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ABSTRACT. In the classical problems of mathematical programming the
coefficients are assumed to be exactly known. This assumption is seldom sat-
isfied by great majority of real-life problems. Starting from the idea of K.D.
Jamison and W.A. Lodwick which solve a fuzzy linear programming prob-
lem (2001), a linear fractional programming problem with fuzzy coefficients
is described and a solving algorithm is obtained. The method is based on a
penalty approach which could transform the objective and constraints into an
unconstraint function defined in the space of fuzzy numbers.
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1. INTRODUCTION

Fuzzy approaches to solve deterministic problems could be developed and
also fuzzy models, implying fuzzy goals and fuzzy coefficients, could be defined
and solved [4]. In [1] Buckley and Feuring considered the fully fuzzified linear
programming problem (FFLP) by establishing all the coefficients and variables
of a linear program as being fuzzy quantities. They transform the fully fuzzi-
fied programming problem in a multi-objective deterministic problem which
is solved using a genetic algorithm leading to feasible solutions for the initial
problem.

In this paper the case of a linear fractional programming problem with
crisp variables and fuzzy coefficients is considered.

Starting from the idea of K.D. Jamison and W.A. Lodwick [3] which solve
a fuzzy linear programming problem (2001), a linear fractional programming
problem with fuzzy coefficients is described here and a solving algorithm is
obtained. The method is based on a penalty approach which could transform
the objective and constraints into an unconstraint function defined in the space
of fuzzy numbers.
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The paper is divided into 5 sections. The aggregation of triangular fuzzy
numbers is presented in Section 3. In Section 4 we propose a method of solving
problem (1)-(2) when all initial fuzzy quantities are described with triangu-
lar fuzzy numbers. The unconstraint linear fractional programming problem
is obtained by penalizing the objective for possible constraint violation. In
Section 5, to illustrate our method, we consider a numerical example.

2. FRACTIONAL PROGRAMMING PROBLEM WITH FUZZY COEFFICIENTS

Let us consider the linear fractional programming problem

Z C;X; + Cy
max | Z = ]: (1)
Z D;X; + Dy
subject to
M; = i — B; <0, i=1,..m
=1 (2)
X; >0, j=1..n
where
(i) (ﬁ])]:ln ,Cy and (E)len ., Dy represent the coefficients of the lin-

ear fractional objective function,

(ii) (Aiij)j:h"’n and (E) ‘ represent the coefficients and the right hand

i=1,....m i=1,....m
side of the linear constraints respectively,

(iii) (Xj),_, ., represents the decision variables.

Here it is customary to assume that the denominator in (1) is strictly
positive for any X; in the feasible region. Moreover, in this paper we will
assume that the nominator in (1) is strictly positive. The notation Y means
that Y represents a fuzzy quantity.

The aggregating operators for fuzzy quantities are defined using the Zadeh’s
extension principle (see Zimmermann [7]). We apply the extension principle of
Zadeh to add fuzzy numbers and an approximate version of the same principle
to multiply and divide fuzzy numbers. As we will see in the next section, if
Cj, Co, Dy, Dy, B;, Aj; are triangular fuzzy numbers for each i = 1,...,m
and j = 1,...,n, then Z and M, could be approximated by triangular fuzzy

numbers for each i =1, ..., m.
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2. THE AGGREGATION OF TRIANGULAR FUZZY NUMBERS

The purpose of this section is to recall some concepts which will be needed
in the sequel. Also, we define the aggregating way of triangular fuzzy numbers.

DEFINITION 1. [7]A triangular fuzzy number Y is a triplet (y',y% y°) €
R3. The membership function of Y is defined in connection with the real num-
bers yb,y?, y* as follows:

07 S (—OO,yl)
1
_ ;2_%17 S [ylij]
Y (x) B T — ?/3 ( 2 3]
) ‘/L‘ E )
vz — Yy
0, z € (y°, 00)

Y (x) represents a number in [0, 1], which is the membership function of Y’
evaluated in z. It can be easily verified that graph y =Y (x) of Y is a triangle
with base on [y!, ®] and vertex at x = y? for y* < y? < 3.

The extension principle was formulated by Zadeh in order to extend the
known models implying fuzzy elements to the case of fuzzy entities. Apply-
ing this principle the following definitions of the addition and subtraction of
triangular fuzzy numbers result:

DEFINITION 2. Being given two triangular fuzzy numbers A = (a',a?,a®) , B
= (b4,0%,0%), a',a?, a3, b', b%, b® € R, we have:

(i) A+ B = (a'+b"a>+ 0% a®+ V%),
(i) A— B=(a' —b%a*> - 0% a®> —b').

Applying the principle of extension to multiply triangular fuzzy numbers
it is not obtained a triangular fuzzy number. According [2,6] we could use
a—cuts method to describe the membership function of the result.

The a—cuts of fuzzy numbers A = (a',a?, a®) and B = (b', 1, %) are the

intervals
[(aQ — a,l) o+ al, <a2 — a,3) o+ a?’] ,

(B =b")a+ b, (b = b) o + b7
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respectively. Considering this intervals with non-negative endpoints and mak-
ing a multiplication of them an interval [, r] is obtained, where

[ — (a2 —al) (b2 —bl) a2+ [(aQ —a1> bt + (bQ _ bl) al] oz—{—a,lbl,

r= (a2 — a?’) (b2 — b3) a? + Kaz — a3) b+ (b2 — b3) aﬂ a+ a’b’.

Consequently, the membership function for fuzzy number A - B is

0, z € (—o0,a'd!]
A B (2) = —p* +vVm? +n2z, xe€la'd!, a?bQ]
> — V12 + s2z, r € [a?b?, a3b]
0, T € [a®h?, +0)

where p,m,n,q,t,s € R and could be computed starting from the parame-
ters of triangular fuzzy numbers A and B. Moreover, A - B () increases on
[a'b!, a?b?] and decreases on [a?b?, a®b?]. In Figure 2 it is shown a possible ap-
proximate version of function AB (x) by a function which describe a triangular
fuzzy numbers.

Considering again the a—cuts of fuzzy numbers A and B with non-negative
endpoints and making a division of them, an interval

(a* —a')a+a' (a® —a®)a+d?
(B2 =) a+b3" (b2 —bY)a+ b

is obtained. Consequently, the membership function for fuzzy number % is
1
0, T € (—oo, 23:|
_ x—1? [a! a?
é(l‘): m2x—l—n2’ v e =b3’b2
t2x + s _bz’b1
0, T € Z—l, +oo>

where p,m,n,q,t,s € R and could be computed starting from the parameters
— — q 12
of triangular fuzzy numbers A and B. Moreover, % (x) increases on [%3, 22}
2 A

3
and decreases on {22, Zl} An approximate version of function 5 () by a
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function which describe a triangular fuzzy numbers is also possible in this
case.

Taking into consideration these approximate versions for Zadeh’s principle,
we work in further with Definition 3 in order to obtain a triangular fuzzy

number as a result for a multiplication or a division of two triangular fuzzy
numbers.

DEFINITION 3. Being given two triangular fuzzy numbers A = (a',a? a®), B
= (b1, 0%, b%), at,a? a3, bt b2 b € R, we have:

(i) A- B = (a'bt,a?h?, a®v?),

. 1 2 3
(H) = (ZS?ZQ?ZI)'

N

S/

3. THE SOLVING METHOD

After aggregating the fuzzy quantities according to Definition 2 and Defi-
nition 3 we transform the problem of maximizing a fuzzy number under some
constraints into a deterministic unconstraint programming by penalizing the
objective for possible constraint violation.

max | Z = 22 —hrnaux{O,X:AinJ —BZ} (3)
Z Dij + Do Jj=1
J=1

Considering that A is an m-dimensional vector with triangular fuzzy num-
bers as components, the function to be optimized in (3) could be approximated
by a triangular fuzzy number having parameters (2!, 2%, z3) where

(i) l=fF—— — f:l h3 max {0, il afj:cj — bll},
Yo dixi+dy T .
j=1
Z C?.Tj + 0(2) . .
(i) 2=41 — — Zl h? max {O, '21 agr; — b?},
St
777 0
=
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3 3
Z CiTj + ¢ . .
(iii) 23 = Z————— — % hlmax {0, ) alz; — bf}.
]:

=1

M-

1

<
Il

Two kinds of approaches could be taken into consideration here. We can
optimize the midpoint of (2,22, 2%) (Jamison and Lodwick did it for a lin-
ear problem) using results of possibility theory or, we can solve the multidi-
mensional unconstraint problem (max z!', max z?, max 2?)(Buckley and Feuring
suggested it for a fuzzy number).

In the first case Problem (3) is equivalent with maximization of function

(¢t +2c*+3)w —h (0, Ale — b®) — 212 (0, A%z — b?) — h3 (0, A3z — b')

4
representing
1
1 1 2 2 3
f/(&z2—|—(1—a)z1+az2+(1—a)23>da: G
2 ] 4

Consequently, Problem (1)-(2) is reduced to an unconstraint deterministic
programming problem which could be solved using classical methods ([5]).

4. COMPUTATIONAL RESULTS

In order to illustrate our solving method let us consider the following de-
terministic linear fractional program

< 2.’131 + X9 + 1>
max (z = ———— (4)
Ty + X9 + 5
subject to
r + gxz <4
Ty + 29 <2
T1,2 >0

The optimal solution of this problem is #! = 1.5, 22 = 0.5 and the optimal
value of z is 0.643.
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We attach now to this problem a new problem considering its real number
coefficient ¢ as being symmetric triangular fuzzy number ¢ of spread 1, having
the following form

Cc= (01,02,03), d=c—05 =c¢ A =c+0.5.

Thus the problem with triangular fuzzy numbers as coefficients to be solved
is

(6)

clsc1+c2x2+co>

max | 2 = = — —
< dlxl + dQIQ + do

subject to
Az + apes — by <0
a1 + s — by <0, (7)
G3171 + azwy — bz < 0,
xy, w9 >0

where the coefficients’ values are

(0.5,1,1.5) (2.166,2.666,3.166) | [ (3.5,4,4.5)
a=| (0.5,1,1.5) (0.5,1,1.5) b= (15,2,25) |,
(1.5,2,25)  (—0.5,0,0.5) (2.5,3,3.5)

c=[(15,2,25) (051,15 (0.51,15) |,
d= [ (0.5,1,1.5) (0.5,1,1.5) (4.5,5,5.5) } .

According to the method described in Section 4, we choose h = [3,2, 3]. In
order to obtain the solution of this problem we have to analyse the triangular
fuzzy number (2!, 22, 2%) where

oy o1 Lbxt +0.522 +0.5 1 2_ 951
(i) 2! = e 4+ 1507455 3.5max {0, 1.5z' + 3.1662° — 3.5}

— 2.5max {0, 1.5z! + 1.52% — 1.5} — 3.5max {0, 2.5z! + 0.52% — 2.5},

1 2
(i) 22 = % — 3max {0, 2! + 2.6662% — 4} —
—2max {0, z' + 22 — 2} — 3max {0, 2z' — 3},

1 2
(iif) 2% = 3j§£1 j: é:giQ i ig — 2.5max {0,0.52! + 2.1662% — 4.5} —

— 1.5max {0,0.5z" + 0.52% — 2.5} — 2.5max {0, 1.5z' — 0.522 — 3.5}.
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We obtain the midpoint (0.28,0.5,0.8) for z! = 1 and z?> = 0 when
1 2, .3
Z+2++Z is maximized.
The optimal values 2! (1,0) = 1.5, 2%(1.5,0.5) = 3.5 and 2%(2.8,1.43) =
9.16 are obtained when the components (2!, 22 2%) are independently maxi-
mized.
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