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Abstract. Probabilistic finite state automata generating strings of let-
ters is used to represent the symbolic time series. A symbolic time series as a
model is developed, and a measure of the corresponding approximation error
is proposed. The symbolic time series depends essentially on the segmentation
of the initial series. An operator of segmentation using thresholds generates a
structure of segments. Based on the past data, the probability of transitions
and states of the probabilistic finite state automata are estimated. The fore-
casting probability in a symbolic time series is defined. The conditions for an
optimal forecasting are analyzed.
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Introduction

In some previous papers [2,3], we have developed a syntactic method as an
alternative for other models used in time series analysis. The aim was to find
solutions for forecasting some time series proposed at the 1992 international
contest - Santa Fe Institute Studies in the Science of Complexity [8].

In our study we have considered a time series, graphically represented, as
a digital picture, and the segments of the time series, as objects of the picture.
We have taken as patterns the contour of objects preserving the monotony. A
set of pattern primitives - a finite free set - have been chosen, and their labels,
as a set of free symbols, have been considered as an alphabet Σ. In this way,
a word from the language L (L ⊂ Σ∗), corresponds to an object, from the
picture, while a set of words correspond to the whole series. This set of words
has been used in order to construct a symbolic time series.

The main aim in studying time series is to use them in forecasting. In order
to solve this problem, we have used the probabilistic finite state automata
providing the forecast probability.
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1. Probabilistic generation of strings

1.1. Probabilistic finite state automata

Definition 1.1.A = (Q, Σ, δ.q0, F ) is a finite state automata if
Q - is a finite set of states
Σ - is an alphabet
δ ⊆ Q× Σ×Q - is the set of transitions
q0 - is the initial state
F - is the set of final states
The language T (A) ⊂ Σ∗, accepted by the automata is a regular language.

Definition 1.2.A probabilistic finite state automata is

A = (Q, Σ, δ, IA, FA, PA),

where:
PA : δ → [0, 1] are the transitions probabilities
IA : Q → [0, 1] are the initial states probabilities
FA : Q → [0, 1] are the final states probabilities
IA, PA, FA are functions such that:∑

q∈Q

IA(q) = 1 and ∀ q ∈ Q, FA(q) +
∑

a∈Σ,q′∈Q

PA(q, a, q′) = 1.

It is assumed that PA(q, a, q′) = 0 for all (q, a, q′) 6∈ δ.
Computing the probability of a string x ∈ Σ∗, that A generates let us

consider
θ(x) = (s0, x1, s2, x2, . . . , sk−1, xk, sk)

a path for x = x1 . . . xk in A , i.e. the sequence of transitions

(s0, x1, s1), (s1, x2, s2), . . . , (sk−1, xk, sk) ∈ δ.

Definition 1.3.The probability of generating a path

θ(x) = (s0, x1, s1, x2, . . . , sk−1, xk, sk)
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is defined with:

PA(θ(x)) = IA(s0)
k∏

j=1

PA(sj−1, xj, sj)FA(sk).

Let ΘA be the set of all valid path (having the probability greater than
zero) generated by A.

Definition 1.4.The probability of generating x by A is

PA(x) =
∑

θi∈Θ(x)

P (θi).

The automata A defines a distribution D on Σ∗ if∑
x∈Σ∗

PA(x) = 1.

In the sequel the indices A will be omitted.

1.2. Words and sub-words generated in probabilistic finite state
automata

The probability of reaching state q and generating the prefix x1 . . . xi, using
the sequence of states S = (s0, s1, . . . , si), is

∀ q ∈ Q, αx(i, q) =
∑

S∈Θ(x1...xi)

I(s0)
i∏

j=1

P (sj−1, xj, sj)ρ(q, sj),

for 0 ≤ i ≤ |x|, where ρ(q, sj) = 1, if q = sj and ρ(q, sj) = 0 if q 6= sj.
Forward algorithm for calculating this probability:
αx(0, q) = I(q)
αx(i, q) =

∑
q′∈Q

αx(i− 1, q′)P (q′, xi, q), 1 ≤ i ≤ |x|

Then
P (x) =

∑
q∈Q

αx(|x|, q)F (q).

The probability of generating the suffix xi+1 . . . x|x|, from the state q, on
the sequence of states S = (si, si+1, . . . , s|x|) is :

βx(i, q) =
∑

S∈Θ(xi+1,...,x|x|

ρ(q, si)
|x|∏

j=i+1

P (sj−1, xj, sj)F (s|x|),
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where ρ(q, si) = 1 if q = si and ρ(q, si) = 0 if q 6= si.
The backward algorithm:
βx(|x|, q) = F (q)
βx(i, q) =

∑
q′∈Q

βx(i + 1, q′)P (q′, xi, q), 1 ≤ i ≤ |x| − 1

Then
P (x) =

∑
q∈Q

I(q)βx(0, q).

2. Symbolic time series

In order to construct the codification of a time series by words from a
language, we will summarize some basic notions.

2.1. Alphabet, words, operation with words
Let Σ be a finite set of symbols used as an alphabet. We will denote by Σ+

the set of words obtained on Σ using the concatenation operation (denoted by
·). Then (Σ+, ·) is the free semi-group generated by Σ. We will aid the null
word λ and consider Σ∗ = Σ+ ∪ {λ}.

The (Σ∗, ·, λ) is the free semi-group with unity generated by Σ. A language
L is a subset of Σ∗. Let W ⊂ Σ+ be a set of words. We define the set of
prefixes of the words from W as the set:

Preff(W ) = {u|u ∈ Σ+, ∃ v ∈ Σ+, uv ∈ W}

and the set of suffixes as:

Suff(W ) = {v|v ∈ Σ+, ∃ u ∈ Σ+, uv ∈ W}.

2.2. Segmentation of a time series
In order to construct a symbolic time series by labeling the segments of

a time series we introduce a segmentation operator J , in respect with the
threshold hi, for i = 1, 2, . . . , q (hi ∈ R).

A time series is a set of observations xt (xt ∈ R), each one being recorded
at a time t. The sequence

X = {x1, x2, . . . , xN}

is a time series containing the measurements on a discreet time interval
{t1, t2, . . . , tN} ⊂ [0, T ].
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As we have already mentioned, we will consider the envelopes of the time
series, and the picture containing objects - i.e. sequences of non-void values,
and intervals with null values. We will keep the separating points of these
regions in a set of segmentation points. Then, we will add to this set the
points, which separate the monotone parts of the envelopes, and the points
which determine sub-patterns from a free set (a free set has the property that
no element of the set can be expressed as a combination of other elements).

Let us consider a segmentation operator Jh : X → {0, h}, where Jh(xi) = h
if xi ≥ h and Jh(xi) = 0 otherwise.

Considering a sequence of thresholds, H = {h1, h2, . . . , hq}, such that h1 >
h2 > . . . > hq > 0, (hi ∈ R, i = 1, 2, . . . , q, for q < N), we can combine the
sequence of Jh operators in a single one, J : X → {h1, h2, . . . , hq, 0}, taking
for each xi ∈ X, J(xi) = max{Jh(xi)|h ∈ H}.

J(X) is a time series associated to X, and having a reduced set of values,
only. The shape of J(X), and the role of J for a proper segmentation of X,
depends essentially by the threshold selection.

Let us denote by

U = {µ1, µ2, . . . , µs} and µ1 < µ2 < . . . < µs

the J(X) steps, i.e. the first indices where the values are changing. We will take
as points of segmentation the values µ1, µ2, . . . , µs. The points {(µi, µi+1)|i =
1, 2, . . . , s − 1} define the segments where the pattern primitives are defined.
We will label the pattern primitives with symbols from the alphabet Σ.

Let us consider the segmentation points and their corresponding values in
X : (µi, xk), i = 1, . . . , s and k ∈ {1, . . . , N}.

Definition 2.1.The point (µi, xk) is a cut point if |xk − xk+1| > K, or
|xk − xk−1| > K, where K is a chosen value (for instance K > xk/2).

2.3. The construction of the symbolic time series
In order to construct a symbolic time series, corresponding to the segmented

time series, we will attach to every segment a letter, as a label. If a segment
has a level zero, then it will be labeled by λ. Let us denote by W the set of
words occurring in the codification of the initial time series.

Then, the symbolic time series will be

Sm =
m∑

i=1

(wpi
i + λqi) (2.1)
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where:
m - is the number of different words corresponding to the ”objects”
wi - is a word
pi - natural number of successive occurrence of wi

qi - natural number of null intervals between two objects.
As usual, we denoted by |w| the length of the word w.
Here, we have used the following operations with letters and words:
a) The concatenation (·). Two letters can be concatenated if they are the

labels of two adjacent segments without a cut-point in between.
b) The sum of words (+), for a union of ordered words.

Example 1.
The objects from a picture have the description:

S = g + λ + fg + efg + cdefg + abcdefg

when a, b, c, d, e, f, g ∈ Σ.
In [2] we have studied the error in approximation with symbolic time se-

ries. We found the possibility to decide if a segmentation is acceptable in
respect with a tolerable error. In the sequel we will consider only acceptable
segmentations.

3. Predictibility in symbolic time series

3.1. Reconstruction by interpolation
In the paper [3] we have studied the symbolic time series that can be re-

constructed by interpolation. Let us present, first of all, how we can formulate
an interpolation problem for symbolic time series.

Let us consider a segmented time series, with µ1, . . . , µm some cut-points,
and a1, a2, . . . , ar, the letters placed at the right of these points, ai ∈ Σ, |Σ| = r,
r symbols used to label the segments of the series.

If we know the pairs (µk, ak), k = 1, . . . ,m, ak ∈ Σ, the interpolation prob-
lem consist in finding a symbolic time series having in the points µ1, . . . , µm,
the patterns labeled with a1, a2, . . . , am.

In this case the pairs (µk, ak), k = 1, . . . ,m, will be called interpolation
points.
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Theorem 3.1. A symbolic time series interpolates the points (µ1, a1), . . .,
(µm, am), where µ1, . . . , µm are cut-points, if the symbolic time series

m∑
i=1

(wi + λqi), wi ∈ W, qi ∈ N

accomplished the following conditions:
(1) For every j = 1, . . . ,m there exist wj ∈ W , such that Φ(wj) = aj,

where Φ(wj) is the first letter of the word wj.
(2) |wj|+ |λqj | ≤ µj+1 − µj, for j = 1, . . . ,m− 1.
If there is a symbolic time series interpolating the segmented time series,

we will say that the original time series can be reconstructed by interpolation.

Theorem 3.2. (on reconstruction by interpolation) The segmented time
series Y can be reconstructed by interpolation if there exists a set of words W
such that every term of the symbolic time series

m∑
i=1

wi + λqi

has the property that
1)Φ(wi) = ai, for i = 1, . . . ,m, and for all i, j, Φ(wi) 6= Φ(wj), if i 6= j,
2) |wj|+ |λqj | = µj+1 − µj, for j = 1, . . . ,m− 1.

In example 1, W = {g, fg, efg, cdefg, abcdefg} with the cut points
(µ1, . . . , µ6). If we take as interpolation points (µ1, g), (µ2, f), (µ3, e), (µ4, c),
(µ5, a) then the series can be reconstructed by interpolation.

Definition 3.1. The symbolic time series Sm is partially predictible if
knowing the first letter in a word, there is a unique word, or sub-word, in W ,
beginning with the respective letter.

It is straightforward the following result:

Theorem 3.3. If a symbolic time series can be reconstructed by interpo-
lation then it is partially predictable.

3.2. Probabilistic finite state automata generating the interpolation
points

Let us consider a symbolic time series partially predictable. What is impre-
dictible is the next word, after a cut point. If we would have some information
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on the probability distribution of the interpolation points, we could predict
with a probability the next interpolation point.

We will consider the sequence of interpolating points zi = (µi, ai), i =
1, . . . , k, where by µi we denote the position of the interpolating point. We
will associate with this string a probabilistic finite state automata.

Considering that from historical data we can estimate the following prob-
abilities: initial states probabilities, transitions probabilities and final states
probabilities IA, PA, FA, we will suppose that

∀ q ∈ QA, FA(q) +
∑

a∈Σ,q′∈QA

PA(q, a, q′) = 1 and
∑

q∈QA

IA(q) = 1.

In that case we have a probabilistic finite state automata generating the inter-
polation points of a symbolic time series.

Let us consider z = z1 . . . zi as a word and zi+1 . . . zn its suffix i.e. a possible
continuation of the word. We have the possibility to calculate the probability
of generating the suffix, i.e. the probability of a possible continuation of the
word z. As we already have seen in 1.2., using the backward algorithm we find

βz(i, q) =
∑

S∈Θ(zi+1,...,zn)

ρ(q, si)
n∏

j=i+1

P (sj−1, zj, sj)F (sn)

the probability of generating the suffix zi+1 . . . zn beginning with the state q.
This is the probability of the continuation of the word z. When it is asso-

ciate with a symbolic time series, we can find the probability of the forecasting
using the next n− i interpolation points zi+1 . . . zn.

The probabilistic finite state automata is a suitable device for defining dy-
namically the probabilities, as the automata would learn the new probabilities.

4. Conclusions

In searching for conditions for predictability of a time series, we have seen
that a symbolic time series can be partially extrapolated if it can be recon-
structed by interpolation. If a time series can be reconstructed by interpola-
tion, then knowing the probabilities for each interpolation point, the series can
be extrapolated with the corresponding probability given by the most probable
interpolation point.

References

102



C. Jalobeanu - Probabilistic finite state automata ...

[1] Brockwell, P., Davis, R., Time Series Theory and Methods, Springer Verlag,
Berlin, 1991.
[2] Jalobeanu, C., Pattern Segmentation for Time Series, Acta Technica Na-
pocensis, Series Appl. Math. and Mech., 42, 1, 1999, 11-22.
[3] Jalobeanu, C., Classification of the Time Series Using Syntactic Analysis,
Conference on Analysis, Functional Equations, Approximation and Convexity,
in Honour of Prof. E. Popoviciu, Cluj-Napoca, 1999, 104-118.
[4] Jalobeanu, C., Time Series Syntactic Analysis and Extrapolation, Interna-
tional Symposium on Forecasting, Washington D.C., Session 1.10, 1999.
[5] Ge, X. Smith, P., Deformable Markov Model Templates for Time-Series
Pattern Matching, Technical report UCI-ICS 00-10, Dep. Of Inform. And
Computer Science, Univ. California, Irvine, 2000.
[6] Singh, S., Pattern Recognition Modelling in Time Series Forecasting, Cy-
bernetics and System - An International Journal, 31, 1, 2000.
[7] Vidal, E., Tholland, F., de la Higuera, C., Casacuberta, F., Carraasco, R.C.,
Probabilistic Finite Automata, Part I, IEEE Transaction PAMI (in print).
[8] Weigend, A.S., Gershenfeld, N.A. (eds), Time Series Prediction, Forecast-
ing the Future and Understanding the Past, Addison Wesley Publ. Comp.,
Reading, New-York, 1994.

Ciresica Jalobeanu
Department of Mathematics
Technical University of Cluj-Napoca

103


