is W,,(A) € A, has the same symbol as A in A;).
Then U, , maps continuously A, in As,.

In the next proposition we prove that Wy, is a completely positive map.
This is based on the following positivity criteria proved in [27].

LEMMA 4.1 (Positivity criterion). A kernel k(Z,§) defines a positive
bounded operator in B(Hy), of norm less then 1, if and only if for all N in

N and for all zy, z, ..., zn in H we have that the following matrix inequality
holds N N
[(zi — 2)/(=20)]" ], o — LIz —2)/(=20)]" ],

This criterion obviously holds at the level of matrices of elements in
M,(C) ® A;.

LEMMA 4.2 (Matrix positivity criteria). If [k, 4]} .- is a positive matriz
of elements in A; then for all N in N, all z1,z,...,2zy in H the following
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matrix is positive definite:

kyp.q(Zi, Zj)

[(Zi = 2)/(=2D)]" | ; ) Garet1 2. Py < {12, .. N}‘

Conversely, if the entries k,, represent an element in A, and if the above
matriz is positive, then [ky4lpq is a positive matriz in A;.

Proof. Let [kp ). _; be a matrix in A;. Then k = [k, 4] is positive if and
only if for all vectors &1,&s, ... &N in H; we have that

S kgl €V, > 0.

pq

Since ky, = Pk, P, where P; is the projection from L*(H, ;) onto H it
turns out that this is equivalent with the same statement which new must
be valid for all &, &, ... &y in L2(H, ).

Thus we have that

Z// = ﬁpi()z/’(qi)gi)]tfp(z)mdyt(z>dyt(w) >0

for all £;,&,...&y in L*(D, ;). We let the vectors &, converge to the Dirac
distributions, for allp = 1,2, ...V, Z Aip0; (Im zi)_(t_Q), forallp=1,2,...N.

By the above inequality we get

k’pq(givzj) N
’ XipAig > 0
2 G o) ar

for all choices of {);;} in C. This corresponds exactly to the fact that the

matrix _
[ kp,q(zia Zj)

[(Zi = 2) /(=201 ] 2y ai)

is positive.

PRrROPOSITION 4.3. The map VU, : A, — Ay which sends an element
A in A, into the corresponding element in Ag, having the same symbol, is
unital and completely positive.

21



F. Radulescu - Non-commutative Markov processes in free groups factor...

Proof. This is a consequence of the fact ([32], [30]) that the matrix

1
[(Ei - Zj)/<_21)]8 ij
is a positive matrix for all €, all N, all z1, 2o, ..., 2z, in H. Indeed
1

[(z = &)/(=21))

(or 1/(1 —Z€)7) is a reproducing kernel for a space of analytic functions, even
ife <1/2.

We will now follow Lindblad’s ([22]) argument to deduce that Ci(k,[) is
a completely positive Hochschild 2-cocycle. We recall first the definition of
the cocycle C; associated with the deformation.

DEFINITION 4.4. Fixt > so > 1. Then the following formula defines a
Hochschild 2-cocycle on As,.

I 1)(2.8) =

S

(ke D)(z,6) =

/

= & (k *t l) (Z 6) + ¢ /]1‘-]1 k(za n)l(ﬁa 6)[37 nvﬁa é]t hl[zv naﬁv 5] dVo(U)-

Cy

Indeed, it was proven in [27] that the above integral is absolutely conver-
gent for k.l in As,, for any so <t.

The above definition may be taught of also in the following way. Fix
vectors &, in Hy and fix k, [ in A, . Then k%, [, and k *, | make sense for all
sg < s < t and they represent bounded operators in A;. Thus the following
derivative makes sense:

d

E - <k *g lé-? 7]>Ht

s<t

and it turns out to be equal to

(Ce(k, D€, ),
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In the following lemma we use the positivity of ¥ ; to deduce the complete
positivity of C;. We recall the following formal formula for C; that was proved
in [28], [29].

LEMMA 4.5. [27] Let 1 <ty <t and let k,l,m belong to thO. Then the
following holds:

T4, (Ce(E, 1) % m) = (%TAS((k kg [ kg m) — (k¢ 1) xgm)

s=t
s>t

In a more precise notation, the second term is

d

£TAS([\PS¢U€) kg W t(1) — Wer(kxp 1)) %5 Wt (m))

s=t
s>t

The proof of the lemma is trivial, as long as one uses the absolute con-
vergence of the integrals, which follows from the fact that the kernels belong
to an algebra A, for some t; < t.

The positivity property that we are proving for Ci(k,[), is typical for
coboundaries of the form D(ab) — D(a)b — aD(b), where D is the generator
of dynamical semigroup. It is used by Sauvageot to construct the cotangent
bimodule associated with a dynamical semigroup, and much of the proper-
ties in [31] can be transferred to C; with the same proof. Such positive (or
negative) cocycles appear in the work of Cunz and Connes (see also [9]).

PROPOSITION 4.6. Fiz 1 <ty <t and for k,l in ./zl\to define

d
Cull ) = —(kx, D)|

s=t

Then for all ki, ko, ..., ky in .»Zl\to, li,lo, ... Iy in Ay, we have that

> Ta(5C (k] k)l > 0.
i

This is the same as requiring for the matriz (Ci(kf, k;));; to be negative in

My (A).
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Proof. For s > t, let f(s) be defined by the formula

fs)=r (Z(’f? ks Ky — K x kg) e (15 % lj)) :
0,
By using the ¥, notation, this is
F(s) = D7 ((Woalk7) Waa(ky) — Wk k) Wan(71)) -
1]
By the previous lemma, f'(¢) is equal to 7(Ci(k}, k;)l;1f). In this terms,
to prove the statement we must to prove that f’(t) > 0. Clearly f(¢) = 0.

By the generalized Cauchy—Schwarz-Stinespring inequality for completely
positive maps, and since W, is unital, we get that the matrix

Dij = [@8,t<k;)\1}s7t(kj) - \I/&t(k;kj)]

is non-positive. Since Z;; = U, ,(I;I) is another positive matrix in M,,(A;),
we obtain that
f(s) = Taemy o) (DZ)

is negative.
d
So f(s) <0 for all s > ¢, f(0) =0. Hence d—f(s) is negative.
s

s=t;s>1

APPENDIX (TO SECTION 4)

We want to emphasize the properties of the trace & (k,l) = —7(C(k,1)),
k,l € A;. Clearly & is a positive form on A;, and in fact it is obviously
positive definite. Following [31], one can prove that & is a Dirichlet form.
The following expression holds for &;.

LEMMA 4.7. For1 <ty <t, k,l € ﬁto we have that

£k, 1) = / / Kz, )T )|z, ) [ (2 ) doo (2. ),

FxH

where F is a fundamental domain for I' in H, and
Im 2" Imn'/?

[(Z = n)/(=219)]
24
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15 the hyperbolic cosine of the hyperbolic distance between z and n in H.

Recall that L?(A;) is identified ([27]) with the Bargmann type Hilbert
space of functions k(Z,n) on H x H that are antianalytic in the first variable,
analytic in the second, diagonally I'-invariant, (that is k(7z,vn) = k(Z,n),
v €T, z,n in H), and square summable:

Il = <o [ [ 16z PG, Pt

FxH

Let P; be the projection from the Hilbert space of square summable
functions f on H x H, that are I'-invariant and square summable:

¢ / / G )l n)Pdu(n)duo(z) < 0.

FxH

The following proposition is easy to prove, but we won’t make any use of
it in this paper.

PROPOSITION 4.8 Let ¢ be a bounded measurable I'-invariant function on
H x H. Let 7, be the Toeplitz operator of multiplication by ¢ on the Hilbert
space L*(Ay), that is T,k = P(pk), k € L*(Ay). Then T,k = PikP;, where
the last composition is in As, by regarding k as an element affiliated to A;.

REMARK. In this setting the positive form & may be identified with the
quadratic form on L*(A;) induced by the unbounded operator Ty, q where d =
|d(Z,n)| is defined as above.

5. DERIVATIVES OF SOME ONE PARAMETER FAMILIES OF POSITIVE
OPERATORS

In this section we consider some parametrized families of completely pos-
itive maps that are induced by automorphic forms (and fractional powers
of thereof). The automorphic forms are used as intertwining operators be-
tween the different representation spaces of PSL(2,7Z), consisting of analytic
functions.
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It was proved in [18] that automorphic forms f for PSL(2,7Z) of weight-k,
provide bounded multiplication operators Sy : H; — H;y,. The bounded-
ness property comes exactly from the fact that one of the conditions for an
automorphic forms f of order k is

sup | f(2)|*Im 2* < M,
zeH

which is exactly the condition that the operator of multiplication by f from
H,; into H;,; be norm bounded by M.

Secondly, the automorphic forms, have the (cocycle) I'-invariance prop-
erty as functions on Hl, that is

f(y'2) = (cz+d)7"f(2), z€ H, v = ( (Z Z > € PSL(2,7Z).

Since m¢(7y), me4x(y) act on the corresponding Hilbert space of analytic func-
tions on H, by multiplication with the automorphic factor (cz +d)~*, respec-
tively (cz + d)~**, this implies exactly that

Tk (V) Sy = Symi(y).

Let f, g be automorphic forms of order k. Let F' be a fundamental domain
for the group PSL(2,7Z) in H. It was proved in [18] that the trace (in .4;) of
S}S, is equal to the Petterson scalar product

L gy = —

/F £(2)9(2) (Im =)k duo (2). (+)

areal’ areal’

In the next lemma we will prove that the symbol of S;S7, as an operator
on Hy, belonging to A;, (the commutant of PSL(2,Z)) is (up to a normaliza-

tion constant) f(2)g(&)[(z — &)/(—2i)]k.

In particular this shows that the above formula (x) is explained by the

1
arcal” /Fk'(Z 2)dvy(2), applied to the operator k =

trace formula 74, (k) =
SSy.

The role of the factor [(Z—¢)/(—2i)]* is to make the function f(2)g(&)[(z—
§)/(=21)]* diagonally PSL(2, Z)-invariant. It is easy to observe that S}, is

the Toeplitz operator on H; with symbol f(2)g(z)(Im z)*. Note that, to form
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S¢Sy, we have the restriction k < ¢ — 1, because S; has to map H; into a
space H;_j that makes sense.

We observe that the symbol of S;kSj for an operator k on Hyyy of symbol
k=Fk(Z¢) is

a0z — O/ (~2)PR(E, ),

if f, g are automorphic forms of order p.

This also explains the occurrence of operators of multiplication with sym-
bols ®(z,&) on the space L?(A;), in this setting. In the terminology of the
Appendix in the previous chapter those are the Toeplitz operators with an-
alytic symbol ®(Z,¢), a diagonally a PSL(2,Z)-invariant function. In the
present setting, to get a bounded operator, we map L*(A;x) into L?(Ay),
by multiplying by f(2)g(¢)[(z — £)/(—2i)]F. In this chapter we will analyze
the derivatives of a families of such operators.

Let A(z) be the unique automorphic form for PSL(2,Z) in dimension 12
(this is the first order for which there is a non zero space of automorphic
form).

A

We rescale this form by considering the normalized function A; = —,
c

where the constant ¢ is chosen so that

sup |[A1(2)]*(Im 2)'? < 1.
zeH

In the sequel we will omit the subscript 1 from A. This gives that the norm
ISa|l, as on operator from H; into H;, o is bounded by 1.

As A is a non zero analytic function on the upper halfplane, one can
choose an analytic branch for In A. Consider the I'-invariant function

0(Z,8) =InA(z) + InA(§) + 121In[(z — £) /(—21)]
which we also write as
0(z,6) =In(A(2)A®E) - [(z - &)/(-21)]").

Defining m;(7y), for v in PSL(2, Z) involves a choice of a branch for In(cz+

d), v = ( CCL Z ) We define for m(7y), v € PSL(2,Z), by using the factor

(cz+d)~" corresponding to the following choice of the logarithm for In(cz+d) :
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InA(y '2) —InA(z) = In(cz + d),

a

zeH, v= b > in PSL(2,Z).

d
By making this choice for m;, restricted to I', we do not change the algebra
Ay, which is the commutant of {m(I")}, but we have the following.

With the above choice for In(cz + d) and thus for m(y), v € PSL(2,Z),
and for any € > 0, we have that Sa: is a bounded operator between H; and
H,; 15, that intertwines m; and w419, for all t > 1, ¢ > 0.

In the following lemma we make the symbol computation for operators of
the form S;S;. Recall that H, t > 1 is the Hilbert space analytic functions
on H, that are square-summable under dv; = (Im 2)'~2dzdz.

LEMMA 5.1. Let f,g be an analytic functions on H, k a strictly positive
integer andt > 1. Assume that My = sup | f(2)|*Imz*, M, = sup |g(2)|*Im z*

are finite quantities.

Let S¢, Sy be the multiplication operators from Hy into Hyyy, by the func-
tions f,g. Then Sy, S, are bounded operators of norm at most My, M,
respectively.

Moreover the symbol of S¢S} € B(Hy) is given by the formula

SEFRFOIE - &)/ (=20

Cy

Proof. Before starting the proof we’ll make the following remark that
should explain the role of the constant ¢; (= (t — 1)/4x) in this computation.

REMARK. The quantity c; is a constant that appears due to the normal-
1zation in the definition of H;, where we have chosen

Hfll%h=/H|f<z)|2(1mz)t—2dzdz.

Consequently the reproducing vectors e', (defined by (f,e') = f(z), f € Hy,
z € H), are given by the following formula: ([5], [25])

eL(&) = (el ef) = = < 2, & € H.

z—8)/(=29]"
28



F. Radulescu - Non-commutative Markov processes in free groups factor...

Consequently the normalized symbol of an operator A in B(H,) is given
(Ael, eg)
(el eg)
In the product formula we have that the symbol kap(Z, £) of the product
of two operators A, B on H; with symbols ky, kg is given by

by the formula k4(Z, &) = z,&in H.

(!, e kan(z.n) = (ABelel) = / (Act, ) (Be!, k) du(n).
Thus

kap(2.6) = (eel) /H ka(Z, m)el, ey ks (T, €){et, eb)du(n)

e e
- T e e

e

_— /H ka(Z, ) (7, €) 2, 1,7, E]duo ().

This accounts for the constant ¢; that occurs in front of the product
formula (otherwise if we proceed as in [5] and include the constant ¢; in the
measure dv;, the constant will still show up in the product formula).

In the proof of the lemma we use the following observation.

OBSERVATION 5.2. Let f, Hy, Sy be as in the statement of Lemma 5.1.
Let e, et** be the evaluation vectors at z, in the spaces Hy and Hy ). Then

S;’Zet;“k = f(2)e!, z € H.

Proof. Indeed, since we will prove the boundedness of S¢, we can check
this by evaluating on a vector g in H;. We have

(Stett ghm, = (55 (SP)9) yy, = (e87F, fg) = (Fg, et7F) = fy(2).
On the other hand:

(), b ghm = F()els 9)m, = f(2) (9, €, = F(2)g(2).
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This shows the equality of the two vectors.

We can now go on with the proof of Lemma 5.1.
It is obvious that S, S, unbounded operators of norms My, M,. Indeed

for Sy we have that

1Segll,, .

Hence ||S¢|| < M.

_ /H 1(559)(2)dvesa (=)

S ACOCRINE

= [ Pl =) (m =)z
= [ oGP Im =) )dn(e)

< M /H 9(2) P (2).

To prove the second assertion, observe that the symbol k(z,§) of S;S7,
as an operator on H; is given by the following formula:

k(z,§) =

<SfS;€Z7 €2>Ht
(€L, eg)m,

(Spel, Steg)

g%z
<62762>Ht

g(2) (e, F(©eg " u,

<627 €2>Ht

_Z <eiik’ 62_k>Ht—k

9(2) f(§) N

agﬂQKE—Qg—ﬁW*
[(z = &)/(=2)]

EIEFOIE- /(-2 =i H.

t

This also works also for k not an integer (as In[(Z — £)/(—2i)] is chosen

once for all).
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Let us finally note that the same arguments might be used to prove the
following more general statement.

REMARK. Let f,g be analytic function as in the statement of the lemma,
and let k be an operator in A;. Then SykS; which belongs to Agyp (if we
think of Sf, Sy as bounded operators mapping H, into Hyyy,) has the following

symbol
2 F(©)9()[(E — &)/ (=20)Fk(Z, ).

Ct+k

Proof. We have to evaluate

<kaS;e’;+k, 62+k>Ht+k _ f(f)M(ke; 62>Ht
(e, eg ™, (e, g™ D
_ pegihdn_{een

<€i’ 62>Ht <€i+k7 €2+k>Ht+k
Ct

= —f(©)9(2)[(z - )/(=20)]"k(z, ).
Ct+k

In the next lemma we will deduce a positivity condition for kernels of opera-

tors that occur as generators of parametrized families Sy=S5;., where f, g are

supposed to have a logarithm on H.

LEMMA 5.3. Assume that f is a function as in Lemma 5.1. f is analytic

on H and we assume M; = sup |f(2)|*(Imz)* is less than 1. Assume that
zeH
f 1s nonzero on H, and choose a branch for In f and hence for f¢, € being

strictly positive. Let p(Z,n) be the function In f(z) +In f(&) + kIn[(Z — &)/

(—24)] and use this as a choice for In[f(2)f(&)[(Z — &)/(=20)]*] = v(Z,€).
Then for all € > 0 the kernel:

bol) = pnel3. ) = 2. 6) | “ g = 1

t Ct
. L . ko (Zi, 25) : iy
is nonpositive in the sense of Ay, that is — 15 a4 nonpositive
| _ [(Zi = 2;)/(=21)]
matrix for all choices of N € N, z1,29,...,2zy € N.
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Proof. By the choice we just made it is clear that the norm of the operator
Sye is always less that 1. We will also denote by S}g the corresponding
operators, which act as a contraction from H; into H; ..

Consider the following operator valued functions, with values in H,

fle) = St (Sh=k)”

Obviously the symbol of f(e) is (ci—ke/ct)p®(Z,€) and moreover f(0) =
1, f(e) is a decreasing map because for 0 < e < &', we have that

Fe) = S1H (1) = st [st (812 ) ] (s’

But the operator in the middle has norm less than 1, and hence we get
that

f(e) < 53 (535)" = 1)
Fix N, and zi, 29, ..., 2y in H. Then (since the corresponding operators
form a decreasing familly)

is a decreasing family of matrices, and ¢g(0) = Id. Hence ¢'(¢) must be a
negative (nonpositive) matrix. Note that f(¢)(Z;, zj) = (ci—k=/ct) % (Z, 25)-
But ¢'(¢) has exactly the formula stated above, that is
_k /
(31 ) [ ) Tk
Ct Ct

g(e) = [(Z: — )/ (—20)]"

This completes the proof.

c 1
By collecting the terms together we, and since - = ——_ we obtain, for

Ct t—
all € > 0 the following

LEMMA 5.4. With the notations from the previous lemma, for all € > 0,

the kernel .

keo = kso,s,t =¢° |lnp — m
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is monpositive in A;. Precisely this means that is all choices of N in N and
21,29, ...,2n in H we have that

ksﬂ(z_i’ ZJ')
[(Zi = 2)/(=20)]"

1S @ nonpositive matriz.
The following remark will be used later in the proofs.
REMARK 5.5 For any s > 1, the identity

Cg «
TAs(S;SQ) = _TAt(SQSg>a

s+k

holds true for any automorphic form g of order k.
Proof. We have that (S;.9,) is the Toephtz operator on H,) with symbol
|9(2)[*(Im z)*. Hence the trace 7.4,(S;S, /|g| (Im 2)*dwy(2).

On the other hand the symbol of (5,5 ) (Whlch is viewed here as an
operator on Hg,y,) is equal to

(Sgr €i+ka S €2+k> Cs ——

(2,6) = By 9(2)g(&)(z — &)/ (=21)]"
z 7e§

Cs+k

and hence the trace of later symbol is

/!g 2(Im 2)*dvo (=),

Csir area(F

6. PROPERTIES OF THE (UNBOUNDED) MULTIPLICATION MAPS
BY In[A(2)A()[(Z — £)/(—21)]'?] ON DIFFERENT
SPACES OF KERNELS

Let p(z,€) = In(A(2)AE)[(Zz — £)/(—21)]'*). In this chapter we want to
exploit the negativity properties of the kernels

1 1
c/12 —l -
4 (12 ne t—1—e>‘
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By ® we denote the operation of pointwise multiplication of symbols. It
is the analogue of Schurr multiplication on matrices or on a group algebra.
When no confusion is possible we will omit the symbol ® and just replace it
by -.

We want to draw conclusions on the properties of the multiplication maps,
defined on a suitable dense subspace of L?(A;), by the formula

1 1
— e/12 | — -
A(k)=k® (g@ LQ Ing PR] J) .

For functions k(Z,n) on H x H, that are positive, but do not necessary
represent a positive operator we will introduce the following definition.

DEFINITION 6.1. A function k(Z,n) on H x H that is analytic for n and
antianalytic for z will be called positive, for A;, if the following matriz

k(ziv Zj) "
[(Zi = 2)/(=20)]' ], ;_,

s positive, for all choices of N € N and 21, 29,...,2y tn H. The space of
such kernels will be denoted by S;.

The following remark is a trivial consequence of the fact that the Schurr
product of two positive matrices is positive, and a consequence of the de-
scription for positivity of kernels of operators in A; given in Section 4.

PROPOSITION 6.2 For all numbers r,s > 1, the wector space
(A.)y © S8 is contained in S,1s and (A.)L C S,.

Proof. Just observe that in fact S; ® &, is contained in Sy,

The problem that we address in this chapter comes from the fact that the
operator
1

1
r—1—e¢

12

maps k € (As)4 into S,1s. Also A., s(k)(Z, 2) is integrable on F, so it is
tempting to infer that A., (k) belongs to L'(A, ). In fact we conjecture
that a kernel k(Z, n) in S;, that is also diagonally integrable on F', corresponds
to an element in L'(A;);. Since we are unable to prove directly the conjecture,
we will use monotonicity properties for the derivatives of ¢°.

_As,r,s(k) — ko 905/12

Y
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If no constants were involved, we would simply say that ¢°(—In¢) is
the increasing limit of the derivatives, since the second derivative would be
negative. This doesn’t hold exactly, but the constants involved are small
enough and have a neglectable effect on the previous line of reasoning. This
is done in the following lemma.

LEMMA 6.3. Let k be a positive kernel in A;. Fix v > 1 and let € > 0 be
small enough. Consider the following elements in Agy. defined by the kernels

v—1—¢

)\571}73(]{3)(2, 5) = —906/12 (Ev 5) k<27 6)

v—1

Note that up to a multiplicative constant A , s(k) is the kernel of Spz/12 kS\ 12
in A .. Let Xs7v7s(k) be the image (through V., 95 ,+c) of this kernel in A, as.

Then Xe,v,s(k) 15 a decreasing family of positive kernels representing el-
ements in A,yos and there exists a negative element M(k) = M., (k) in

—LY(Ayios)+, such that M (k) is the derivative with respect to €:
D3eah) (¥

The derwative s computed in the strong convergence topology, on a dense
domain D C H, s, affiliated with A, 5.
The symbol of M., s(k) as an operator in H, o is equal to

1
v—1—c¢

M (k) =

v—1—¢

Ae,v,s(kxz, f) = —k(§7 5)906/12

11
_n -
v—1 14

12

Proof. For simplicity of the proof well use the notation ¢; = ¢'/12. We
prove first that the family \. , s(k) is a decreasing family in A, ;. and hence

in AU+25.
1
Indeed U—lggoi (Z,€) is a decreasing family of operators in A4, and

’U —
hence by Proposition 6.2 it follows that
v—1—¢

S5 k(2. 6)

is a decreasing family in S, , and hence in S, ¢, .. Since we know that these
operators are already bounded in A, ., the first part of the statement follows
immediately.
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Denote by G(e) = G(¢)(z, ) the kernel represented by

Ul ez k(. 6),

which represent therefore a (decreasing) family in A, ;. and hence in A, ;.
Fix g9 > 0 and let

v—1

gg(z’ 5) _ G(&T) (7, f) — G(‘C’:O)(zu 5) .

E—&p

Then g. is a negative (nonpositive) element in A,,2,. We want to find a
formula for g.. —g.. Obviously when € converges to €¢, the kernel g. converges
(at least pointwise) to the kernel A, , s(k)(Z,&).

It is elementary calculus to find the following pointwise expression for

Ha’,a (5, 5) = ge (Z 5) — ge (E’ 5)

1 1

Hg,glz(e—s’)/ /tG"(s(t,s))ds dt (6.2)

0 0

where &(t, s) = s[(1—t)eg+te] + (1 —s)[(1 —t)eo + te] belongs to the interval
determined by ¢,¢’, g.

This formula holds, at the level of kernels (that is by evaluating both
sides on any given points z,§ € H).

On the other hand we may compute immediately because

1 g
G(e) = [ —1 - )ilh
that .
Gle) = -7 llv =1 —e)pilng — pilk
" 1 2 €
G(e) = —llv=1—e)In"p1 = 2Inepies - £.
Furthermore we have the following expression for G”(¢)
1 _v- l—¢ e 2 o 2
Gle) = ——1—vik {ln 1 v_1_61n¢1:|

v—1—¢ /2 1 ? ks
S 1 S I L 4 W
v—1 { [% ( ngpl—i—v—l—e)} (v—1—¢)?
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Thus we obtain further that

G,,()_v—l—sk 2 (4 n 1 2_ ko3
YT T A1 LT T . (v—1—-¢)(v—1)

But because of the previous Propositions 6.2 and Lemma 6.4 we have
that

2 ingy 4 —— [ (2 + ! 2
71 T T T T 21— ¢/2

represents the square of an element:

1

€/2

—1 - -
1 < nen v—l—e)

in S,_./2. The square of the above element consequently belongs to Sa,—..

Hence )
1
— 5/2 _1
R(E) k|}01 < n¢1+v_1_€):| )

as a kernel, belongs to Ssi0, - C Ssi90-
In conclusion we have just verified that

G'e) = R(e) - (v — 1)?20?— 1—¢)

where R(g) belongs to Sgps.
Moreover, it is obvious that

_ ki
Qe = =19

is a bounded element in A, 5, and that Q(e) is consequently bounded by a
constant C', independent of all the variables v, s, €.

Q(&f) < C-Id in A2U+s

and hence
Q(g) S C-1d in 82’1)—{-5'
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We put this into the integral formula for
G(e) = Gle)  G(€) — Gleo)

£ — &g e — ¢

Hs,s/ = g<€> - g(gl) =

to obtain that H. . is of the form (¢ —¢’) [R — Q] where R belongs to Sa,s
and Q belongs to (A,42s)+ and 0 < Q < C'-1d.

But then R belongs to A, 25 N Syr2s and hence R € (Ayi2s)4-

Thus, we obtain that in A, s, we have that (assuming ¢ — &’ > 0)

Hoo>—(e-e)Q>—(e—£)C

SO
H..o>—(e=¢€)C

and therefore
ge — g > C(e' —¢)

Hence for ¢ > & > ¢y we have that g. + C. > g + C. in A, 9, for a
fixed, positive constant C'.

Now recall that

g<€) _ G(é) G<50)

E—£&
and that G(e) itself, was a decreasing family in A, 2, so that g(¢) are neg-
ative elements in A, o;.

Denote for simplicity h(¢) = —g(e). Then what we just obtained is the
following;:

The operators h(e) are positive elements in (A,y25)+. Moreover h(e) —
Ce < h(e') = Ce' if e > € i.e. h(e) — Ce is a decreasing family. By adding
a big constant k to h(e) we have that K + h(e) — Ce is a decreasing family
of positive elements in (Agy2,) -

Thus as e decreases to gp we have that K + h(e) — Ce is an increasing
family of positive operators in A, ;.

Moreover, as the trace of h(e) is equal to —7(g(g)), which is

v—1—c¢ v—1—¢g

@i(zvz) —¢§0(z, Z) kﬁ(f, Z)

[ _1 B
_/ v v—1 .
F €—=¢o
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This integral converges, (in L'(Fdy)), to

dv—-1—-¢ _ _
Fd—gﬁ%(%z)

k(zZ, z)dv(z)

E=EQ

v—1—¢g

- le e [mgpl - ;} Kz, 2)duo(2)

v—1 v—1—¢g

which is finite (the convergence is dominated here for example by Cy?', for
some £’ < gp).

Thus K + h(e) — C(g) are an increasing family in A; (as e decreases to
g9) and the supremum of the traces (in L'(A;)) is finite. By Lesbegue’s
Dominated Convergence Theorem in L'(A;), the limit of K + h(e) — C(¢)
exists in L'(A;) and convergence is in the strong operator topology on a
dense domain, affiliated with A,.

COROLLARY 6.4. Let A.,(k), be the map, defined in the previous
lemma, that associates to any positive k in As, a positive element in A, o,
whose kernel is given by the formula:

_ v—1—¢ . 1
Acws(B)(Z,€) = ﬁk(z,f)go M2 —lngp+

Then —A. .. is a completely positive map from Ag into L*(A,y2s).

Proof. From the previous lemma we know that A., (k) is well defined
and belongs to L'(A,425). On the other hand A., (k) is obtained by mul-
tiplication with a positive kernel in S,, and hence (as in the proof of the
complete positivity for Wy;) we obtain that [Ac,s (ky)],, is a positive in
Mpy(C) @ LY(Ayyas), if [kp 4] is a positive matrix in My (C) @ As.

COROLLARY 6.5. Leteg > 0 and t > 3+ eg. Let A, be defined, on the

space of all symbols k representing operators in U A, by the formula
1<s<t—2—¢gg

Aal) = 2O 9)

e=¢g

Note that pointwise derivative of kernels is (¢ Inp) ® k.
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Then A, (k) belongs to L'(A;) and moreover the derivative is valid in the
sense of strong operator topology, on a dense domain, affiliated to A;.

Fizing 1 < s <t—2—¢y, there ezists a sufficiently large constant C' (de-
pending on s,t,¢q), such that —[A., + Ck © ¢*] (and hence — [A;, + C - 1d])
becomes a completely positive operator from A into A;.

Proof. Because of the condition s < t — 2 — gy, we can always find a
constant C', by the previous lemma such that the previous lemma applies to
Aoy + Ck O ¢°.

COROLLARY 6.6. Fizt > 3. For every 1 < s < t— 2 and for every
k in As there exists an (eventually unbounded) operator A(k) (of symbol
multiplication by In) that is affiliated with Ay, and there exists a dense
domain D in Hy, that is affiliated with Ay, such that the derivative

d
—(k €
d€< ®<10 §7n>Ht

e=0

exists for all £,m in D and it is equal to

(A(R)E, m).

Moreover there exists a constant, C, depending only on s,t, such that for any
positive matriv [k, b .y in My(As), the operator matriz

- [(A +C- Id)(kp,q)]N

p,g=1

represents a positive operator, affiliated with A;.

REMARK. The operator k ® ¢° appearing in the previous statement is
bounded. Indeed, modulo a multiplicative constant k ® ¢ is the symbol of
SackSie. If k € As, then SakSK. belongs to Asi12-, and since s < t, by
choosing € small enough, we can assume that SackSA- represents a bounded
operator on Hy, and hence that the expression (k® @&, 1)y, makes sense for

all &,m wn H,.

Before going to the proof of the statement of Corollary 6.6, we prove the
following lemma, (that will be used in the proof of Corollary 6.6), concerning
the operator k ® ¢° and the range of the operator A, , s(k) defined in Lemma
6.3.
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LEMMA 6.7. With the notations from Lemma 6.3, let k be an operator
in As, v>1,e>0. Let M., (k) be the derivative (at €), which belongs to
LY (Ayi9s), of the decreasing family

~ v—1—¢

Aews(K) = CHEAILICAIL

Then the range and init space of the unbounded operator M., (k) are con-
tained (and dense) in the closure of the range of Sae C Hayrs, (more precisely
in closure of the range of S347¢).

v—1

Proof. Indeed, by what we have just proved, M., (k) is the strong op-
erator topology limit (on a dense domain affiliated with the von Neumann
algebra), as ¢’ decreases to ¢, of the operators

Gs’ (77 5) — Ge (27 g)
e —¢ '
Recall that G./(Z,&) was the symbol (modulo a multiplicative constant) of
the operator Sx- kS,
Then by applying (Go —Go) /(€' —¢) to any vector £ in Hy, the outcome is
already a vector in the closure of the range of Sa-. This property is preserved
in the limit. By selfadjointness the same is valid for the init space.

We proceed now to the proof of Corollary 6.6.

Proof of Corollary 6.6. We start by constructing first the domain D. For
g0 > 0 let D., C H, be the range of (S4-,)*, considered as an operator from
Hi 19, into Hy. D will be the increasing union (after €q) of D,,.

Let B., be a right inverse, as an unbounded operator for the operator
Saco. Thus B, acts from a domain dense in the closure of range Sk, into
H,. It is clear that B, is an intertwiner affiliated with the von Neumann
algebras A; and Ay 12, (by von Neumann’s theory of unbounded operators,
affiliated to a II; factor ([24])).

Thus, by denoting P., to the projection onto the closure of the range of
Sheo iIn Hyyqae,, the following properties hold true:

(StAEO)Beo = Ps,
By taking the adjoint, we obtain
B*Aso (StAEU) = Lee.
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All compositions make sense in the algebra of unbounded operators affil-
iated with A;, and Ay 12e,- On Hypqoe,, we let M., (k) be the L' operator,
given by Corollary 3.4, whose symbol is

kE® @™ Inp,

for k in A,.
We define A, (k) by the following composition:

A80<k) = CH_ﬂBEOJWEO (k)BSO

Ct

We want to prove that A., does not depend on g5. Obviously (by [24]),
the operator A, (k) is affiliated with A;.
Moreover for &, 7 in D,,, which are thus of the form

5:3250617 77:52507717
for some &3, my in Hyyq9.,, we have that
(Aso(K)E,m) = (Aso (k) SAc0&15 SAcom) -

This is equal to

¢ € * * *
anls <B€0M€0(k)BEOSAEO§17 SASOU1>Ht

Ct

Ci+12e
= t“l’ct 0 <P€0M80 (k)PS()gl) nl)Ht+1250_

Because of Lemma 6.7, we know that this is further equal to

C 2o
tJrcth <Mso (k)glv 771>

We use the above chain of equalities to deduce that the definition of
A., (k) is independent on the choice of &.

Indeed assume we use another ¢f, which we assume to be bigger than .
Assume ¢ = 525652' This is further equal to SX-, 52%750)52.

Then, by redoing the previous computations we arrive to the term

Ct+12¢),

(Mey (F)&2,m2).-

Cy
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But on the other hand in this situation

(Mo (F)Er,m) = “H220 (0 (k) S

Ct A

Ct+12e
= c ° <SA(€6—50)Mfo(k)SZ(e{)—eo)é%772>‘

*
(66—50) 527 SA(E6—50) 772>

To show independence on the choice of ¢y, we need consequently to prove
that

Ct412¢
cr : <SA(56—50> Mao (k)SZ(E/0750)£27 772>

is equal to 120 (Mg (K)Ea,m2).
Ct

Now all the operators are in L. Moreover the symbol of

S

A(SE)*SO)

My (R)S oo

is
Ct+12¢0 (1056—50
Ce+12¢l,
times the symbol of M, (k).
Ct+12e9

But the symbol of M, (k) is ¢ In ¢ divided by ——.
c

This shows independence of the choice on g (some tcare has to be taken
when choosing &, 71, &2, 12 given £,71). We always choose them in the init
space of SA,, respectively SZE(,). By the von Neumann theorem we will be
able to choose a common intersection domain for these operators.

Consequently to check that the derivative of (h ® ¢°¢,n)g, at € = 0 is
equal to the operator A(k) introduced in the statement of Corollary 6.6, we
only have to check this for vectors &, 7, that we assume to be of the form

§ = Sa«0&1,n = Shcom-
Then, modulo a multiplicative constant (k ® ¢°¢, )y, becomes
(k© "¢, m)m,,.-

By a change of variables the derivative at 0 of (k ® ¢°¢, )y, becomes
the derivative at ey of the later expression: (k ©® ¢*&1,m)m,,.. Up to a
multiplicative constant, this derivative exists and it is equal to (M (k)&y, m1),

which is by definition (A(k)&1, m).
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Finally observe that for any constant C', ((A(k) + C)&1,m1) is equal to
B, (M., (k) 4+ C'Sa<okSx« ) B,

for a constant C’ obtained from C' by multiplication by a normalization factor
depending on ¢ and ¢.

Consequently, if [k, 4], s a positive matrix in A,, then by using the
complete positivity result of Lemma 6.3, we infer that the matrix

— [Mg, (kpg) + C'™ © kp,q]p,q

represents a positive operator in M,(C) ® (A, )+-

Si.nce 0 ©ky, is S‘Aeo kpgShzo, we get that — [A(k,g)]? _, is a positive
matrix of operators affiliated to M,(C) ®@ A,.

REMARK 6.8. If want to deal with less general operators, (paying the
price of not including the identity operator in the domain of A), then we
can take operators of the form SaeokS(az0)- that belong to A,, s <t — 2,
s—eo > 1, and then A(k) will be in L'(Ay), for such a kernel k, directly from
the Lemma 3.5.

7. CONSTRUCTION OF AN (UNBOUNDED) COBOUNDARY FOR THE
HOCHSCHILD COCYCLE IN THE BEREZIN’S DEFORMATION

In this section we analyze the 2-Hochschild cocycle

Ci(k,l)= %(k ) _

s>t
that arrises in the Berezin deformation. We prove that the operator in-
troduced in the previous section (6) may be used to construct an operator
L (defined on a dense subalgebra of A4;), taking values in the algebra of un-
bounded operators affiliated with A4;. £ will be defined on a dense subalgebra
of A;.

The equation satisfied by L is
Ci(A, B) = Li(A+, B) — A, Li(B) — Li(A) % B
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and this will be fulfilled in the form sense (that is by taking the scalar product
with some vectors &, 7 in both sides).

The fact that £ takes its values in the unbounded operators affiliated with
A; presents some inconvenience, but we recall that in the setting of type II;
factors, by von Neumann theory [24], the algebra of unbounded (affiliated)
operators is a well behaved algebra (with respect composition, sum and the
adjoint operations).

In fact we will prove that £ comes with two summands

L(k) = A(k) — 1/2{T, k}

where —T' is positive affiliated with A4, and —A a completely positive (un-
bounded) map. In the next chapter we prove that T is A(1).

For technical reasons (to have an algebra domain for £ ), we require that
ke Zs, s <t —2, since we know (by [27]) that the space of operators in A4;,
represented by such kernels, is closed under taking the %, multiplication (the
multiplication in A;).

The operator A will be (up to an additive multiple of the identity), mul-
tiplication of the symbol by Iny. This operation is made more precise in
3.6.

If k is already of the form Sa-0kSi<,, for some k in A;_.,, s —eg > 1,
s < t—2, then A(k) is an operator in L'(A;). In order to have the identity I
in the domain) we allow A to take its values in the operators affiliated with
A;.

Consequently A(1) is just positive operator, affiliated with 4;, which cor-
responds to the symbol Inp = In(A(2)A(E)[(Z — £)/(—21)]'?) plus a suitable
multiple of the identity.

To deduce the expression for C;(k,) one could argue formally as follows:

ClD(E€) = Lz

C

+e / k(z, )z, €7, 1,7, €] Infz, 1,7, Eldvo(n).
H

(7.1)

At this point to get a T-invariant expression, we should decompose In[z, ),
7,8 = mn[(Z=&@—n)/(Z—n) (7 —¢))] as a sum of [-invariant func-
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tions. The easier way to do that would be to write

In [z, 7,7,€] = =2 I p(Z,€) + I (7, 1) ~ In (7, €) —~ I (2, )]

If we use this expression back in (7.1) we would get four terms which are
described as follows.

The term corresponding to In ¢(Z, ) will come in front of the integral and
give

Sz &) (k# )(E,6).

The term corresponding to In¢(z,n) would multiply k(Z,7n) and would
correspond formally to & [(In¢)k] *; L.
The term corresponding to In (77, 7) would give the following integral:

a /H k(z,m)(Ine(m, )7, &)z n.7, & dve(n).

Ingp
the Toeplitz operator with this symbol, this expression would make perfect
sense.

Putting this together we would get

1
This is formally — k& *; T1. _ #; 1. If In ¢ were a bounded function and T},
12 ne

¢ 1 1
ksl =Cyk,1) = C—zk 1+ Elngp(k ki ) — {(Elngo) k] *;

1
— k% {(E lngp) l] +k * Tf/mhw*tl.

This would give that C;(k, ) is implemented by the operator

/
Cy

1 1
L(k) = (E lny — C—t> k=5 {Tume k}
where, by {a,b}, we denote the Jordan product ab + ba.

This means that Ci(k,[) is implemented by the operator L(k), which
resembles to the canonical form of a generator of a dynamical semigroup:
a positive map (— In ¢ is positive kernel, when adding a constant) minus a
Jordan product.
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To justify such a formula and the convergence of the integrals involved
seems to be a difficult task, so we will follow a somehow different but more
rigorous approach, which consists into defining the operator (—1In )k, as in
the previous section, as a strong operator topology derivative.

To that end we introduce a family of completely positive maps that canon-
ically connect the fibers of the deformation. These maps arise from automor-
phic forms, viewed (as in [18]) as intertwining operators.

In the next lemma we give a precise meaning for the operator T}, , which

ne?
is the (unbounded) Toeplitz operator acting on H; with symbol In ¢.

LEMMA 4.1. We define T =T}

s aS a quadratic form, by

(Th 6. )i, = /H (lnp)|¢[2dv,

on the domain
D= {g € H, | /(lngp)|§\2d1/t < oo} :

Clearly D is dense in H; as it contains Dy = UO Range Sas, where Sa- is
>

viewed as the operator of multiplication by A® from H,_. into H;.
Moreover Ty, , is the restriction to H; of the multiplication operator by
Ing on L?(H,v;). For &,m in Dy we have that

d

<7_’1i1<p§7 77>Ht = % <T$)5§7 TI>Ht L:O :

Proof. All what stated above is obvious: the last statement is justified
because, if Saco : Hi_12., — H;, then SZEOwaSAsO is obviously equal to
Tt—&‘o

In =0

In the next lemma we explain the role of automorphic form as comparison
operators between different algebras A; (it is a sort of tool for making a
differentiable field out of the algebras A;).

DEFINITION 7.2. For s > t, let 05, : Ay — A be the completely positive
map associating to k in A; the bounded operator in A, defined as

05715(]{5) = (SA(s—t)/12) k (SA(sft)/u)*
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Clearly the symbol of 0+(k) is

“k(Z, ) (3, ) 12

Cs

Also we have 054(0;.,(k)) = 0s.,(k) for all s >t > v.

The following property is a trivial consequence of the definition of ;. It
expresses the fact that 0, has an almost multiplicative structure, as follows.

LEMMA 7.3. For s >t the following holds for all k,l in A;:

Ons (I 0 Thiomin #101) = Bsy(k) %, Oal0).

Proof. This is obvious since 05 (k)0 .(1) (with product in A;) is equal to
SA(S*t)/HkSZ(s—t)/lQSA(S*t)/UlS*A(s—t)/m-

But an obvious formula (see, e.g., [27]) shows that S )12 SaG—n/12 is equal
to TL(S—t)/lQ‘

We intend next to differentiate the above formula, in s, by keeping t-fixed.
In order to do this we will need to differentiate 6,(k). One problem that
arrises, is the fact that a priori 0s:(k) belongs rather to A, than A;. But
if k& belongs to some A;,, with ¢y < ¢, and s is sufficiently closed to s, then
6,.(k) will be (up to a multiplicative constant) represented by the symbol of
Ostt—to.t, (k). Since s was small, this defines (via Wy ;4 +5) a bounded operator
in A;. Thus for such k it makes sense to define (6.(k)&, n)n, for all vectors
& nin Hy.

We derivate this expression after s. The existence of the derivative, in
the strong operator topology, was already done in the previous chapter. We
reformulate Corollary 6.6, in the new setting.

LEMMA 7.4. Lett > 3 and let k belong to As,, where 1 < so < t — 2.
Then there exists a dense domain Dy (eventually depending on k), that is
affiliated with A; such that the following expression:

(W mm = | {0uaR)E M)

s=t
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defines a linear operator X, on D, that is affiliated (and hence closable) with
A

Moreover, for a sufficiently large constant C, (depending on s,t) —X;+C'"
Id becomes a completely positive map with values in the operators affiliated
to A,. N

Consider the (non-unital) subalgebra As, C As,, which is also weakly
dense, consisting of all operators k in As, that are of the form SacokSi<
(where Spazo maps Hgy_19¢, into Hg), k belongs to As,—12e, and sg — 12¢¢ is
assumed bigger than 1. _

Then X; also maps A, into L*(A;). For such a k the limit in the definition
of X is the strong operator topology on a dense, affiliated domain.

Before going into the proof we make the following remark. (which is not
required for the proof).

REMARK. Since the kernel of the operator 8,,(k) (in As) is equal to

Cy

= k(z,6)[p(z, )67

Cs
it follows that X;(k) is associated (in a sense that doesn’t have to be made
precise for the proof) to

which appeared in the formula in the introduction.

Proof of Lemma 4.4. Because of the form of the symbol we may use the
Corollary 6.6.

The main result of our paper shows that, by accepting an unbounded
coboundary, the 2-Hochschild cocycle appearing in the Berezin’s deformation,
is trivial, and the coboundary (which is automatically dissipative) has a
form very similar to the canonical expression of a generator of a quantum
dynamical semigroup.

First we deduce a direct consequence out of the formula in Lemma 7.3.

PROPOSITION 7.5. Fiz a number t > 3. Consider the algebra .Zt C A
consisting of all k € Ay for some s <t — 2 that are of the form Sacok1SA<,
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for some gq, (such that s —eq > 1) and k1 € Ag,_.. Let X; be the operator
defined in the previous lemma. Then

d
E » 937t (k X T;(sft)/12 X l) = Xt(k *¢ l) + k *¢ Tll‘% In g *¢ l, (72)
d
E [Qs,t(k:) *g 03,t<l>] = Xt(kj) Xt l -+ Ct(/{?, l) + k Xt Xt(l), (73)
s=t

forall k,l € A,. Consequently the two terms on the right hand side of (7.2)
and (7.3) are equal, that is

Xt(k *¢ l) + k *¢ T(tl/12)lngo *¢ | = Xt(k') *¢ [ + Ct(k, l) =+ k X Xt(l)

Before proceeding to the the proof of Proposition 7.5, we note that A,
is indeed an algebra (see also the end of this chapter). Assume k,[ are
given, but that they correspond to two different choices of s, say s, s, with
s’ < s. Because U, ¢ maps Ay into A,, we can assume s = s’. Then when
k= Sacok1Sheo, | = SIA%ZlS}a’ and say ¢, > ¢9. Then we replace the

expression of [ as Sa<o [SA€6_50l1 (SA€6—50> } ShAeo, and choose the new [; to

be S . .y <S

A€6 —€0 AE’O —€0

*

Proof of Proposition 7.5. We will give separate proofs for each of the
equalities (7.2), (7.3). Of course these are the product formula for derivatives,
but the complicated nature of the operator functions, obliges us to work on
the nonunital algebra A;. This might be just a technical condition, that
perhaps could be dropped.

Proof of equality (7.2).
d
Ees’t <k * T:;(S,t)/lg X l) = Xt(kf X l) + k *¢ T(tl/12) In o* *¢ l
We start with left hand side: Denote P, = k %, Tc,l;(sft)/12 x; [, for fixed

h,l€ A,
We have to evaluate (against (-, £)n, where £, 7 belong to a suitable dense
domain D affiliated with A;), the expression:

05 Ps - B PS—P 08 P)— P
o(P) = P, est( t>+ AP) =P

s—1 - s—1 s—1
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d
The second term converges when s \ ¢, since P, = k[, to —|  054(F)
. s=t
which is by definition X;(k*l). Here we rely on the fact that A, is an algebra,
so that k *; [ belongs to the domain of Xj.

pP,—P
) we note that

For the limit of the expression 0, (

P, — P

s—1

l
=k *¢ Ths,t X l,

with (0—)/12
5 —1Id
hog = 5
’ s—1
Assume now that £ = Saco k15K, | = Sacol1SA<-
Then 65, (k *; T;;S,t ;1) is equal to

t
Sae-n/12 ((SAEO k1Saco) #¢ T, , %t (5A60515260)> Ale—t)/12-

This is easily seen to be equal to
t
SAU=0/12)420 [kl *t—eo Lgeon,, *t—c ll] SA—n2t20 =
t
= ‘gs,t—ao (kl *t—eo T(pfohs,t *t—eg l1> .

D o_ t
Denote Py = ky %4, TSDSOhs,t *p_eg l1-

As s decreases to t, we have (as ¢ In g is bounded) that P, converges
in the uniform operator topology, to ky *;_, Tlt/12<p501n4p *t_e, (1. This is be-
cause % (/12 _1d) /(s — t) converges uniformly to Ecpeo In ¢; since ¢ is
a bounded function.

Also if s is sufficiently closed to t, 05 ;_.(k;1) defines for every ky € A;—., a
bounded operator on A;. Indeed 6., (k1) has symbol (up to a multiplicative
constant) equal to @~t+0/12k;  This is well defined as the kernel of an
operator in A;, since k1 € Ay,

Thus 6;4,—. can be taught of as a completely positive map from A, _.
into A;. Moreover, 0;.,(1), which is SA(s_t0+5>/leZ( /125 is less than a
constant C' (not depending on s) times the identity.

8—t0+6)

o1



F. Radulescu - Non-commutative Markov processes in free groups factor...

Hence the linear maps 054,_., acting from A, _. into A;, are uniformly
bounded. Consequently, when evaluating

[((Buto-e(P) = rsoo(P)) €1)|

we can majorize by

Ousa-e(Po = PYE )| + [((Out-e = Ousoe) (PIE)|.

The first term goes to zero by uniform continuity of the 8, 4. after s,

(and since ||P, — B;|| — 0). The second goes to zero because of pointwise
strong operator topology continuity of the map s — 05 ,_..

Thus 0, (P, — P,)/(s — t)) converges to 04,_-(P;) which was
SAEO (k]. *t—EO T(tl/12)(p50 lngp * l].) SZEO

which is equal to k *; T}, *; [.

Proof of the equality (7.3).

d

d_s «95775(/{:) *g 6’8775([) :th *tl+ct(k,l> +k*t Xt°

t

We verify this equality by evaluating it on (-,&)n, &, n € D, where D is a
dense domain, affiliated to A;.
We write the expression

Qs,t(k) *g 057,5([) — k‘ *¢ l

s—1

as

037t(l{) *g 957,5(1) — 957t(l€) Xt 95’t<l) i 957,5(]{') *¢ 95715([) — ]{ *¢ l

s—t s—t

We will analyze first the first summand and prove that

057t(k3) *g Qs,t(l) — 05715(]6) *¢ 057,5([)

s—1

converges to Cy(k #; 1).
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We use the symbols of k,l, and then the symbols of 6;.(k), 65.(l) are
@2 p(5=0/12] up to multiplicative constants, that we ignore here (be-
cause the argument has a qualitative nature).

Then the symbol of the expression in (7.4) is

/H (kgp(s—t)/m) (E, 77) (ZQD(S_t)/m) (ﬁ, 5) [zv n,17, f]: : EZ 7,7, f]tdl/o(n). (75)

By the mean value theorem, with as(v) = sv + (1 — v)t, the expression
becomes

1
LA A;@w“tV”)@zm(mﬂs““ﬂ<n£ﬂ2nﬁza%wnnwnﬁn£wmxmdu

Similarly (by ignoring the numerical factors due to the constants c;) we
have that
Ct(esnf(k)a ‘95,75([))

contains the integral

/H (kU=9712) (z,n) (1"2) (1,€) (2, 0,7, & In[2, 1,7, €]dwg(n).  (7.6)

Taking the difference, we obtain the following integral:

/H (keU=0712) (z,m) (1e"712) (7, €)-

(B2 B g gtz dn. @

By Taylor expansion, this is (s — ¢) times a term involving the integral:

/H (kU=0712) (z,m) (1e"") (7, €)[2, 0,7, € (In[z,1,7,€])* dwo(n) (7.8)

where s’ is the interval determined by s and ¢.

We have to prove that the integral of the absolute values of the integrands
in the above integral, are bonded by a constant independent on the choices
of s’ (and s).
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We write |[2, 7,7, ]| = d(Z.n)d(7, €)/d(Z, €). Then
([, .7, €| < | [d(z,m)]| + | I |d(7, || + | In |d(z, ©)]].

Also we note that the logarithm in In[z, 7,7, {] has bounded imaginary part,
as the branches in

In[(Z = n)/(=20)], In[(7 - £)/(=21)], In[(Z — &)/ (—2i)]

have imaginary part in the fixed segment [0, 27].
Thus the term that we have to evaluate will involve terms of the form

/Ik'(zan)lll'(ﬁ,f)lld(z,n)lslld(ﬁ,f)lsdw)(n)

where ¥'(Z,7) could be ko (Z,7), eventually multiplied by a power (1 on 2)
of Ind(Z,n) A similar assumption holds for /.
By the Cauchy Schwarz inequality, this expression is bounded by products

of:
([iwenr Id(277|2s\d) ([ \|d77§)|23dV0)1/2- (79)

But such expressions are finite, because we know that k,[ are in A4,, for
some fixed ¢y < t, and hence in L?(Ay,) and consequently the integral

/ k(2. 7) Pz, 1) P duo () (7.10)

is finite.

Moreover (%, &) = A(2)A()[(z — €)/(—2i)]*2. This term is bounded in
absolute value by |d(Z, £)| 72, so that |¢(Z, £)|~/12 is bounded by |d(Z, £)|*~*
Also |In|d(z,n)|||d(Z,n)|® is bounded for a any choice of €.

Thus, by choosing € small enough, the finiteness of the integral in 7.10
implies the finiteness of the integral in 7.9

Thus the integral in 7.7 tends to zero. This completes the proof that

Qs,t(k)xses,t(l) — 93,t<k)xt93,t(l)
s—1
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converges to Cy(k, 1)
The remaining term, to be analyzed, is

d

ds

987,5(]{,’) Xt 957t(l) — k *¢ l

s=t s—1

We have to show that the limit is (X;(k)) *; [ + k %, (X;(1)) (evaluated on
vectors &, 7 in a dense domain affiliated to A;).
Fix the vector £, n. Then we have to analyze the following sum

(B0 ) + (=R )

The second term obviously converges to < [X;(k)x¢l&,n > and the first
term, is also convergent to < X;(1)£k*,n >, because ((0s:(1) —1)/(s — t))¢,
for £ in a dense domain D converges in norm to X;(/)¢. Indeed in Corollary
6.6 we proved that (6,.(l) —1)/(s —t) converges strongly to X;, on a dense
domain topology, because the convergence (for [ = Sacol1(Sh<), l1 € Asy—cy)
comes by proving that the partial fractions —(0s:(l) — [)/(s — t) increase
(modulo(s — t) times a constant) to —X,l.
This completes the proof.

We are now able to formulate of our main result. We recall first the
context of this result. The algebras A; are the von Neumann algebras ( type
I1; factors) associated with the Berezin’s deformation of H/PSL(2,Z). These
algebras can be realized as subalgebras of B(H;) where H, is the Hilbert space
H?(H, (Imz'~2 dzdz).

As such, every operator A in A; (or B(H;)) is given by a reproducing ker-
nel: k4, which is a bivariable function on H, analytic in the second variable,
antianalytic in the first and PSL(2, Z)-invariant. The symbols are normalized
so that the symbol of the identity is the constant function 1.

By using these symbols (that represent the deformation) we can define
the *; product of two symbols k, [ by letting k *; [ be the product symbol, in
the algebra A;.

The 2- Hochschild cocycle associated with the deformation is defined by

d
Culk ) = —(k 1)

s=t
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The Hochschild cocycle condition is obtained by differentiation of the asso-
ciativity identity. .
The cocycle C; is well defined on a weakly dense, unital subalgebra A; of
A;. A sufficient condition that an element in A;, represented by a symbol k,
belongs to A, is that the quantity | k||, defined as the maximum of

sup / k(z, 0)|Id(z, m)l!dwo(n)

z€H
and
sup [ 1k(z.n)|[d(z ) ‘dool),
neH
be finite. .
The algebra A; is the analogue of Jolissaint algebra [19] for discrete
groups.

We proved in Section 5 that the applications W, which map the operator
A in A; into the corresponding operator in A, having the same symbol, are
completely positive.

This property proves that C; is completely negative, that is for all i1, {5 ... Iy
in A, for all ki, k... kx in A;, we have that

S ek k)l < 0

This property could be used to construct, as in [31], the cotangent bundle.
In fact, here C;, or rather —C;, plays the role of VL, where L should be a

generator of a quantum dynamical semigroup ®;, (thus L = —®,| ) and

ds

we have VL(a,b) = L(a,b) — aL(b) — L(a)b. =

It is well know that VL is completely negative ([22]). In our case, the
role of the quantum dynamical semigroup is played by the completely positive
maps W, that have the property ¥, ,¥,, = ¥, ,, s >t > v. The generator
L doesn’t make sense here, since U, takes its values in different algebras,
depending on s.

Instead we use the derivative of the multiplication operation, which for-
mally is

d 4

qus,t (\Ils7t(k> *s \115775([))

s=t

as a substitute for VL.
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All the above is valid for the general Berezin’s deformation of H/I", where
[ is any discrete subgroup of PSL(2,R), of finite covolume.

When specializing to I' = PSL(2,Z) we construct also the diffusive oper-
ator £, which plays the role of the generator of a dynamical semigroup.

In the next theorem we formulate our main result. We construct explicitly
an operator L such that

L(ab) — L(a)b — aL(b) = Ci(a,b).

We will show that £ is well defined on a weakly dense (non-unital) subal-
gebra DY and the above relation holds for a,b € DY. (which is obtained
by considering suitable subalgebras of 24\5, s < t —2). Moreover £ has an
expression that is very similar to the Lindblad ([22],[8],[16], [21]) form of the
generator L of a uniformly continuos semigroup. Recall that this expression
is in the uniform continuous case

L) = @(r) — L {®(1), 2} +ilH, 2],

where ® is completely positive and H is selfadjoint.

In our case (which is certainly not ([14]) corresponding to the uniformly
continuous case) the generator L£(x) is defined rather as a an unbounded
operator (which is the approach taken in ([14], [7], [20], [17], [23]).

We prove that there exists a weakly dense, unital algebra D; containing
DY and a linear map A from D; into the operators affiliated with A;, and a
positive operator that is also a affiliated to A;, such that

L) = A(x) — %{T, o).

Also A maps D) into L'(A)

Moreover A has properties that are very similar to a completely posi-
tive map. We prove that there exists an increasing filtration (B,¢)1<p<;—2
of Dy, consisting of weakly dense subalgebras, such that, for a constant CY
depending on r, —[A + CY-Id] is a completely positive map on B,

This means that when restricted to B,:, £ has the form L(z) = A'(z) —
(1/2){T", z}, where —A’ = —[A + C? 1d] is a completely positive map and
T=T+Cp%-1d.

THEOREM 7.6. Let A;, t > 1, with product operation *; be the von
Neumann algebra (a type I factor) associated with the Berezin’s deformation

of H/PSL(2, 7).
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Let C; be the 2- Hochschild cocycle associated with the deformation

d
Ci(k,1) = —k* 1|

s=t

which is defined on the weakly dense subalgebra .,Zl\t. R
Then there exists a weakly dense (non-unital) subalgebra D? in Ay C Ay
and L;, a linear operator on DY, with values in the algebra of operators

affiliated with A;, such that
Ci(k,1) = Ly(kl) — kL(1) — Lo(K), k1 € D).

Note that —L; is automatically completely dissipative.

Moreover Ly has the following expression. There exists a weakly dense,
unital subalgebra Dy, such that DY C Dy C Ay, there exists A; defined on
D; with values in the operators affiliated to A;, and there there exists T, a
positive unbounded operator, affiliated with A; such that

Lo(k) = A(k) — %{T, k}, keD

Moreover Ay has the following completely positivity properties

1) Ay maps DY into L'(Ay)

2) There exists an increasing filtration of weakly dense, unital subalgebras
(Bst)1<s<t—2 of Dy, with UsBs, = D, and there exist constants Cs, such that
—[M\t + Cs ¢ - Id] is completely positive on Bg,.

REMARK. At the level of symbols the operator Ay has a very easy expres-
sion, namely A¢(k) is the pointwise multiplication (the analogue of Schurr
multiplication) of k with the T'- eqivariant symbol

In(A() Az — €)/(-29]").

We identify as in Section 4, L*(A;) with a Hilbert space of T’ bivariable func-
tions, analytic in the first variable, and antianalytic in the second. Then
A corresponds to the (unbounded) analytic Toeplitz operator with symbol

I(A()AE)[(Z - €)/(—20)]").

Proof of Theorem 7.6. This was almost proved in Lemma 6.3 and Propo-
sition 7.5, but we have to identify the ingredients. Here the algebra DY is the
union (with respect to s, &g)

*
SacoAs_coSAco-

1<s—ep<s<t—2
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It is obvious that D} is an algebra (under the product on A;. The algebra

D, is the union . Ut Ay, viewed as an algebra of A;). The algebra B, is
<s<t—

the union (after ) of U  Saz0As oy Shco-

1<s—eg

The operator T is the Toeplitz operator with symbol (1/12)1n ¢, while
A; is X;, where X; was defined in Lemas 7.6 and 7.4. In proposition 7.5 we
also proved that

Ci(a,b) = Xy(a*,0) — Xy(a) %, b—ax; X;b+ a*, T(tlw)/m*tb, for all a,b € D).

Clearly the term ax*; T(t1rl ) /12*tb is a cohomolgicaly trivial term, and hence
Ci(a,b) is implemented by Li(a) = Xi(a) — 1/2{a, T}, )12} Hence C; is
implemented by £, = Ay(a) — 1/2{a, T} }. All the other properties for
A; where proven in Section 6.

One also needs to show that the vector spaces D; = LtJ 2:4\8 and
s<t—

(Inp)/12

D? = 1<S_60Lis<t_2 SacoAs—12:05 A0
are indeed algebras (in A;). D, is obviously an algebra, since we proved ([27])
that .A is closed under x, for all v > s. Of course, if we take the product of
different Asl and .As2 we may embedded them in Amax (s1,52)"

To prove that DY is an algebra (in A;) we will need to show first that
we are reduced to proving that Saeo 425_12805*&0, for fixed s and ¢ is closed
under the product *; in A;.

Indeed if we do product for different s, we may simply take the maximum
of s, s. If we do a product corresponding to different &(s, say ¢ and €1, then
we choose €1, to be the largest.

Then observe that for k € As 1o,

SA«fl kSZsl - SAE() (SAel—so /{55251750 )S*AEO .

Now Spc1-<0kS\c, -, has symbol equal to, (modulo a multiplicative con-
stant) 17k, Since |p| < d7'2, if follows |p|° < d7'** and hence that
1750k belongs to ﬁs_lgaﬁlg(gl_ao) which is ﬁs_lggo.

Thus Sae ./Zl\s 1269, 18 contained in Sa<o ./Ts 1260 9 Ao -

Now we are reduced to show that the product of two elements: Sacok1SA<,

and Sazol1She, k11 € AS 12¢, 15 again an element in Sa<o .AS 12609 Aco -
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But
(Saco)k1Sh=0) *¢ (SacoliShe)

coincides with
*
Sazo [lﬁ *t—12¢q SASO Saco *—12¢ ll]SAfo

Because .,21\5,1250 is closed under the product #; 19, it is sufficient to show
that

t—
TSOEOEO - SZEO SAEO

belongs to ﬁs—l?eo‘ But this is a general fact contained in the following
lemma.

LEMMA 7.7. Assume f is a bounded, measurable, I'- equivariant function
on H. Let Tf be the Toeplztz operator on Hy, with symbol f. Then Tf belongs

to A,. Moreover HTth < |[flloo, where C is a constant depending on t.

Proof. Note the symbol of T} is given by the formula [27]
20 = [ f@)zangdu, e
We have to check that the quantity:

sup / 152 6|z, €)[{due(€) < || ]l

z€eH

(and a similar one) is finite.
But the above integral is bounded by

/|f 7 @€l [d(z 6" dvo(a,€)

/ F(@)](d(z. 0))!(d(@, €)' dvn(a, €)

- [ r@acoy ( [ e an©) ano),
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But the inner integral is a constant K;, depending just on ¢ and not on
z. Thus we get

K fla)(d(z, a))'dro(a) < K[| f|o-

8. COMPARISON OF Ty, AND A(1)(Z,€) = " Inp(Z,§) — (¢i/cr)”

In this chapter we compare A(1), which was constructed in Section 6,
with Ty,

We recall that A(1) is (up to an additive constant depending on the
deformation parameter t)

(SAS())_I <iSAESZg

de ) ((Saz)) ™

£=¢€0,6>€0

where Sa- is acting on H; 19, while Saco acts from H; into Hyii9.,. The
inverse (Saso)~! is an unbounded operator with domain dense is closure of
range of Saso. We have explained in Section 7 that A(1) corresponds, in a
non-specified way, to the kernel: Inp(z, &) — (¢, /).

Both A(1) and T}, , are positive and affiliated with A;. Also recall from
Section 6, that the above definition for A(1) translates into the fact that for
W = [JRange (Sh:,)" we have that (up to constant)

€0

A = L (She (54e) " w,w), — lim( 22221

w, w
de £\0 5 )

Our main result proves that there exists (a possibility different domain)
where T}, , is given by the same formula.
The main results is as follows:

PROPOSITION 8.1. There exists a densely defined Sy C Hy, which is a
core for Tlfw (though not affiliated with A;) such that the following holds
true:
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Let G. be the bounded operator in Ay given by (1/¢) (Sa:SA- — 1d). Clearly
G. has kernel é\E(E, §) = (1/e) ((er/(cr +€))p(Z,€) — 1d), and the kernels
converge pointwise (as ¢ tends to 0) to Inp(z, &) — (c/cr).

Then, for all vi,vy in Sy, we have that

TN

<Tln 01, Uz) = l{%(GsUh UQ)

REMARK. By comparison, the same holds true for A(1), the only differ-
ence is that this happens on a different domain W (in place of Sy) which is
affiliated to A;.

This will be proved in several steps, divided in the following lemmas.

LEMMA 8.2. Let

N .
S = {Z(z—ai)aie l

=1

Rea; > 3, ¢, >0, )\Z‘EC,NGN}.

Then S is contained in all Hy, and dense in all Hy, t > 1.

Proof. Actually Rea; > 1 would be sufficient for the convergence, but
for latter considerations we take 3 instead of 1. It is sufficient to consider a
single term (so N = 1). We omit all the indices for o, a,ec and let A = 1. We

prove first that f(z) = ﬁ
z—a)“

J 2

which is obviously convergent as Rea > 2.

¢’** belongs to any H,. Indeed we have

L
(z —a)"

ez

e

1
dl/t(Z) :/me_(lmz)a(ImZ)t_dedZ
H

In the next lemma, we enlarge that space S to exhaust the range of all
SAE.

LEMMA 8.3. Let Spr = |J A°S, t —e > 1. Then Sy, is dense in all Hy,

e>0
t>1.
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Proof. We need only look at § C H;_. and apply the operator Sa.

Next we need a bound on Im(In A(z)). Recall that we are using a choice
for In A(z) which comes from that fact that A(z) is non zero in H.

LEMMA 8.4. Let In A(z) be the principal branch of the logarithm of the
function A. Then [ImIn(A(z))] is bounded by a constant times C (Re z + (1/(Imz)?)),
as Imz | 0.

Proof. We let ¢ = e*™* and use the following expansion for In A(z)

When r = |q| = [e*™*| = e~™ tends to 1 we have, with ¢ = re'

that

, 2 =x+iy

ImInA(z) = % + Z arg((1 —r" cosnf) + ir'" sinnf) =
n>1
r™ sin(nd)
= tan™' | —————2 | |
12 +n>1 o {1—7”"(30871‘9}

As r — 1 this is dominated by
T r™ sin nd
E—i_; 1 —r"cosnb

which in turn is dominated by

n

Vi r
ﬁ+zl—r”

n>1

This turns out to be

T

—2—|—(r—|—r +r3 )
+ (r? +rt %+ %)
+ (P00
+ (r* 4+ 1® —i— )
+ (P +rP 4.
+
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and this is dominated by

T c
SCRN ST
for some constant c.  omy
Letting r = e72™, and using that 11}3‘13 T is finite, it follows that

1 1
|ImlnA(:U)| S C (SE + E) = C (RGZ + m)
COROLLARY 8.5.. For any € > 0, then exists a constant c. such that

|IA*(2)InA(2)| < e (1 + ﬁ) (1 +Re 2+ @)

Proof. We write
|A%(2) In(A(2))] < [A[FIn|A(2)] 4 [A(2) " [Tm(In A(z))

We note that |A(2)[*Imz'? is a bounded function and hence

C1
(Imz)6°

Also, since |zf Inz| < const ([z°!, x°2]) for & > 0, where €1 > £ > &9, we have
that

|A(2)] <

[A(2) [ In[A(2)] < const (JA(2)[, [A(2)[)

< cmax ((Imi)ﬁgl ; (Imi)&z) <c (1 + (Inllz))

Similarly

“|Im(In(A(z — !
A AN < g o+ o]

Putting the two inequalities together we get

A%(2) In(A(2)))] < ¢ (1 + (mllz) + (Imlz)ﬁs [H (IHL)ZD
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which is thus smaller than

‘ ((1 ! <hiz>) e (1 ! <hiz>) ! (1 ! <Iriz>) <hiz>2>
=c (1 + (hilz)> (1 + Re z + (Iriz) )

COROLLARY 8.6. Because |A(2)| has the order of growth of |€™?| =
e ?™ y = Imz, it follows, by first splitting A°(z) = A (2)A®2(z), that the
growth of |A®(2)In A(2)| will come from 1/Imz as Imz — 0. Thus the above
estimate can be tmproved to

Rez

|A®(2)InA(z)] < C(Imz)3 (e7=tm?)

In the next lemma we establish the integral formula for (7}, ,v,v).

LEMMA 8.7. Fizt > 10. For v in Sy., the integral

//““”5 (2)o(€)dvn(=,€),

15 absolutely convergent and equal to
[ (o (z) = (T o)

Proof. We will make use of the fact that v € Sy, so that

v(z) = A%(2)v1(2),

for some ¢ > 0 and for some v; € S, (which is contained in H;_.).
We start by establishing the absolute convergence of the integral. The
integral of the absolute value of the integrands is

/ |1w Ig\’M M jos ()] 8(©) s (€) a2, ©).
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We expand this into three terms, by using the expression
Inp(z,&) =InA(z) + InA(€) + 12In(z — &), for z,£ € H.

We will analyse each term separetely. Since the situations are similar will do
only the computation for the term involving |In A(z)|. The corresponding
integral is

Because (Imz)t/ 2(Imé)¥?/|z — €| is bounded above 1, the previous inte-
gral is in turn bounded by the integral

/ / |0 A(2) A2 or () [|A%(€) [ua(€) | (Tm=)/ (Imé) /2 d 2z dE

We use the estimate from Corollary 8.5 to obtain that this integral is
further bounded (up to a multiplicative constant ¢) by

c//(IP:E—S?’]vl(z)]|v2(§)\e_gllmze_a(lm§)(Imz)t/z_z(Imf)t/zdzdzdgdﬁ.

This comes to

c//(Rez)|vl(z)||vg(§)|e_€1(lmz)e_5(1m€)(Imz)t/2_5(Imf)t/dedngdf.
HQ
As long as t/2 —5 > 0, the term e~**(™2)(Im2)"/2~> will be bounded by some
—&} (Imz)
e :
Thus if ¢ > 0, and with the price of replacing ¢,e; with some smaller

ones, in order to kill growth of (Imz)*/?=> and (Im¢&)¥272, we get a multiple
of

/ / (Re 2) v, (2)||va(€) [ %6216 sz dEE.
H2

But for z = x+iy, |v1(2)| involves powers of 1/2* which makes the integral
absolutely convergent. Hence the integral in (8.1) is absolutely convergent.
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In the next lemma we will prove that for v € Sy, the integral

[/m td)%(ﬁ%@f)

is absolutely convergent and equal to

We now complete the proof of Lemma 8.7:

/Hln 0(Z, 2)|v(2)Pdvy(2) = /[ln A(2) + InA(2) + 121n(z — 2)]|v(2)[*dv(2).

We analyze each term separately:
We have

/ In A(2)o(2)0(2)du(2) = / In A(2)o(2)c ( / (“(5)) t(g)) duy(z) =

// In(A o dyt (2,€) = // In A v(§ dvy(2,€).

Similarly

/hm( Jo(2)0()dwi(2 —ct// IHA th( ).

We know that the integrals are absolutely convergent and that we may
integrate in any order. Finally using the next lemma, we will have that

[ mmalota)duc:) //mz‘ = <fﬁ'<s%émmm

Ct
H

Putting this together we get that
(T/12)m v, v)

1/12ERAOIE = O/ oo A
// ey (=)o@ (2, = Lo 0)m
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This completes the proof of Lemma 8.7.
The following lemma was used above.

LEMMA 8.8. For v in Sy, we have that

/H In(Tm 2)[v(2) 2y, — / / Inf(z _)])] (z)mdut(z,f)—i—:;(vm);]t.

Proof. Start with the identity

v(z)

€)= | gy ) - e

We differentiate this after s, at s = ¢ (which is allowed because of the fast
decay of the functions in Sp4).
This gives us

y o(2){In(Tm =) — In[(z — &)/(~20)]
”“”*QA; [EEBNEL dnls).

Now we integrate on H, with respect to the measure v(&) - di; ().

We get
ln Im 2
twmﬂ+t/7 ()

e -

The second integral is

/H|v(z)|2ln(lmz)d1/t(z).

So we get the required identity.
This completes the Lemma 8.7 and also the proof of Lemma 8.8.
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We now prove that the reproducing kernel

L in (AEHA©[(E - /(-20)]2) - &

12 Ct
is the derivative of (Ct/(Ct+12(8—t)))SA(sft)/HS*A(S_t)/lQ on the space S ;.

LEMMA 8.9. For vy,vy € Sy, we have that

// ey e

15 the limit, when € \, 0, of
// Lele _)I](ti)vl(z)vg( (=, €).

Proof. The convergence of the integrals involved in the limits was proved
in the Lemma 8.7. To check the value of the limit we will evaluate the
difference. This is

[1/e(p —1d) — Inp(z, &)]
// )/(—21)]t v1(2)va(§)duy (2, €).

We use the Taylor formula to express

[0/ = 1) - oz @m0 -

//Hz / e f L S()Qf)]é)]i)l(z)w( )drduyy(z, €).

The same type of arguments as in Lemma 8.7, because of the rapid decay
of the vectors vy, v9 in Sy, proves that the integral

/// 8Tz— hl_SO )]Qvl(z)vz( Ydvy(z, §)dr
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is absolutely convergent with a bound independent of €. This completes the
proof of Lemma 8.9.

To complete the proof of Proposition 8.1, it remains to check the fact the
operators G, = (Sa:Sh- — Id) /e are decreasing (after making a correction of
the form —G. 4 €K, for a constant K. This is done in the following lemma

LEMMA 8.10 Consider the bounded operators G. = (Sa:She — Id)/e,
which are represented by the kernels

1 [Ct—12a

Ct

oo -1|.

3

Then, there exists a constant K such that —G. + Ke is, (as € decreses to 0),
an increasing family of positive operators in Agsyq.

Proof. Note that the kernel of Sa:SA- is

e ARAE)E - /(=202

Cy

Hence the derivative is

~12% 410 [BEA©IE - /(2017

Clearly Sa:SA- is a decreasing family. We will proceed as in Lemma 6.3.
Let s. = S(e) be the kernel of SxSA. (as an operator on H;). Then

5:(2,6) = 2 (p(2, ).

Cy

Let G. = (s. — 1d)/e.
The first derivative of s. (after ¢) is

/
—12&g05 + ﬂgf In .
Ct Ct
The second derivative is

Ci Ct—12¢
24" Inp — —=°(In p)*.
Ct Ct

70



F. Radulescu - Non-commutative Markov processes in free groups factor...

This is equal to (as ¢, = 1)

Ct_12¢ Ct—12¢

~ 241 ~ 12lnpl? ¢ 144
Ct 12590E {(lngo)z— USO} _ Ct 125—:90E {(lngo)jt HSO} G 125905 .
Cy Cy Ct (Ct712s)

This is further equal to

Ci19e 12In 13 144
t—12 o {lngp—i— 80] . ¢
Ct Ct(

Ct—12¢ Ct7125)

For every r > 1, Si. (Sh:)" = f(e) is a decreasing family in A,. By
evaluating the kernel, which is

F()(Z,6) = T p(z,0))

T

d
we get that = f(e)(z,€) is a positive kernel for A,. Since

r—12¢ —1
Cr—12¢e = ——
™

we obtain that .

Cr_ a
igoe Inp — 122—@5

represents a negative kernel for A,.

We recall, from Section 6, that a kernel k = k(Z, £) is positive for A, (even
k(Z;, z; .
_(—])T} is a
(zi — %) ij=1

positive matrix for all choices of 21,25 ...2y5 in H, and for all N in N

We get that
" | Inp —
Cry12e

represents a negative (nonpositive) kernel for A,..
Thus /2 [Inp + (12/(r — 12(¢/2) — (¢/2) — 1))] is negative for Atz
and hence the square

if k£ does not necessary represent an operator in A,.), if [

2 2
12 12
¢ |Inp+ =¢° |Ingp
o125 -2 1 o125 -5 1
2 2 2 2
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is positive for Ag,_19..
Consequently the kernels

o —12 _[ 12 2
P bk S T P

are positive for As13.
Now we note the trivial calculus formulae

G. = S -1d /1 S'(ev)dv

g

AT | 1
G = w = / S'(e'v)dv
0

The above equalities hold pointwise, that is when evaluating the corre-
sponding kernels on points in H2. Hence

G.—Go = /OI(S’(sv) — S'(e'v))dv

:/1(57)—51) / S"(p(ev) + (1 — p)e'v)dpdv

(e—¢ // vS" (a(v,p))dpdv

where a(v,p) = p(ev) + (1 — p)e'v < max(e, €’).
We haved proved that S”(«(v,p)) is represented by a positive kernel R,

const
from which one has to subtract a quantity ¢ (which is precisely —gpa(”’p)).

Cv—12a(v,p)
As such by integration we obtain

G.—G.=(e—¢€)[R - Q],

where R represents a positive kernel for A Moreover () is pos-

2t—12MiN(e,e’)"
itive element in Ay 4+ 12min(e,e’)) and Q is bounded by c-Id, where ¢ is a
universal constant.

Assume that ¢ > ¢/, then in the sense of inequalities in Aj,,; we have
that

G. —Go > (e —€)(—Q)
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Since 0 < Q@ < ¢-1Id - Id, we have that 0 > —Q > ¢-Id - —Id (in Ag 1),
Consequently, in A1, we have that

G.—Go > (e —€)(—0)
Therefore, the following inequality holds in Ay .
G.+ec> G +¢e.

If we take in account that G. was negative and replace G. by H. = —G.
then we get that in Ay 1 we have that

(—G.) —ec < (—Gu) —€'c
ie. that if e > ¢
H, —ec< H., —¢ec
We have consequently proved that, in Ay, 1, the kernels
¢ — 12¢
H.(%,) = —G.(z,) = —

"+ 1d

€
are positive and they increase (when e decreases to zero, modulo an infintes-

imal term) to —(c;/¢;) + Inp(Z, §).

LEMMA 8.11. Let M C B(H) be a type II; factor and assume that
(H,)nen is an increasing family of positive operators in M. Let

D(X) ={¢ € H | sup (H,§,§) < oo}

and assume that D(X) is weakly dense in H. Then D(X) is affiliated with
M, and (X¢,&) = sup, (Hx§,€),¢ € D(X), defines an operator affiliated
with M.

Proof. Clearly D(X) = {5 € H | sup, HH}Z/Q{?H < oo} and such that

D(X) is a subspace, because if HHi/QSH < A HH}/QnH < B for all n then
HH}Z/Q(ﬁ'—l—n)H < A+ B. Moreover D(X) is clearlyinvariant under v’ € U(M’),
and hence D(X) is affiliated with M.
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The quadratic linear form ¢x (§) = sup,, (H,&, £) is weakly lower semicon-
tinous, thus gx defines a positive unbounded operator X, affiliated with M,
with domain D(X).

COROLLARY 8.12. The following holds:

+%1d = A(D).

Proof. Let H. = —G. + K - Id + C., where G, are as in Lemma 8.10.

Then by definition X = —A(1) + K - Id coincides with the supremum of H,
on Sy = USK..
On S, which is a core for 7}, , + K - Id, the same holds for T}, , + K - Id.

Thus T}, ,|s, € X, hence T}, , € X and so T}, , = X = —A(1), by [24].

9. THE CYCLIC COCYCLE ASSOCIATED TO THE DEFORMATION

In [27] we introduced a cyclic cocycle Wy, which lives on the algebra Ut /Ts,
s<

and we proved a certain form of non-triviality for this cocycle.
We recall first the definition of the cocycle ¥, and then we will show the
non-triviality of ¥, by using a quadratic form deduced from the operator

introduced in Lemma 6.6 and Lemma 7.4. The main result of this paragraph
will be the following:

THEOREM 9.1. Lett > 1, let B, = Utﬁs, which is a weakly dense
s<
subalgebra of Ay and let Ry be defined on B, (with values in B;) by the formula

1
<Rtk’, l>L2(At) = _iTAz (Ct(k', l*)), k.l e B
(that is Ry implements the Dirichlet form 1,(Cy(k,1*)).
Let (VRy)(k, 1) = Ri(k,l)— kR — R (k)l, which belongs to By, if k,l € By,
and let W, be the cyclic cocycle associated with the deformation ([27])

Uy (k, 1,m) = 74,(C,(k, 1) — (VR)(k, D)]m), k,l,m € B,.
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Let A be the operator, on the weakly dense (non-unital subalgebra) DY C
A, introduced in Theorem 7.6, by requiring that Ao(k) is the derivative
at 0, of the operator represented in A; by the kernel ©°(Z,8)k(Z,€). Thus
Ao(k)(Z,€) is formally k(Z,£) Inp(Z,§).

Let xi(k, 1) = (Aok, 1*) 12(a,) — (K, Ao(l7)) 12(a,) De the antisymmetric form
associated with Ag. Then

/

U, (k,1,m) = %mt(mm) el we 1,m) + xe (Lo, k) + xo(m % e, 1)
t

for k,l,m € DY.

We will split the proof of this result in several steps: First we prove some
properties about Ay and its formal adjoint AT. We start with the definition
of AT, The first lemma collects the definition and basic properties of A™.

LEMMA 9.2. Let f be a bounded measurable function, that is PSL(2,7Z)-
equivariant .

We define A*(T}) =T}y, ,. Then A* has the following properties:

1) Assume in addition that flnp(Z,z) is a bounded function. Then
(Ao|Dy)* C AT and

1
area F

a4, (Do (k)(T})") = 7, (RAT(T})) = /F/f(Z 2)f(2) Inp(Z, 2)dig(2).

2) For k,l be in DY, we have that

T(kAT(T7)l) = 7(Ao(l % k)Ty).

Proof. The proof of this propositions is obvious, since integrals are abso-
lutely summable. For part 2 we remark that k:A*(ch)l has symbol

. /H k(z, n) [ (7, m) In. o7, ))oo (7, €) v ().

Hence by summability, the trace is

(&7

/ / k()1 2) £, 7) I (7, )z, )

FxH

area '
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which is exactly 7 (A(l * k)T} lnso)' This completes the proof.

Recall that in Section 5 we introduced the, densely defined, operator 7, 4,
on L*(A;), given by the formula

(Tak, 1) = / / G ) nd(z,n)|d(z, ) [2dve(t, n),

FxH

which is well defined for k,[ in algebra l”;’t. We note that 7p,4 acts like
a Toeplitz operator on L?(A;), with symbol Ind. In the next lemma we
establish the relation between the operator 7,4 and the operator R;.

LEMMA 9.3. The operator Ry, defined by the property
1
(Rik, 1)y = —§T(Ct(k, 1))
has the following simple expression in terms of Ty, q:

R = —==t — (Tnak, 1), k1€ B,.

Proof. Indeed we have that for k,1 € B; C ./zl\t

c _ o _

Co(k,1) = C—z(k * 1) + Ct/ k(z, 1@, §)[Z,1,7, €] n[z, 0,7, {]dwi(n).
H

If we make £ = z in the above expression and then integrate over F' to
get the trace of Cy(k, 1), we get

/

F(Co(k, 1)) = Lr(ko#, 1) +

C area F

/ / k)| )P n ()

FxH
/

= Sr (kg 1) + 2T ok, ).
Ct
This completes the proof.

In the next lemma we prove a relation between Ay + AT and the other

terms (remark that A1 is not necessary the adjoint of Ay, rather we define
A*(T}) = T}y, , whenever possible).
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PROPOSITION 9.4. For all k,l in D} we have:
(Aok, 1"y 4+ (k, Aol™) = T(kT;'lnapl) + T(ZT}1n¢k) — 2(Tin ok, 1). (9.1)

Consequently if we define “RelAo” (formwise) by the relation
1
((Re Ao)k, 1) = 5 ({Aok, 1) + (k. Ao (1)),

then

/

1
(Re Aok, 1") = Sr(KT1+ITk) + (Rik,I') + 1 /2%<k, Moy (9.2)
t
Proof. We prove first the relation (9.1). For k,l € D?, we have that
(Nok, ") r2(a,) + (b, Aol™) 124,

is equal to

Cy

area

7 [ et + ot kG, )iz ) dn ).

FxH

Since

In@(z,7) + Inp(7, 2) = Ine(z, 2) + In (7, 7) — Infd(z, n)]?

we get the relation (9.1).
Dividing by 2 we get
1 1
2 2

The definition of R; and previous lemma completes the proof.

[(Aok, 17) + (k, Ao (D)) = 5 [T (KT 1) + 7(I T3 k)] = (Tinak, 1) 124

Recall that in Section 7 we proved that for all k,[ in DY we have that

/
Co(k,1) = 1A + KT}, 1+ Ag(kl) — Ag(k)l — kAo (D). (9.3)

Ct
We want to use (9.3) to find an expression for

Ci(k,1) = (AR (K, 1)
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by taking the trace of the product of m € DY with the previous expression.

Notation. We denote T = T

o and let (Sym k,l) = 1/2[7(KTT*) +
7(I*Tk)], for k,l € D?. Hence

rae (Sym,, (K)1) = %[T(m) +r(ITH)).

In this terminology the relation in Proposition 9.4 becomes

1 /
(Re Mok, 1) = (Symk, 1) + (Reb, 1) + 5 (k, 1),
t
Note that in the relation above, the scalar product refers to the scalar product
on L?(A;). Moreover the following relations hold true.

r(Sym, (k)m) = %[T(k,‘le) + r(mTHl) (9.4)
7((Sym,k)Im) = 7(Sym,(k)(Im)) = %[T(lem) + 7(ImTk)] (9.5)
7(k(Sym,(1))m) = 7(Sym,(mk)l) = %[T(lek‘) + 7(mkTl)). (9.6)

LEMMA 69.5. For all k,1,m in D? we have that
E = Sym,,(kl) — (Sym k)l — k(Sym,l) + kKT'l = 0.
To check this, one has to verify that T(Em) = 0 for all m in D).
Proof. We have to check that the expression
T(KITm)+7(mTkl) —7(kTlm) —7(ImTk) — 7(ITmk) — 7(mkTl) + 27 (ETIm)

vanishes. But
T(mTkl) = 7(ImTk),

T(KlTm) = 7(ITmk).

After cancelling the above terms we are left to check that

—7(kTlm) — 7(mkTl) + 27 (kTlm)
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is equal to zero, which is obvious since k,I,m € D). This completes the
proof.

We now decompose 7(Ag(k)l) in the following way
T(Ao(k), 1) = ((Re Ao)(K), 1) +i((Im A) (k), 1)
where

((Tm Ag)(K), 1) = (1/20)[(Ao(k), 1) — (K, Ao(I7))]-

We now can proceed to the proof of Theorem 9.1.

Proof of Theorem 9.1. We have

Colk,1) = %kz FRTL+ No(kl) — Ao(k)l — kAo().
t
Hence by taking scalar product with an m in A;, i.e. computing 7(C;(k,[)m)
we obtain

T(Ci(k,l)m) = Z—iT(klm) + 7(kTlm) + 7(Ao(kl)m) — T(Ao(k)lm) — 7(Ao(k)mk)
= %T(klm) + 7([ET1lm) + (Re Ag(kl), m™)
— (Re Ag(k), (Im)*) — (Re Ao (1), (mk)")
+1i(Im Ag(kl), m*) — i{Im Ag(k), (Im)*) — i{Im Ao(1), (mk)™).
By using the relation

1 /
(Re Ao(k), ') = (Ruk, 1%} + 5= (k, 1°) + (Symk, ).
t

we obtain that 7(C¢(k,[)m) is equal to
T([(AR) (K, D)]m)
plus the following terms

(Sym,, (kl), m*) — 7(Sym,,(k)Im) — 7(Sym,(I)mk), (9.8)
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plus the terms

% Ig _ld 14
Ctr(k’lm) + <2 0 e 3 Ct) 7(klm), (9.9)
plus the terms

i(Im Agkl, m™) — i(Im Ag(k), (Im)*) —i(Im Ao(1), (mk)*). (9.10)

The terms in (9.8) add up to zero, as it was proved in Lemma 9.5. The
/

1
terms in (9.9) add up to §&T(k5lm)
Ct
Since x¢(k,1) = 3[(Aok,1*) — (k,Aol*)] = i(ImAg(k),l*) we obtain by
adding the terms from (9.8), (9.9) (9.10) that

/

T(Ci(k, D)m) = 7([(ARy) (, l)]m)—l—%&T(klm)—i—Xt(kl, m)—x¢(k, Im)—x.(l, mk).

Ct
Thus

/

lc
U, (k,l,m) = §c_t + xe(kl,m) — xi(k,Ilm) — xi (I, mk).
¢

LEMMA 9.6. Lett > 1. Assume that k,l are such that k = ki *; ko,
[ =1 % 12, k?l,ll € D? Then
/

T(ka Ly (k1) + T(Lo(Dl) + 7(Co(k, 1)) = — Lk %, D).

(&7

Proof. Recall that

L= (AO _a. Id) _ %{T, 1. (9.11)

Ct

Also 7(Ci(k, 1)) = (¢} /ee)T(k #¢ 1) + 2(T1nak, ). Also

T(Ao(k) - 1) + 1(kNo(l)) = T7(KTL) + 7(ITk) — 2(Tim ak, 1). (9.12)
Moreover,
T(KTl) = 7(Ao(l %¢ k)) = /Flngo (Ux k)(Z, 2)drg(2). (9.13)
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Hence by (9.11),

C/

F(a Lo (D)) = (kaAo(D)ky) — S (kT — %T(kzml) _ %T(/@zm)

Cy

and

T(lgﬁt(l{?)ll) = T(lgAQ(k’)ll) - %(—T(lng’ll) - T(lgk?Tll)) — Z—;T(k?l)
So by (9.11), (9.12),
T(koLe(Dkr) + T(1Le(k)y) +/7'(Ct(/€, 1))
= 7(Ao(k)D) + (Ao (1)) — z%f(kz) — 7(KT1) — 7(ITk) + 7(C,(k, 1))

= 7(kTl) + 7(ITk) — 20_27_(]{;[) —7(kTl) — 7(ITk)

Ct
/
—2(Tryak, ) + 2(Toyak, 1) + Lr(kl)
% (1 !

10. A DUAL SOLUTION; CLOSABILITY OF A

In this chapter we analyze the Hilbert space dual of the operator A(k), k €
D, introduced in the Section 7. This is achieved by analyzing the derivative
of the one parameter family of completely positive maps xs; : A — As,
1 < s <t, defined as follows:

Xoalk) = 8 ik (SASI;J) . ke A
Recall that Hilbert space L?(\A;) is naturally identified with the Hilbert space
of all kernels £ = k(z,£) on H x H, that are diagonally I'- equivariant,
[' = PSL(2,Z). The kernels are also required to be square summable with
respect to the the measure [|d(z, €)|]**dvo(2)dvg(€) on F x H. (Recall that F
is a fundamental domain for I" in H).

Consider the Hilbert space L;, of all measurable functions on H x F', that
are, square summable with respect to the measure d?!dyy x dvy. This space
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is obviously identified with a space of T'- invariant (diagonally) functions on
H x H, square summable over F' x H.

We let P be the orthogonal projection from L! into L?(A;). Let ® be a
measurable, (diagonally), I'- equivariant function on H x H. With the above
identification let Mg be the (eventually unbounded operator) on L;, defined
by multiplication with ® on L;. Correspondingly, there is a Toeplitz operator
T3 = PMsP, densely defined on L*(A;).

For example, the map A, constructed in Section 7, is 7 with ® = In .
In Section 9, Lemma 9.3, we have proved that the operator R; defined by

1d

< Rtk,l >L2(At): _§£TAS(k *g l*),

defined for k, [ in an algebra, is exactly —Tiq — 5(c}/¢;) - Id.

Let also P; be the orthogonal projection from L?(H,dv;) onto H;. Recall
that the formula for 7; has a trivial extension to a projective unitary repre-
sentation, 7; (given by the same formula as 7;), on functions on L?(H, dv;).
Moreover P, = P;7, = 7,P, = PP, Let A, € B(L*(H, 1)) be the com-
mutant of (). By [A], this is a type Il factor, such that L*(A4,) is a
canonically identified with L;. Consequently, at least, for k in LQ(;\Q) N ./Aél/t,
it makes sense to consider P(k) = P,kP,.

PPMMA 10.1. Let Py, be the orthogonal projection from L, (identified with
L*(Ay)) into L*(Ay).
Then P.(k) is given by the formula P;kP;, which is well defined for k €

—~

LQ(E) N A; and then extended by continuity. For such a k, the kernel of
(Pik)(Z,€), 2,€ in H, is given by the formula

(PO.E) = iz = N2 [ [ o () )

(
M —12)" (72 =€)

Proof of the lemma. One can check imediately that the map P(k) =

P,kP,, for k in L*(A,), defines an orthogonal projection on L2(A,).
The formula for P (k) follows by writing down the corresponding kernels,

and it holds as long as k is in L*(A,).

In the next lemma we will prove that the Toeplitz operators of symbols
Inp and Inp, have dense domain (in L?(.A;)) and that they are adjoint to
each other.
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LEMMA 10.2. Let o3, &) — %ln[mmg)[(z —6)/(=20)]"2] (as in Sec-

tion 7). Let DY be the union of SacA_s_.Sh-, aftere >0, t—3—e > 1.
Then Dom(My) N Hy contains the weakly dense subalgebra Dy. Con-

sequently DY is contained in the domain of PM,P, which is the Toeplitz
operator T,.

Before beginning the proof of the lemma, we note the following conse-
quence:

COROLLARY 10.3 The operator A introduced in Section 7, (restricted to

'5?) coincides M(1/12)m ok, acting on the same domain. Morever, the oper-
ators Ty and T, are densely defined and Ty C (Tmy)*s Ty S (Tmz)
Consequently, this operators are closable, in L*(Ay).

Proof. The fact that A(k) is equal to M /12y ok for k in D}, is a con-
sequence of the fact that M, (k) is the L2-valued derivative at 0, of the
differentiable, L;-valued function e — M. (k). This is based on the argu-
ments in the proof (below) of Lemma 10.2. Hence, 7y, (k) is the derivative
at 0, of the differentiable, L?(.A;)-valued function function & — 7.

Proof of Lemma 10.2. We have to check that for k in 15,? having the
expression k = Sack1SA-, with k; € A;_o_. (so that up to a constant k(z, &) =
©°k1(Z,€), z,& € H), the following integral:

/ / (2, OPRGDAE) (= - O |k (z.6)dPdne(z)  (10.1)

is (absolutely) convergent.
Since k1 belongs to A;_5_. we may free up a small power « of d, so that

the integral
] Iz gl tedneg)

FxH

is still convergent. We proved in Section 8 that for any € < &’, there exists a
positive constant C; ./, such that

Rez
(Im z)?2

—&’ Im z

|In A(2)A°(2)| < Ceor
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When evaluating the integral in (10.1), we will have to find an estimate for
each of the terms that arrise by writting

Inp(Z, ) =InA(z) + InA(&) + 121In(z — §)

After taking the square, we see that it remains to prove that the integrals,
containing the following quadratic terms, are finite:

I A()PIA ),
I AE©)PIAE) [,
|In[(z - )/(~2)]1A%(E)!

We analyze for example the term involving |In A(2)|*. By using Corollary
8.6, we note that the integral is consequently bounded by

%

/ / —Ein 26”’““ fem M 8z — €)% - (d(z, €))% [k (2, €) Pdwo (2)

FxH

We write (d(z, €))% = (d(z,€))2*3) - d(z,£)® to get that the above integral
is bounded by

, Im §)°
// e m zp—elm g% . (d(z,5))2(t_3)|k51(z,§)|2d,/0(z,{)

FxH

Because of the term e*'™ ¢, by eventually multiplying with a a constant, we
can neglect the term (Im €)°.
Thus we are led to analyze the following integral

) 1
[ [ (e s e e €)% (2. 6) P2

FxH

Because (z,£) € F x H, it follows that there is a constant C' such that
Z—¢| > C, for 2,6 € F x H. Also (Re 2)?/|Z — €]* is bounded from above
on this region.

Thus the above integral is bounded by a constant times
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[ [ @0 Vo) Pz
FxH
which is finite if k1 € A;_3_..
The terms involving |In[(Z—¢)/(—2i)]| are solved by absorbing | In[(Z—¢)/
(—2i)]| into some power of |z — &|.
Clearly PM), 5 has the same domain PMy, . This is precisely the vector
space of all k € L2(A,) such that |k(In ¢)[> = |k(In ¢)|? is summable on F xH,
with respect to the measure d'dvy x dvy. This completes the proof.

We introduce the following definition which will be used in the dual so-
lution for the cohomology problem, corresponding to C;.

DEFINITION 10.4. Let x5 : Ay — As be defined by the formula

Xs,tk = SZ(t—s)/leSA(t*5>/12a
for k in A;. Here s < t.

In the next proposition we analyze the relation between the derivative of
Xst at s =t, s /'t with the derivative of 0y ., at s’ =, (s \| t) introduced
in Section 7.

DEFINITION 10.5 Fort > 1, we let D} be the algebra consisting of all k
in Ag that for some s < t, are of the form Si-k1Sa-, for some € > 0, such
that s +e <t, and k; € A, .

Clearly D is a weakly dense, unital subalgebra of A;.

LEMMA 10.6. Fiz t > 1. Assume that k in D, has the expression k =
Shek1Sae, k1 € As,e > 0,e +s <t. Then

— T, R _ (
b= To (b) T imeeane: (1):

REMARK Note that by putting the variables Z,&, we indicated that ky
15 multiplied by a function, that contrary to ky, is antianalytic in the second
variable and analytic in the first. Thus Tz corresponds to a Toeplitz operator
with an “antianalytic” symbol.
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Proof of Lemma 10.6. Let T'(k) = Si-kSa:. The statement follows
immediately from the fact that the adjoint of T, as a map on L?*(A;), is
[ — Sa=lS)-.

In the next proposition we clarify the relation between the operator Y;k

d
defined as d_XS’t(k) and the operator X; introduced in Section 7.
S

s=t
s 't
First we recall that the "real part” associated with the deformation is

given by the Dirichlet form &(k,1) = diTAs(k; kg 1) = T4,05(k,1).
s

DEFINITION 10.7 Recall (from Section 9), that the real part of the cocycle
C; is the operator R; given by by the formula:
. 1d 1
< Rk, I >= —§d—'TAS(k’ *g l) = —555(]6,[)

S s=t
s\t

This holds for all k,1 in Y, L*(A,), (where L*(A,)) is identified with a vector

subspace of LQ(At) via the symbol map U, ,
Moreover, in Section 9 we proved that R; has the following expression:
l¢

Ri=Ta— 5 1d.
2Ct

In the next proposition we construct the dual object for the generator
used in Section 7.

PROPOSITION 10.8 For any k in D} C A, the limit

Yik) = S ulioik))|
st
exists in L*(A;). Moreover, we have that
* c
e ()~ 1t o

The adjoint (T 12)me)* @5 obtained by first restricting T(1/12)my t0 15? and
then taking the adjoint.
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Proof. Indeed xs.:(k) may be identified with the Toeplitz operator (on
L*(A,)) with symbol

P2 = (AR () A 2(g)| (7 - €) ()]

Thus x;.:(k) is (modulo a multiplicative constant)
735 [Map(t—s)/mk]

and hence U, ox+(k) is

\Ilt,S,PSI:M@(t—s)/IQ (k)]
The derivative at s = ¢ involves consequently two components:

d
One component is the derivative d_‘I’t,s(Psk) which gives the sum-
s
s/t
mand corresponding to Ry, i.e. —(c;/c;) + 2R;.

The other component is d—Pt(ME(t_s) /12(k)) which gives the multiplica-
s

tion by ¢ part. Indeed, recall that k belongs to D, C A;, and hence k is of
the form SA.k1Sas, for some g9 > 0, such that s + &9 < t, and k; € Ay,
But then

Pt(/\/lm(k?)) = Pt(Mm(Ps(MwTo(kl))))-

Since, P plays the role of an antianalytic symbol, it follows that this is further
equal to

eE—

The derivative (in the s variable) of s — pLt=)/12+0l at s = ¢ exists, by the
method in Lemma 10.2 in L; and it is equal to

1 —  —£
—Elngp-gpﬂ-kl.

Thus, in the Hilbert space L?(A;), we have that
d
&Pf/(Mq}(t’s)/m(k)) = —Pe(M+/12) w0 (k1))
= —Pi(M14/12) mp(Prr12¢,7™° (k1))
= —PMs/12)m5(k)).
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This completes the proof.

We use above arguments to prove that also the operator Y, = %Xs,t
implements a coboundary for C;.

d
LEMMA 10.9. For k,l in D}, we have that d_XSJ(k % ' (Z,€) #¢ 1)
S

s/t
is equal to Yi(k 4 1) — k¢ A(1) %, L.

Proof. Since k,l are in D}, there exists g5 > 0 and there are ky,l; €
Aii12¢, such that k = SZSIQSAEO, = SZShSAsO. This gives that

k *¢ A(l) *¢ [l = SZE [kl *tte ('06 lnSO Ktte ll]SAa

where by ¢° In ¢ we understand the unbounded operator defined in Section
6, corresponding to

p(z,6)" Inp(z,§)

As in the proof of Proposition 7.6, when computing this derivative, we
have a trivial summand plus a more complicated summand, corresponding
to the symbol

t—s I
lim @, , [mpt—s [k % “‘)t—d » l”

s/t

Because of the assumptions, the inside term

is equal to
t—s
T g e ll} Shzo

- t—s __ Id
= PL‘ (9060 (kl *t+50 SOEOSOT *t+€0 ll)) (102)

t
But the methods in the proof of the density of the domain of My, ., may

also be used to prove that
t—s
o [P —1d
4 < t—s
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converges, as s /"t in L*( Az 12-,) to —¢ In .
Since W, /Py converges strongly to the identity, and the norm of W, /P

as an operator from L?*(A;) into L?*(A;) is bounded by 1, it follows that the
expression in 10.2 converges to

Pt (Eeo [kl *iteq ()080 (_ In 90) *t+50])

which is & #; (—A(1)) #4 L.
Similarly we have the following lemma

LEMMA 10.10. For k,l in D} we have that
d
%[Xt7s<k) *g Xt,f:’(l)} = K(kﬁ) X l + Ct(k, l) + k *¢ n(l)
s/t

Proof. Again this derivative has three summands: the first summand is

hm Xt,s(k) *g Xt,s(l) - Xt,s(k) ¢ Xt,s(l)
s/t t—s

The same type of argument as in Proposition 7.5 gives that this is C;(k, ).
From the remaining two summands, the only one that is complicated is

XS,t(l> —1
t - .

stk
Xs,t(k) * PR

Xs,t(l) - l

Because for [ in D, we have that converges in L*(A;) to Y,

-5
and since x,;(k) is bounded in L?(A;) as s /' ¢, it follows that this term
converges t0o, to k *; Y;l. The remaining term trivially converges to Y;k *; .
This completes the proof of the lemma.
As a corollary we obtain the following result:

PROPOSITION 10.11. Let D} be as in Definition 10.5. Assume t > 3,
then for all k,1 in D}, we have that

1
Yt(k*tl)—Ytk*tl—k‘*tY}l—k*tElngp*tlzct(k,l).

1
Here by Egp(z, §) we understand A(1) = My, (1), the operator con-

structed in Corollary 6.6 and in Lemma 7.4.
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Proof. Indeed the following identity:

Xt (ke 0% %, 1) = xs.4(k) *s X, (1)

is obvious, valid for all k,1 in D;", s < t.
By differentiation, and using the two previous lemmas, we get our result.

REMARK. Recall that in Proposition 9.3 we proved that if Ao(k) =
Mk, (for k in Df), then, denoting S = Sym,,, we have

/

< No(k), 1> +{(k, Ao(l) >= 2 < Sk,1 > +2 < Rkl > +% <kl>

t

If k& would belong to D (which is the domain of Ag) and also to the
domain of Y}, which is D, then the above relation could be rewritten as

/

Ao+ A5 =25+2R, +< (10.3).
Ct

Recal that S = Sym,, is the operator defined by
< Skl >= 74, (KTU") + 74,(I"Tk)

But on the intersection of the domains we have (from Proposition 10.8)
that

/
Y, = —A% + 2R, — “1d. (10.4)
Ct

/ ~
Consequently Aj = —Y; + 2R, — “t1a. Thus, by (10.3), for k in DY N D} we
Ct

/
get that Ag =25 +Y; + QEId. and hence that
Ct

/ /
X = Ao — L1d =25+ Y, + 21d (10.5)
Ct Cy

where equality holds on D N D

Now we compare the way X; Y; implement a coboundary for C;(k, () Recall
the notation (V®)(k,l) = ®(k,1) — k() — (k)I

Thus we have proved that

90



F. Radulescu - Non-commutative Markov processes in free groups factor...

VX, (k1) = Cy(k,1) — kTt ,o, k1 inD} (10.6)

VYi(k,1) = C(k,1) — kA(1),  k,lin D} (10.7)

Now if k, 1 would be in D? N D;, it would follows, by substituting (10.5)
in (10.6), that

2V S,(k, 1) + VYi(k,1) — %k s = Cy(k, 1) — KTL. I (10.8)

Inp”:
t

By using (10.7) in (10.8) we get

/

2VSy) (k, 1) — KAL) — 2 (k #, 1) = —KTE, L,

Ct
and thus that for k,[ in 25? N D;” we would get that

/
G

ki [wa - <A(1) + )] 1 =2V, (k1) (7.9)

Ct

for all k,1 in DY N D;t. But recall that < S,(k),* >= 7(kTl* + I*Tk) This
corresponds, at least formally, to the fact that S;k = kT + Tk and hence

(VS,)(k, 1) is 2kT, L. |
Thus (10.9) would imply directly that T}, = A(1) + £ if DY N D} is

Ct
nonzero.

11. APPENDIX
A MORE GENERAL COBOUNDARY FOR C;

In this appendix, we want to construct a more general solution for a
coboundary (which is necessary unbounded, see ([27]) for C;. This will be
constructed out a measurable function g, that has the same I'- invariance
properties as In A(z). By this construction we will lose the completely posi-
tivity properties of the solution.

Recall that L; consists of all kernels k& or H x H, that are diagonally I'-
invariant and square summable on F' x H, against the measure d'dyy x duy.
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Also recall that the elements in L; are canonically identified with operators in
the I, factor, of all operators that commute with 7;(T"), acting on L?(H, du;).

PrOPOSITION 11.1. Let g be a measurable function H such that the

bivariable function 6 in H x H defined by 6(z,€) = g(z) + ¢g(§) + In[(Z — &)/
(—214)] be I'-invariant. (It is this point which makes the problem sovable, by
this method, only for PSL(2,Z).)

Let DQ,Z/D\; consist of all k in L*(A;) (respectively L;) such that k - 0
still belongs to L. Let My the (unbounded operator) with domain 13;, of
multiplication by 0. Let Ty = PyMo|r2(a,) and let Tj be the Toeplitz operator
with symbol O(z, z) = Reg(z) + In(Z — z).

Let k,1 be in Dy such that k,1 also belong to the domain of Cy(k,l). Then

Mok #, 1) — Mok x4 1 — k %y Mol + My(k, 1) = C(k, 1),
where My (k,1) is a bimodule map, equal to k =, T} =, 1, if T} exists.

Consequently, by taking P; on the left and right hand side, the same will
hold true for Ty = PuMeg|r2(a,)-

Proof. Indeed C;(k,1) is given by the kernel
Culk,[)(Z,€) = (ke (7€)
t
te / Kz, mI(Z,€)[Z, 1,7, €] [z, 7,7, E)dvo(n).
H

On the other hand My (k ;1) — Mgk %, | — k %, Myl has the kernel

" / Kz, Iz, )7 1,7, €11 (02 €) — 0(z.m) — 601, €))dunln).

Since 0(z,&) — 0(z,n) — 0(n, &) is equal to 6(n,n), it follows that
Ce(k, 1) — [Ma(k *¢ 1) — Mok %4 1 — k % Myl]
is given by the kernel

/
G

(- €)/(—2)]" / kG )7, )

J [(Z —n)/(=20)]t[(7 — €)/(—2i)]* (0(77, n) +

)anto

Ct

92



F. Radulescu - Non-commutative Markov processes in free groups factor...

which indeed corresponds to T} + (¢;/¢;) - Id , as long as we can make sense
of the unbounded Toeplitz operator T}.
A dual version could be obtained if we consider

. d .
QRE, 1) 120, = —gTASUf K 1) )

C/
which is in other terms 2R, = —— — 27,4
Ct
One can check immediately that

[Ce(k, 1) = (V2R) (K, D](Z,€)

= %T<k *y l) + ¢ /(k(z, n)l(ﬁ, 5) ln[E’ n,7, 6] [zj .7, g]td’/o(ﬁ)
H

T / B, &)~ In(d(z, £))* + In(d(z,n))? + In(dn, £))?)

/ / /
— (—&‘f‘&‘f‘&)T(k*tl)

Ct Ct Gy

. / kG0, ©)F .7, &)

{In(Z, 7.7, — 2Ind(z, &) + 2Ind(z, ) + 2In d(n, &) }duo(n)

= —Ct / ]{?(2, U)l(ﬁ 5) [27 777 ﬁv 5} IH[E, 7]7 ﬁa f]dVOU
H

Then consider g such that

0(2,6) = g(2) + g(§) + In(2 =€)
is ['-invariant.
The same argument as above gives that for &k, in D(My), s.t. k[ €
D(My) and k,l in Dom(R,), k *; [ in Dom(R;) we have that
Mo(k i 1) — Mok #4 1 — k% Mol + k%, T} % 1

is equal to Cy(k, 1) — 2V Ry(k,1).
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Finally remark that we have proved that for k, [ in D, which is the vector
space of all k that are of the form P;(k1¢®) we have that the expression:

Mgk * 1) — Mgk s 1 — ks Mgl + Kk x A(1) %, 1 — Cy(k, 1)

is orthogonal to P;(L") (otherwise if we apply P; to the left and right we get
0).

If we could extend the above relation to all k,1 in Dom(Mg)NDomR,,
such that k *; [ belongs to the same domain, then the above relation, by the
considerations at the end of Section 10, would imply that A(1) — (¢}/c:)-1d
coincides (on an affiliated domain) with T3, .

Note that this corresponds formally to the fact that

Tliw - Tlil(ﬁ—n) + TltnT +Tha-

= Pinz—¢) — (¢t/c)-1d, while T, is clearly, on

On the other hand T, A

n(n—n)
its domain, SL (and similarly for T} A).

If the domains would have nonzero intersection one could directly con-
clude that

St + Staa + Pini—e) = A(1).
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