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THE CYLINDRICAL TRANSFORM D¢(R,Z) OF THE
FUNCTIONS SPACE D(R?)
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Abstract. We define the space of test function D.(r, z) and we give some
of its properties. The cylindrical transformation is T, : D(R?*) — D,(r,z) C
D(R?) defined and it is shown that T, is a linear and continuous operator from
D(R?) in D.(r, z).
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1. INTRODUCTION

To solve certain problems from the physical-mathematics, sometimes it is
useful to change the Cartesian coordinates (z,y,z) € R? into the cylindrical
coordinates (r,6,2) € R3. This necessity leads to the writing of the distribu-
tions in the cylindrical coordinates, for which we shall define the function test
space D.(r, z) as well as the cylindrical transform 7,. Both for the test space
D.(r, z) in the cylindrical coordinates (r,z) and for the cylindrical transform
T, associated, certain properties are established. These allow the study of
some distributions representable only with respect to the cylindrical coordi-
nates (r,z) C R%.

2. GENERAL RESULTS

Let be the application T : R® — R? defined by the relations:

x=rcosh, y=rsinf, z =z (1)
these relations define the univocal transformation from the cylindrical coor-
dinates (r,0,z) € R? to the Cartesian coordinates (z,y,z) € R3, having the
Jacobian of the transform

d(z,y, z)

J(T,@,Z):W:T
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If to the punctual transformation (1) we impose the restrictions r > 0,6 €
[0,27),z € R, then the transformation (1) becomes locally bijective every-
where with the exception of the points (0,0,2,) € R3. Thus, the origin
O of the Cartesian system of coordinates represents a singular point, be-
cause J(r,0,z) = r = 0, which in the cylindrical coordinates is defined by
r=20,2=0, and 8 € R arbitrary.

To the punctual transformation 7" defined by (1) we associate the functions
space D.(r, z).

DEFINITION 2.1. We call space of the test functions D.(r,z), the set of
the functions

D.(r,z) = {w | Y R? — R y(r,2) = /O27r o(rcos,rsinb, z)db, p € D(R3)} :
(2)

PROPOSITION 2.1. The space D.(r,z) has the properties
1. D.(r,z) C D(R?);
2. The function ¥(r, z) is an even function with respect to r € R and

k 0, fork odd
(0.0) _ B 0mmp(0,0,0)

ark Zn—l—m:k (3)

o T , for k even

where a,,, has the expression
Opm = fo% cos™ 0sin™ 0df =
0, form andn odds or m +n odd
1-3:5-...-(n—1) 7T (m+n)!
(m+1)(m+3)...(m+n—1) 2mtn-1 [(m * n),]
5 )

5, Jor m and n evens

(4)

Proof. The function ¢*(r,0,z) = @(rcosf,rsinf, z) is obviously indefinite
derivable, resulting from the composition of functions of the same class. Be-
cause the function ¢ € D(R?) is with compact support, results that for |r| or
|z| big enough, tends to 0 and thus we deduce that ¢ is with compact support,
then ¢ (r, z) € D(R?), i.e. D.(r,z) C D(R?).
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To justify the property 2 we shall show that the function (r, z) is an even
function with respect to r € R. With that end in view we observe that the
function

©*(r,0,2) = ¢p(rcosf,rsinb, z) ; (r,0,z) € R®

is a periodic function with the period 27 with respect to the variable 6 € R.
Then, we can write

2m a+2m
P(r, z) = / ©*(r,0,z)d0 = / ©*(r,0,z)d0,a € R. (5)
0 0
Making the change of variable ©u = # — ™ we obtain
U(r,z) = [T o*(r,u+m,2)dd = [T p(rcos(u + ), rsin(u + 7)), 2)du =
7 _p(—=rcosu, —rsinu, z)du = ["_¢*(—r,0,2)d0 = f —r,0,2)d0 = (-, 2),

wherefrom results that ¢ (r, z) is an even function with respect to the variable
r € R.

Because 9(r, z) is an even function with respect to the variable a € R, we
obtain

9*1(0,0)
ork
Differentiating (5) we obtain

= (0 for k an odd number.

. o (k)
0 @gg’ 2) — /0 (% cos B + %sm 9) o(rcosf,rsinf, z)dd,  (6)

wherefrom for r — 0 and z — 0 we have

ok(0,0) o 9%(0,0,0) on
ok Jo Za OCkW cost = 0 sin® 0df =
k! 9"t p(0,0,0)
Zner:k n!m!a”m al’”tpym

where a,,, has the expression (4).

The expression of the coefficients a,,,, it results using the recurrence rela-
tion

n—1

m+1

Apm Ap—2 m+2 T, M € NO;
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as well as the formula

0, form odd

|
f% cos™ 0df = fozﬂ sin™ 0df = T, for m even

| =T

With this the proposition is proved.

Obviously, these result shows that the space D, (r, z) is a subspace of D(R?).
DEFINITION 2.2. We call the cylindrical transformation the application
D.: D(R?) — D,(r,z) C D(R?)

defined by the relation

D.(p)(r,z) =(r,2) , ¥(r,z) = /0 7Tgo(r cos,rsind, 2)dd, (r,z) € R?, (7)

where ¢ € D(R?).
The function

¢(T7 Z) = DC(SO)(Tv Z) s

represents the cylindrical transformation of the function ¢ € D(R?), and
D.(r, 2) the cylindrical transform of the space D(R?).
Obviously, the cylindrical transform 7. is a linear operator.

PROPOSITION 2.2. Let be p € D(R®) and v = T.(p) . Then it holds the
relation

921(0,0)
Or?

where A is the Laplace operator in R?, namely:

= 1Ap(0,0,0) (8)

0*  0?

Proof. Considering k = 2 that in the formula (3) we obtain
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24(0, 0) 5 20 (00,0
Or? =2 ) Qanpy™

9*¢(0,0,0) 9*¢(0,0,0) 9*¢(0,0,0)
Qo2 e + a0 22 ai Doy (9)

Using the formula (4) we shall obtain for the coefficients agg, agg, aj; the
values

Qog = fOQW sin?0df = 7, agy = fo% cos?0df =7, a;; = f027r cos 0 sin 8df = 0.

Substituting these values in (9) we obtain (8).
Concerning the convergence in the spaces D(R?) and D.(r, z) C D(R?), we
have

PROPOSITION 2.3. The cylindrical transformation T, is a continuous linear

3
operator from D(R?) in D.(r,z) = T.(D(R?)) C D(R?), hence oy D(E) 0

. . Dc(r,z
implies ¥ = To(or) 25 4 = To(y).

Proof. Let be ¢ € D(R?) and ¢ = T,.(¢). Denoting with p,, and p},
semi-norms on D(R?) and on D.(r, z), respectively, we can write

olel
m = su D%|,a € N3, m € Ny,supp C w,D* = ————————
P <(70) \a|§m,(z€;,z)€w| (’0| 0 0 L axa18yagaza3
(10)
where w € R? is a compact set, and
D*8 N2 N D*8 o
, = su |, B € Ny, m € No,supyp C wy, D’ = ———,
Pl¥) \ﬁlSm,(rI,)Z)Gwly vLo 0 0, SUp Y ! OrProzP2

where w; € R? is a compact set.
Because

P(r,z) = fo% @(rcosf,rsinf, 2)df ,
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we have

or ‘
ﬂ Lk M p(r cos B, rsin, z) g
D*h — . ) ) h1 me med@
(0 /0 7;:0 m!(hy —m)! Dh—mym he Ccos sin ’
(11)

where h = (hy, hy) € NZ.
From the above mentioned the relation results

olel

sup |D*| < ey, sup |D%pl,a € N3, he N, D* = ———————
(r,z)€wr la|<|hl\(z,y,2)E€w 0 0 0r*1 Y20z
(12)

cp, > 0 being a constant depending on h € NZ.

Taking into account (10), (12) we obtain
pn() = sup Dy <e(m) sup D, (13)
|B8|<m,(r,2)Ewr la|<m,(z,y,2)Ew
hence

P(¥) < c(m)pm(s), (14)

where ¢(m) > 0 is a constant dependent upon m € Nj.
The relation (14) emphasize the dependence between the semi-norms p,
and p,, corresponding to the spaces D.(r, z) C D(R?) and D(R?), respectively.
From the inequality (14) we obtain

P (e — ) < c(m)pm(or — @), (15)
since Y — ¥ = Te(pr — ).
3
Because, according to the hypothesis ¢y, DR v, then liinpm(gok — ) =0,

from (15) results liinp:n(wk — 1) = 0, namely Delrz) v, which prove the

proposition.
These results will be used to the study of a class of distributions from

D'(R?) representable only with respect to the cylindrical coordinates (r,z) €
R2.

126



W. W. Kecs - The cylindrical transform D, (r, z) of the functions ...

REFERENCES

[1] Friedmann, F., Principles and techniques of applied mathematics, John
Wiley, New York, 1956.

2] Guelfand, .M., Chilov, G.E., Les distributions, Tome 1, Dunod Paris,
1962.

[3] Kecs, Wilhelm W., Theory of distributions with applications (in Roma-
nian), Ed. Academiei Romane, Bucharest, 2003.

Wilhelm W. Kecs
Petrosani University, Petrosani, Romania
email: wwkecs@yahoo.com

127



