ACTA UNIVERSITATIS APULENSIS No 11/2006

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba lulia, Romania

DESIGNING A TASK ANALYSIS TOOL USING JHOTDRAW
AND DESIGN PATTERNS

GRIGORETA SOFIA MOLDOVAN, ADRIANA-MIHAELA TARTA

ABSTRACT. Reusability is a desired characteristic of any software library,
as it can reduce the time to develop a new software system and it can increase
productivity. Frameworks and design patterns support reusability in two dif-
ferent ways: the former provides a skeleton for the new software (design and
implementation), so the developers do not have to start from scratch and the
latter provides solutions to recurrent problems, reducing the time needed to
solve problems that might appear. GTATool is a task analysis tool prototype
we are developing that support designers to build usable software systems. Us-
ability is based on functionality, interaction between the users and the system,
and presentation. All these aspects are treated carefully in the task analysis
based methods like Groupware Task Analysis (GTA). The GTATool supports
the design of software systems based on the GTA method. JHotDraw is a
two-dimensional graphics framework for structured drawing editors. As the
GTATool should support graphical task tree editing, it seems that JHotDraw
is a good solution to start from. It has been developed using design patterns
so it has all the advantages the design patterns have. Other design patterns
like Composite and Singleton are used again to solve problems in the model
layer of the tool. In this paper we present our approach in designing a GTA
tool using JHotDraw and design patterns. The advantages and disadvantages
we have observed throughout the design process are also presented.

2000 Mathematics Subject Classification: 68Nxx Software 68N19 Other
programming techniques (object-oriented, sequential, concurrent, automatic,
etc.)

77

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

1. INTRODUCTION

Nowadays, the Human Computer Interaction domain has gained the in-
dustry trust when developing software systems, focusing the design process
around users’ tasks and needs. Although the theoretical base is quite ad-
vanced, the free tools needed to support and help developers are lacking. The
task analysis tool we are developing, called GTATool, has as theoretical base
the Groupware Task Analysis method (GTA) [10]. GTA splits the design pro-
cess in three steps: the analysis of the current situation (Task Model 1), the
design of a new situation for the task (Task Model 2) and the design of a
user virtual machine. GTA is developed based on an ontology where work
is a very important concept. In the design process the work structure has a
very important place because the interaction between the user and the sys-
tem should be based on the natural order of subtasks or, if possible, should
improve the task performance. Work structure has been described in different
ways(more or less formal, textual or graphical). The best suited representation
for work structure seems to be tree-like structure, because work structure is a
hierarchical one where a task is performed accomplishing many subtasks and
so on. That is why, a task analysis tools should mainly support the drawing
and manipulation of task trees (adding children, copying nodes or subtrees,
cutting or deleting nodes/subtrees, updating the tree properties). Although
the user (in this case the software designer) works with a graphical representa-
tion, which is easier to understand, the tool should support the use of multiple
representations (at least one formal representation for the work structure) that
allows the validation of task models. The tool should keep consistency between
representations.

For the graphical representation of a work structure we thought of using an
exiting framework for editing task trees. Today there are some frameworks that
can be used JFace [4], Graphical Editing Framework(GEF)[2] and JHotDraw
[5]. We have decided to use JHotDraw as the last two are mostly used for rich
GUIs and GEF is available only for the Eclipse platform.

Description of JHotDraw

JHotDraw is an application framework that can be used for developing custom-
made drawing editor applications. Each application is targeted at a specific
domain and reflects the domain’s semantics by providing specific figure types

78

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

and by observing their relationships and constraints [8]. JHotDraw demon-
strates frameworks’ power and usefulness within their application domain [6].

The framework has been developed as a ”design exercise” but it is already
quite powerful. Its design relies heavily on some well-known design patterns

8.

Typical Development Process Using JHotDraw

In [6] a typical development process is described while using JHotDraw. The
following is a list of recurring activities involved with developing an applica-
tion with JHotDraw. The activities focus on integrating JHotDraw into an
application and working together with the application model [6].

e Create your own graphical figures and symbols for your ap-
plication. New applications usually require new graphical figures and
symbols. Using JHotDraw they can be easily obtained by subclassing
AbstractFigure or CompositeFigure and overriding the draw() method.

e Develop your own tools to create and to manipulate figures
according to application requirements. The new figures require
new tools to create them. To define the tools you can start from the

existing ones such as: CreationTool, ConnectionTool, SelectionTool, and
TextTool.

e Create and integrate the actual GUI into your application. To
create and to integrate the GUI into the application you can subclass
DrawApplication or MDI_DrawApplication for several internal frames or
DrawApplet. They already contain methods for creating the menu and
the tools. To change the default appearance you just have to override
these methods.

e Compile the application. The last step is compiling the application
using this framework.

Some Design Patterns used in JHotDraw

JHotDraw uses many of the design patterns presented in [1]. We only present
here some of the design patterns it uses.

e The Model-View-Controller paradigm. JHotDraw is based on the
Model-View-Controller (MVC) paradigm [1], which separates application

79

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

logic from user interface dependencies. JHotDraw is a view, and partly a
controller. The developers are responsable for designing and implement-
ing the model part and the interactions between the controller and the
model.

The Composite design pattern. The Composite pattern is used for
composed figures (CompositeFigure). If, for instance, we need a figure
that displays a Rectangle and a Text we can easily construct it by sub-
classing the CompositeFigure class.

The Strategy design pattern. A CompositeFigure does not know
how to draw itself, it does not know how to layout its components. That
is why, this responsability is delegated to another class that subclasses
FigureLayoutStrategy, and that contains the logic of walking through all
child elements of the CompositeFigure and arranges those elements.

The State design pattern. When you click a CompositeFigure, the
appropriate child of the figure must handle the mouse click. To make
sure that the right figure deals with the mouse click the State pattern is
used.

The Template method. When a subclass of LineConnectionFigure
is created, the symbols at the end of the line might differ. That is
why LineConnectionFigure provides connectEnd() and disconnectEnd()
as Template methods.

The Factory method. This kind of method is used extensively in JHot-
Draw, especially when creating user interface components such as menus
and tools. Many Factory methods can be found in the DrawApplication
class and have names like createTools() and createMenus(), which in turn
call createFileMenu(), createEditMenu(), and so forth. If you want to
change the GUI appearance you just have to override the appropriate
Factory method.

The Prototype design pattern. Each tool is initialized with an in-
stance of the figure it is meant to create. Every creation tool in JHotDraw
uses the original figure instance to create duplicate instances. The basic
clone() mechanism is defined in AbstractFigure, where an instance copy
is created using Java’s serialization.

Figure 77 presents the overall architecture of JHotDraw.

80

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

PointConstrainer DrawingEditor J
0.+
Painter —— DrawingView [* 5 Tool =
| | |
> Dawing [t CreationTool HandleTracker SelectionTool
0.y - 1
Connector Figure [2 Handle Locator
12 = PN
I | I
ConnectionFigure CompositeFigure DecoratorFigure NullHandle TrackHandle

Figure 1: JHotDraw Architecture

2. DESIGN OF THE GTATooL

Designing the Task Tree Editor

A task analysis tool should support a various number of functionalities and
should manipulate different types of information (audio, video, multimedia
files, graphic or textual descriptions). In this article we will focus on the func-
tionality related to the description of work structure. As we have mentioned in
one of the previous sections, work structure is represented using task trees. In
the following section we will give details about the types of tasks that can ap-
pear in a task tree, the constraints in the tree structure and the representation
we have chosen for our tool.

Defining the Symbols and Figures

In order to create the task tree, the tool user can use four types of tasks:
abstract, application, interaction, and user[7]. An application task reffers to
those tasks that are performed by the system alone (sending a message on a

81

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

AbstractFigure
{frorn standard) [-----

B

PualyLineFigure
{from figures)

,

<<Interfacesx
Figure
{from frarmeswark)

DrawApplication

(from application)

+ handles()

&

=zInterface=>
ConnectionFigure
{from framewark)

LineConnection @
{from figures)

+ figureRequestRemove()
+ figureChanged()
+ figureRequestUpdate()

TaskLineConnection

+ figureRequestUpdate)
+ figureChanged()

+ figureRequestRemovel)
+ handles()

createMenus()

createFileienul)

createEditMenui)
#createTools()

createSelectionTool()
createDrawingiew()
createToolPalette()
createDrawingl)

+ show3tatus()

+ selectionChanged()

2

GTAApplication

createMenus()

createFileMenul)

createEditMenui)
#createTools()

createTaskTreeMenur)
createDrawingiew()
createSelectionTool()
+ zelectionChanged()

+ main()

Figure 3: The GTATool

Figure 2: The TaskLineConnection class hier-
class hierarchy

archy
Command
<zInterface>> {from uti)
Drawingview
(fram framewark) + executel)
+ addToSelaction() $
& FigureTransferCommand

StandardDrawingiew
ffrom standard)

&

TaskTreeDrawing'iew

+ getlastSelectedTask()
+ setlastSelectedTaskl)

{from standard)

5

DeleteCornmand
{from standard)

r

TaskDeleteCommand

+ addToSelectionr)

+ execute()

Figure 4: The TaskTreeDraw-

ingView class hierarchy Figure 5: The class hierarchy for

TaskDeleteCommand

82

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

<sInterface>>
Figure
(from framework)

-ObservedFigure

+basicDisplayBox()
+displayBox()
+ getAttribute()
+ satAttribute()

Figure 7: The TaskCre-
ationTool class hierarchy
Figure 6: The TaskFigure class hierarchy

network, saving a file); a user task is a task performed by the user involving a
physical activity or a mental activity; an interaction task is a task performed
by the user in collaboration with the system (editing a text box), and an
abstract task is one that is too complex to be classified in one of the above
mentioned task types. An abstract task will always be the root of a task tree
and will have at least two children (subtasks). There are several constraints
regarding the structure of task trees: the root should always be an abstract
task, an abstract task can only be the child of another abstract task, a user
task or an application task can only have user, respectively application tasks
as children. An abstract task cannot be the leaf of a tree. Each type of
task has a different associated symbol, but they all have a name that must
appear under the task’s symbol. That is why we have decided to subclass the
CompositeFigure in order to create a TaskFigure. Our TaskFigure uses two
other figures: a ImageFigure for the task type and a TextFigure for the task
name (Figure ??). The ImageFigure is given to the TaskFigure at creation
time.

The tool must create a task tree, so we should be able to connect two
tasks. For that we have defined a TaskLineConnection that does not have any
symbols at its two edges (Figure ??). Before creating the actual connection, it
first verifies whether the two tasks can be connected(based on the tasks’ types
and on the requirements constraints).

83

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

Defining the Creation Tool

As the connection between two tasks is done automatically at creation time,
we do not need to define a creation tool for TaskLineConnection.

Although we have four task types, we only need one creation tool, be-
cause of the creation mechanism used by JHotDraw. Our TaskCreationTool
subsclasses the CreationTool and overrides the methods shown in Figure ?77?.
When we create a new task, we have to automatically connect it to its par-
ent. That is why we introduced here the creation of TaskLineConnection.
TaskLineConnection must know its two edges, so we should memorize the last
selected TaskFigure, which will be the parent of the newly created TaskFigure.
As in the JHotDraw framework, the DrawingView is responsible for knowing
which figures have been selected, we have defined our TaskTreeDrawingView
(Figure ?7) to keep track of the last selected TaskFigure. For that, all we have
to do is override the addToSelection() method.

Defining the Actual GUI

As the first prototype of our task analysis tool does not use more internal frame,
in order to create the GUI we have subclassed the DrawApplication class. To
define the particular appearance we want for our GTATool, we just have to
override some factory methods like createTools(), createMenus() (Figure ?7).

Designing Other Functionalities

In a drawing editor the user is usually able to delete some parts of the drawing.
This is also possible in the task tree editor. The tool’s user can delete a
task or a subtree, or even the entire task tree. Designing this functionality is
very easy as the framework already contains a similar functionality which was
designed using the Command design pattern [1]. All we have to do is subclass
DeleteCommand and override the execute() method (Figure 77).

Designing the Model

Any task analysis tool should be able to process and save the task tree in
different formats for further analysis. So, we need to somehow represent the
task tree internally. As a task may have other tasks as children, we have
decided to use again the Composite design pattern.

84

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

One of the formats in which a task tree can be saved is the XML format,
which corresponds to the DTD we have defined in [9]. In order to preserve the
tree-like structure for further use and analysis, we have defined two attributes
of type IDREF for each task in the task tree: one of them represents the task
ID and the other represents the parent ID. As the values for these attributes
must be unique for each task, we used the Singleton design pattern to ensure
their uniqueness.

3. CONCLUSIONS AND FURTHER WORK

Developing new applications using JHotDraw framework is very easy and it
takes little time. The only inconvenience we have observed is the lack of a good
documentation. Luckily, the source code is freely available, so we could browse
it to gain deeper understanding of the frameowrk. Using this framework we
have very quickly developed our first prototype of the GTATool. All we had
to do is subclass some classes and override some methods, and the prototype
was ready. Another benefit from using this framework is that our application
has good architecture, that allows further changing and evolving.

One functionality we desired of our tool is to automatically obtain the GUI
from a task tree after adding some specific details related to task types (like
monitoring, editing, notification, etc). For that we have to introduce temporal
operators, such as LOTOS [3], in our task tree editor. The introduction of
temporal operators can be easily done using JHotDraw. We just need to
define their symbols, to define creation tools for them, and to add the tools to
the GUL

REFERENCES

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns:
Elements of Reusable Object Oriented Software, Addison-Wesley, 1995.

2] GEF: http://www.eclipse.org/gef/.

[3] ISO/IEC. Information Processing Systems - Open Systems Interconnec-
tion, LOTOS, a Formal Description Technique Based on the Temporal Order-
ing of Observational Behaviour, IS 8807, 1989;

[4] JFace: http://www.eclipse.org/ .

[5] JHotDraw: http://www.jhotdraw.org .

85

G. S. Moldovan, A. M. Tarta - Designing A Task Analysis Tool

(6] Kaiser, W.,Become a programming Picasso with JHotDraw,
http://www.javaworld.com /javaworld /jw-02-2001 /jw-0216-jhotdraw.html, Febru-
ary, 2001.

[7] Paterno, F. and Mancini, C. and Meniconi, S.,ConcurTaskTrees: A Dia-
grammatic Notation for Specifying Task Models, INTERACT ’97: Proceedings
of the IFIP TC13 Interantional Conference on Human-Computer Interaction,
1997, ISBN 0-412-80950-8,pp. 362-369, Chapman & Hall, Ltd.

[8] Riehle, D., Framework Design. A Role Model Approach, ETH Zurich,
PhD. Thesis, 2000.

[9] Tarta, A. M., Moldovan, G. S. GTATool- A Task Analysis Tool, Pro-
ceedings of the Symposium “Colocviul Academic Clujean de Informatica”,
Cluj-Napoca, June 2005, to appear.

[10] van Welie, M., Task-based User Interface Design, Vrije Universiteit Am-
sterdam, PhD. Thesis, 2001;

Grigoreta Sofia Moldovan

Department of Computer Science

Babeg-Bolyai University

Address: Str. M. Kogalniceanu, Nr. 1, Cluj-Napoca, Romania
email: grigo@cs.ubbcluj.ro

Adriana-Mihaela Tarta

Department of Computer Science

Babeg-Bolyai University

Address: Str. M. Kogalniceanu, Nr. 1, Cluj-Napoca, Romania
email:adriana@cs.ubbcluj.ro

86

