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Abstract. We define the space of test function Dc(r, z) and we give some
of its properties. The cylindrical transformation is Tc : D(R3) −→ Dc(r, z) ⊂
D(R2) defined and it is shown that Tc is a linear and continuous operator from
D(R3) in Dc(r, z).
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1. Introduction

To solve certain problems from the physical-mathematics, sometimes it is
useful to change the Cartesian coordinates (x, y, z) ∈ R3 into the cylindrical
coordinates (r, θ, z) ∈ R3. This necessity leads to the writing of the distribu-
tions in the cylindrical coordinates, for which we shall define the function test
space Dc(r, z) as well as the cylindrical transform Tc. Both for the test space
Dc(r, z) in the cylindrical coordinates (r, z) and for the cylindrical transform
Tc associated, certain properties are established. These allow the study of
some distributions representable only with respect to the cylindrical coordi-
nates (r, z) ⊂ R2.

2. General results

Let be the application T : R3 −→ R3 defined by the relations:

x = r cos θ, y = r sin θ, z = z (1)

these relations define the univocal transformation from the cylindrical coor-
dinates (r, θ, z) ∈ R3 to the Cartesian coordinates (x, y, z) ∈ R3, having the
Jacobian of the transform

J(r, θ, z) =
∂(x, y, z)

∂(r, θ, z)
= r
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If to the punctual transformation (1) we impose the restrictions r ≥ 0, θ ∈
[0, 2π), z ∈ R, then the transformation (1) becomes locally bijective every-
where with the exception of the points (0, 0, z0) ∈ R3. Thus, the origin
O of the Cartesian system of coordinates represents a singular point, be-
cause J(r, θ, z) = r = 0, which in the cylindrical coordinates is defined by
r = 0, z = 0, and θ ∈ R arbitrary.

To the punctual transformation T defined by (1) we associate the functions
space Dc(r, z).

Definition 2.1. We call space of the test functions Dc(r, z), the set of
the functions

Dc(r, z) =

{
ψ | ψ : R2 −→ R,ψ(r, z) =

∫ 2π

0

ϕ(r cos θ, r sin θ, z)dθ, ϕ ∈ D(R3)

}
.

(2)
Proposition 2.1. The space Dc(r, z) has the properties
1. Dc(r, z) ⊂ D(R2);
2. The function ψ(r, z) is an even function with respect to r ∈ R and

∂kψ(0, 0)

∂rk
=

 0 , for k odd∑
n+m=k

k!

n!m!
anm

∂n+mϕ(0, 0, 0)

∂xnϕym
, for k even

(3)

where anm has the expression
anm =

∫ 2π

0
cosn θ sinm θdθ =

=


0 , for m and n odds or m+ n odd

1 · 3 · 5 · ... · (n− 1)

(m+ 1)(m+ 3)...(m+ n− 1)
· π

2m+n−1
· (m+ n)![(m ∗ n

2

)
!
]2 , for m and n evens

(4)

Proof. The function ϕ∗(r, θ, z) = ϕ(r cos θ, r sin θ, z) is obviously indefinite
derivable, resulting from the composition of functions of the same class. Be-
cause the function ϕ ∈ D(R3) is with compact support, results that for |r| or
|z| big enough, tends to 0 and thus we deduce that ψ is with compact support,
then ψ(r, z) ∈ D(R2), i.e. Dc(r, z) ⊂ D(R2).
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To justify the property 2 we shall show that the function ψ(r, z) is an even
function with respect to r ∈ R. With that end in view we observe that the
function

ϕ∗(r, θ, z) = ϕ(r cos θ, r sin θ, z) ; (r, θ, z) ∈ R3

is a periodic function with the period 2π with respect to the variable θ ∈ R.
Then, we can write

ψ(r, z) =

∫ 2π

0

ϕ∗(r, θ, z)dθ =

∫ a+2π

0

ϕ∗(r, θ, z)dθ, a ∈ R. (5)

Making the change of variable u = θ − π we obtain
ψ(r, z) =

∫ π

−π
ϕ∗(r, u + π, z)dθ =

∫ π

−π
ϕ(r cos(u + π), r sin(u + π), z)du =∫ π

−π
ϕ(−r cosu,−r sinu, z)du =

∫ π

−π
ϕ∗(−r, θ, z)dθ =

∫ 2π

0
ϕ∗(−r, θ, z)dθ = ψ(−r, z),

wherefrom results that ψ(r, z) is an even function with respect to the variable
r ∈ R.

Because ψ(r, z) is an even function with respect to the variable a ∈ R, we
obtain

∂kψ(0, 0)

∂rk
= 0 for k an odd number.

Differentiating (5) we obtain

∂kψ(r, z)

∂rk
=

∫ 2π

0

(
∂

∂x
cos θ +

∂

∂x
sin θ

)(k)

ϕ(r cos θ, r sin θ, z)dθ, (6)

wherefrom for r −→ 0 and z −→ 0 we have

∂kψ(0, 0)

∂rk
=

∫ 2π

0

∑k
α=0C

α
k

∂kϕ(0, 0, 0)

∂xk−α∂yα
cosk−α θ sinα θdθ =∑

n+m=k

k!

n!m!
anm

∂n+mϕ(0, 0, 0)

∂xnϕym

where anm has the expression (4).
The expression of the coefficients anm, it results using the recurrence rela-

tion

anm =
n− 1

m+ 1
an−2 m+2 n,m ∈ N0;
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as well as the formula

∫ 2π

0
cosm θdθ =

∫ 2π

0
sinm θdθ =


0 , for m odd
π

2m−1
· m![(m

2

)
!
]2 , for m even .

With this the proposition is proved.

Obviously, these result shows that the spaceDc(r, z) is a subspace ofD(R2).

Definition 2.2. We call the cylindrical transformation the application

Dc : D(R3) −→ Dc(r, z) ⊂ D(R2)

defined by the relation

Dc(ϕ)(r, z) = ψ(r, z) , ψ(r, z) =

∫ 2π

0

ϕ(r cos θ, r sin θ, z)dθ, (r, z) ∈ R2, (7)

where ϕ ∈ D(R3).
The function

ψ(r, z) = Dc(ϕ)(r, z) ,

represents the cylindrical transformation of the function ϕ ∈ D(R3), and
Dc(r, z) the cylindrical transform of the space D(R3).

Obviously, the cylindrical transform Tc is a linear operator.

Proposition 2.2. Let be ϕ ∈ D(R3) and ψ = Tc(ϕ) . Then it holds the
relation

∂2ψ(0, 0)

∂r2
= π∆ϕ(0, 0, 0) (8)

where ∆ is the Laplace operator in R2, namely:

∆ =
∂2

∂x2
+

∂2

∂y2
.

Proof. Considering k = 2 that in the formula (3) we obtain
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∂2ψ(0, 0)

∂r2
=

∑
n+m=2

2!

n!m!
anm

∂2ϕ(0, 0, 0)

∂xnϕym
=

= a02
∂2ϕ(0, 0, 0)

ϕy2
+ a20

∂2ϕ(0, 0, 0)

∂x2
+ a11

∂2ϕ(0, 0, 0)

∂xϕy
. (9)

Using the formula (4) we shall obtain for the coefficients a02, a20, a11 the
values

a02 =
∫ 2π

0
sin2 θdθ = π, a20 =

∫ 2π

0
cos2 θdθ = π, a11 =

∫ 2π

0
cos θ sin θdθ = 0.

Substituting these values in (9) we obtain (8).
Concerning the convergence in the spaces D(R3) and Dc(r, z) ⊂ D(R2), we

have

Proposition 2.3. The cylindrical transformation Tc is a continuous linear

operator from D(R3) in Dc(r, z) = Tc(D(R3)) ⊂ D(R2), hence ϕk
D(R3)−→ ϕ

implies ψk = Tc(ϕk)
Dc(r,z)−→ ψ = Tc(ϕ).

Proof. Let be ϕ ∈ D(R3) and ψ = Tc(ϕ). Denoting with pm and p∗m
semi-norms on D(R3) and on Dc(r, z), respectively, we can write

pm(ϕ) = sup
|α|≤m,(x,y,z)∈ω

|Dαϕ|, α ∈ N3
0 ,m ∈ N0, supϕ ⊂ ω,Dα =

∂|α|

∂xα1∂yα2∂zα3

(10)
where ω ∈ R3 is a compact set, and

p∗m(ψ) = sup
|β|≤m,(r,z)∈ω1

|D∗βψ|, β ∈ N2
0 ,m ∈ N0, supψ ⊂ ω1, D

∗β =
∂|β|

∂rβ1∂zβ2
,

where ω1 ∈ R2 is a compact set.
Because

ψ(r, z) =
∫ 2π

0
ϕ(r cos θ, r sin θ, z)dθ ,
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we have

D∗hψ =

∫ 2π

0

h1∑
m=0

h1!

m!(h1 −m)!
· ∂

|h|ϕ(r cos θ, r sin θ, z)

∂xh1−m∂ym∂zh2
cosh1−m θ sinm θdθ,

(11)
where h = (h1, h2) ∈ N2

0 .
From the above mentioned the relation results

sup
(r,z)∈ω1

|D∗hψ| ≤ ch, sup
|α|≤|h|,(x,y,z)∈ω

|Dαϕ|, α ∈ N3
0 , h ∈ N2

0 , D
α =

∂|α|

∂xα1∂yα2∂zα3

(12)
ch > 0 being a constant depending on h ∈ N2

0 .
Taking into account (10), (12) we obtain

p∗m(ψ) = sup
|β|≤m,(r,z)∈ω1

|D∗βψ| ≤ c(m) sup
|α|≤m,(x,y,z)∈ω

|Dαϕ|, (13)

hence

p∗m(ψ) ≤ c(m)pm(ϕ), (14)

where c(m) > 0 is a constant dependent upon m ∈ N0.
The relation (14) emphasize the dependence between the semi-norms p∗m

and pm corresponding to the spaces Dc(r, z) ⊂ D(R2) and D(R3), respectively.
From the inequality (14) we obtain

p∗m(ψk − ψ) ≤ c(m)pm(ϕk − ϕ), (15)

since ψk − ψ = Tc(ϕk − ϕ).

Because, according to the hypothesis ϕk
D(R3)−→ ϕ, then lim

k
pm(ϕk − ϕ) = 0,

from (15) results lim
k
p∗m(ψk − ψ) = 0, namely ψk

Dc(r,z)−→ ψ, which prove the

proposition.
These results will be used to the study of a class of distributions from

D′(R3) representable only with respect to the cylindrical coordinates (r, z) ∈
R2.
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