ACTA UNIVERSITATIS APULENSIS No 10/2005

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

WARPED PRODUCT SUBMANIFOLDS IN QUATERNION
SPACE FORMS

ADELA MIHAT!

ABSTRACT. B.Y. Chen [3] established a sharp inequality for the warping
function of a warped product submanifold in a Riemannian space form in terms
of the squared mean curvature. For a survey on warped product submanifolds
we refer to [4].

In [8], we established a similar relationship between the warping function f
(intrinsic structure) and the squared mean curvature and the holomorphic
sectional curvature (extrinsic structures) for warped product submanifolds
M, x ¢ M, in any complex space form.

In the present paper, we investigate warped product submanifolds in quater-
nion space forms M™(4c). We obtain several estimates of the mean curvature
in terms of the warping function, whether ¢ < 0, ¢ = 0 and ¢ > 0, respectively.
Equality cases are considered and certain examples are given.

As applications, we derive obstructions to minimal warped product submani-
folds in quaternion space forms. As an example, the non-existence of minimal
proper warped product submanifolds M; x ; M, in the m-dimensional quater-
nion Euclidean space Q™ with M; compact is proved.
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INTRODUCTION

The notion of warped product plays some important role in differential ge-
ometry as well as in physics [3]. For instance, the best relativistic model of the
Schwarzschild space-time that describes the out space around a massive star
or a black hole is given as a warped product.

One of the most important problems in the theory of submanifolds is the
immersibility (or non-immersibility) of a Riemannian manifold in a Euclidean
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space (or, more generally, in a space form). According to a well-known theorem
of Nash, every Riemannian manifold can be isometrically immersed in some
Euclidean spaces with suficiently high codimension.

Nash’s theorem implies, in particular, that every warped product M;x M,
can be immersed as a Riemannian submanifold in a certain Euclidean space.
Moreover, many important submanifolds in real, complex and quaternion space
forms are expressed as warped products.

Every Riemannian manifold of constant curvature ¢ can be locally expressed
as a warped product whose warping function satisfies Af = cf. For example,
S™(1) is locally isometric to (0,7) Xeos¢ S*1(1), E" is locally isometric to
(0,00) X, S™ (1) and H™(—1) is locally isometric to R X E"™! (see [4]).

1. PRELIMINARIES

Let M be a 4m-dimensional Riemannian manifold with metric g. M is
called a quaternion Kaehlerian manifold if there exists a 3-dimensional vector
space E of tensors of type (1, 1) with local basis of almost Hermitian structures

¢1, 2 and ¢3, such that

(i) @102 = —d201 = @3, a3 = —P3¢2 = 1, P31 = —P1¢3 = ¢,

(ii) for any local cross-section ¢ of E and any vector X tangent to M, 7 y¢ is
also a cross-section in £ (where 37 denotes the Riemannian connection in M)
or, equivalently, there exist local 1-forms p, ¢, 7 such that

6}(% = T(X)Cbz - C](X)¢3,

Vxb2 = —1(X)d1 + p(X) s,
§X¢3 = CI(X)¢1 —P(X)%-

If X is a unit vector in M, then X, ¢, X, ¢ X and ¢3X form an orthonormal
set on M and one denotes by Q(X) the 4-plane spanned by them. For any
orthonormal vectors X, Y on M, if Q(X) and Q(Y) are orthogonal, the 2-plane
m(X,Y) spanned by X,Y is called a totally real plane. Any 2-plane in Q(X) is
called a quaternionic plane. The sectional curvature of a quaternionic plane 7
is called a quaternionic sectional curvature. A quaternion Kaehler manifold M
is a quaternion space form if its quaternionic sectional curvatures are constant.

It is well known that a quaternion Kaehlerian manifold M is a quaternion
space form M (c) if and only if its curvature tensor R has the following form

(see [6])
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R(X,Y)Z = oY, 2)X = g(X, 2)Y+ (1)

+8(01Y, Z)1 X — g(01 X, Z)1Y +29(X, 1Y )1 Z +
+8(02Y, Z)po X — g(02X, Z) oY + 29(X, oY )92 Z +

+g(p3Y, Z)ps X — g(03X, Z)3Y + 29(X, ¢3Y )37},

for vectors X, Y, Z tangent to M.

A submanifold M of a quaternion Kaehler manifold M is called quaternion
(resp. totally real) submanifold if each tangent space of M is carried into itself
(resp. the normal space) by each section in E.

The curvature tensor R of M is related to the curvature tensor R of M by
the Gauss equation

R(X,Y, Z,W) = R(X,Y, Z,W) — g(h(X, Z), h(Y,W)) + g(h(X, W), h(Y, Z)),
(2)

where h is the second fundamental form of M.

DEFINITION [1]. A submanifold M of a quaternion Kaehler manifold M is
called a quaternion CR-submanifold if there exist two orthogonal complementry
distributions D and D+ such that D is invariant under quaternion structures,
that is, ¢;(D,) C D, i = 1,2,3,Yo € M, and Dt is totally real, that is,
¢i(DL) CTEM, i =1,2,3,Vi=1,2,3.

A submanifold M of a quaternion Kaehler manifold M is a quaternion
submanifold (resp. totally real submanifold) if dim D+ = 0 (resp. dim D = 0).
For any vector field X tangent to M, we put

X =PX+FX, i=1,2,3. (3)

where P, X (resp. F;X) denotes tangential (resp. normal) component of ¢; X.

Let M be an n-dimensional submanifold in a quaternion space form M (c).
Let V be the Riemannian connection of M, h the second fundamental form
and R the Riemann curvature tensor of M.
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Let p € M and let {ey, ..., €y, ..., €4 } be an orthonormal basis of the tangent
space T,M, such that e, ..., e, are tangent to M at p. One denotes by H the
mean curvature vector, that is

H() = 3 hesce) ()

For a differentiable function f on M, the Laplacian Af of f is defined by

Af = il{wejej)f —ejeif} (5)

We recall the following result of Chen for later use.

LEMMA 1. [2]. Letn > 2 and aq, ..., a,, b real numbers such that

<z> —(n—1) <Z+b>

Then 2a1as > b, with equality holding if and only if
a1+ a = az = ... = ayp,.

Let M be a quaternion CR-submanifold of a quaternion space form M(c).
Then from Gauss equation one derives

R(X.Y, Z,W) = {g(Y. 2)g(X.W) - g(X, Z)g(¥, W)+

+> 9(PY, Z)g(PX, W) — g(PX, Z)g(BY,W) + 29(X, BY )g(P,Z, W)]}

i=1
for any vector fields X, Y, Z, W tangent to M.

2. WARPED PRODUCT SUBMANIFOLDS

Chen established a sharp relationship between the warping function f of a
warped product M X M, isometrically immersed in a real space form M(c)
and the squared mean curvature ||H||? (see [3]). In [8], we gave a correspond-
ing relationship between the warping function f (intrinsic structure) and the
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squared mean curvature and the holomorphic sectional curvature (extrinsic
structures) for warped product submanifolds M; X M, in any complex space
form.

Let (My,g1) and (Ms, g2) be two Riemannian manifolds and f a positive
differentiable function on M;. The warped product of M; and M, is the Rie-
mannian manifold

M,y x ¢ My = (M x My, g),

where g = g1 + ¢ (see, for instance, [3]).

Let x : My x§ My — M (c) be an isometric immersion of a warped product
My x; M, into a quaternion space form M(c). We denote by h the second
fundamental form of x and H; = n%trace h;, where trace h; is the trace of h

restricted to M; and n; = dim M; (i = 1,2). The vector fields H; are called
partial mean curvatures.

For a warped product M; X s M, we denote by D; and D, the distributions
given by the vectors tangent to leaves and fibres, respectively. Thus, D; is
obtained from the tangent vectors of M; via the horizontal lift and Dy by
tangent vectors of My via the vertical lift.

Let My x; My be a warped product submanifold into a quaternion space
form M (c).
Since M, x ¢ My is a warped product, it is known that
1

VxZ=VzX = ?(X £z, (6)

for any vector fields X, Z tangent to My, M,, respectively.
If X and Z are unit vector fields, it follows that the sectional curvature
K(X A Z) of the plane section spanned by X and Z is given by

K(X AZ) = g(VaVxX — Vx VX, Z) = }{(VXXM ~X). (@)

Using the above Lemma and the Gauss equation (see [9]), one gets the
following.

LEMMA 2. Let x : My Xy My — M(c) be an isometric immersion of an
n-dimensional warped product into a 4m-dimensional quaternion space form

M(c). Then
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n2ﬂ<—HHH —i—nlng +35 ZZ Z G*(Pae;, es), (8)

f a=11i=1 s=ni1+1

where A is the Laplacian operator of M.
We distinguish the following cases:

THEOREM 1. Let x: My x; My — M(c) be an isometric immersion of an

n-dimensional warped product into a 4m-dimensional quaternion space form
(¢) with ¢ < 0. Then

Af
= < | HI? =z
S < I+
Moreover, the equality case holds identically if and only if x is a mixed totally
geodesic immersion, niHy = noHy and ¢ Dy L Doy, for any k = 1,2, 3.

As applications, one derives certain obstructions to the existence of minimal
warped product submanifolds in quaternion hyperbolic space.

COROLLARY 1.1. If f is a harmonic function on My, then the warped
product My Xy My does not admit any isometric minimal immersion into a
quaternion hyperbolic space.

COROLLARY 1.2. There do not exist minimal warped product submanifolds
in a quaternion hyperbolic space with My compact.

THEOREM 2. Let x : My X; My — M(c) be an isometric immersion of

an n-dimensional warped product into a 4m-dimensional flat quaternion space

form. Then
Af  n?
— < —|H|”
/ T2

Moreover, the equality case holds identically if and only if x is a mized totally
geodesic immersion and naH, = noH,.

COROLLARY 2.1. If f is an eigenfunction of Laplacian on M; with cor-
responding eigenvalue X > 0, then the warped product My x; My does not
admit any isometric minimal immersion into a quaternion hyperbolic space or
a quaternion Fuclidean space.
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A warped product is said to be proper if the warping function is non-
constant.

COROLLARY 2.2. There do not exist minimal proper warped product sub-
manifold in the quaternion Fuclidean space Q™ with My compact.

THEOREM 3. Let x : My x; My — M(c) be an isometric immersion of an

n-dimensional warped product into a 4m-dimensional quaternion space form
M(c) with ¢ > 0. Then

Af  n? c

L < —||H|? -

5 < P+

Moreover, the equality case holds identically if and only if x is a mixed totally
geodesic immersion, niHy = noHy and ¢ D1 L Doy, for any k = 1,2, 3.

C . sl
3— —, 1}
+35min{™,1)

Also, Lemma 2 implies another inequality for certain submanifolds (in par-
ticular quaternion CR-submanifolds) in quaternion space forms with ¢ > 0.

THEOREM 4. Let x : My X ; My — M(c) be an isometric immersion of an
n-dimensional warped product into a 4dm-dimensional quaternion space form

M(c) with ¢ > 0, such that ¢ Dy L Dy, for any k =1,2,3. Then
Af n?
=L < —|H|?
£ < P+
Moreover, the equality case holds identically if and only if x is a mixed totally
geodesic immersion and niHy = noHs.

C

4

Next, we will give some examples which satisfy identically the equality case
of the inequality given in Theorem 4.

EXAMPLE 1. Let ¢ : S™ — S4*3 be an immersion defined by
Yzt ..., 2" = (2,0,0,0,2%0,0,0,...,2",0,0,0),

and 7 : S — P"(Q) the Hopf submersion.
Then mo1): S™ — P™*(Q) satisfies the equality case.

EXAMPLE 2. On S™*"2 [et consider the spherical coordinates uy, ..., Un, 1,
and on S™ the function

f(uq,...up) = cosuy... cOS Uy,
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(f is an eigenfunction of A).

Then S™*m2 = S™ xp S"2,

Let o) : Smtn2 — §Amtn2)+3 pe the gbove standard immersion and m the
Hopf submersion 7 : S{m+n2)+3 _, pritnz(Q),

Then wop : SMt2 — Pmtn2(Q) satisfies the equality case.
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