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1.The p-Laplace equation

The equation

4pu = 0 on Ω, 1 < p < ∞, (1.1.)

is called p-Laplace’s equation.
Here, Ω ⊂ RN is an open set, u : Ω −→ R is the unknown, and 4p is the

p-Laplace operator defined by

4pu := div(|∇u|p−2∇u), (1.2.)

The previous investigations have led to the equation’s critical points

Dp(u; Ω) =

∫
Ω

|∇u|p dx (1.3.)

are weak solutions for (1.1.) , thus they can be named p-harmonic functions.

105



C. C. Dragos-Patru - A few results about the p-Laplace’s operator

2.Fundamental solutions for p-Laplace equation

We will first construct a simple radial solution of p-Laplace’s equation. To
look for radial solutions of p-Laplace’s equation on Ω = RN of the form

u(x) = v(r); r = |x| := 2

√
x2

1 + ... + x2
N , (2.1.)

Here, v : [0,∞) −→ R
We note that

uxi
=

∂v(r)

∂xi

= v
′
(r)

xi

r
, (2.2.)

and

uxixi
=

∂2v(r)

∂x2
i

=
x2

i

r2
v
′′

(r) +
1

r
v
′
(r)−

x2
i

r3
v
′
(r),∀1 ≤ i ≤ N, (2.3.)

and summation yields

∆2u(x) = v
′′
(r) +

N − 1

r
v
′
(r), r 6= 0. (2.4.)

We have

|∇u| = 2

√(
∂u
∂x1

)2

+ ... +
(

∂u
∂xN

)2

= 2

√(
v′(r)x1

r

)2
+ ... +

(
v′(r)xN

r

)2
=

2
√

(v′(r))2 =
∣∣v′

(r)
∣∣ ,

(2.5.)
and

∂
∂xi

∣∣v′
(r)

∣∣p−2
= ∂

∂xi

(
2

√
(v′(r))2

)p−2

=

(p− 2)

(
2

√
(v′(r))2

)p−3
v
′
(r)

xi
r

v
′′
(r)

|v′ (r)| ,

(2.6.)

But (1.1.) equivalently

|∇u|p−2 ∆2u +∇
(
|∇u|p−2) · ∇u = 0. (2.7.)
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We have

∇
(
|∇u|p−2) · ∇u = ∇

(∣∣∣v′
(r)

∣∣∣p−2
)
· ∇v(r) =(

∂

∂x1

∣∣∣v′
(r)

∣∣∣p−2

, ...,
∂

∂xN

∣∣∣v′
(r)

∣∣∣p−2
)
·
(

∂v(r)

∂x1

, ...,
∂v(r)

∂xN

)
=

(p− 2)
∣∣v′

(r)
∣∣p−3

v
′
(r)x1

r
v
′′
(r)

|v′(r)|
v
′
(r)x1

r
+...+

(p− 2)
∣∣v′

(r)
∣∣p−3

v
′
(r)xN

r
v
′′
(r)

|v′(r)|
v
′
(r)xN

r
=

(p− 2)
∣∣v′

(r)
∣∣p−3 (

v
′
(r)

)2
v
′′
(r)

|v′(r)| r2

(
x2

1 + ... + x2
N

)
=

(p− 2)
∣∣v′

(r)
∣∣p−3 (

v
′
(r)

)2
v
′′
(r)

|v′(r)|
. (2.8.)

So (2.7.) equivalently∣∣∣v′
(r)

∣∣∣p−2
[
(p− 1)v

′′
(r) +

N − 1

r
v
′
(r)

]
= 0. (2.9.)

Assume
∣∣v′

(r)
∣∣ 6= 0.

Hence, we have
∆pu = 0 for x 6= 0

if and only if

(p− 1)v
′′
(r) +

N − 1

r
v
′
(r) = 0, (2.10.)

In the case (2.10.) note v
′
= z, follows

(p− 1)z
′
+ N−1

r
z = 0 ⇐⇒

(p− 1)dz
z

= 1−N
r

dr ⇐⇒
(p− 1) ln |z| = (1−N) ln r + ln |C|p−1 ⇐⇒

z(r) =
p−1

√
|C|p−1

rN−1 = |C|

r
N−1
p−1

.

(2.11.)

We conclude that

v
′
(r) =

C

r
N−1

p−1

, (2.12.)
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for an arbitrary constant C ∈ R+ and thus

v(r) =

{
C ln r+C1, if N = p

C p−1
p−N

r
p−N
p−1 + C1, if N ≥ p + 1

, r > 0, (2.13.)

with constants C1 ∈ R.

3.Gauss-Green, Gauss-Ostrogradski and Green′s formulas for
the p-Laplace′ operator

Definition 3.1. Let Ω ⊂ RN be open and bounded
i) We say that Ω has a Ck-boundary, k ∈ N ∪ {∞}, if for any x ∈ ∂Ω

there exists r > 0 and a function β ∈ Ck(RN) such that

Ω ∩B(x; r) = {y ∈ B(x; r) : yN > β(y1, ..., yN−1)} ,

ii)If ∂Ω is Ck then we can define the unit outer normal field υ : ∂Ω −→
RN , where, υ(x), |υ(x)| = 1, is the outward pointing unit normal of ∂Ω at x.

iii)Let ∂Ω be Ck. We call the directional derivative

∂u

∂υ
(x) := ν(x) · ∇u(x), x ∈ ∂Ω,

the normal derivative of u.
In addition to Ck(Ω) we define the function space

Ck(Ω) :=
{
u ∈ Ck(Ω) : Dαu can be continuously extended to ∂Ω for |α| ≤ k

}
,

where

Dαu =
∂α1+...+αN

∂xα1
1 ...∂xαN

N

u, |α| =
N∑

i=1

αi.

We recall the Gauss-Green theorem.
Theorem 3.2. Let Ω ⊂ RN be open and bounded with C1-boundary.

Then for all u ∈ C1(Ω)∫
Ω

uxi
(x)dx =

∫
∂Ω

u(x)υi(x)dσ(x).

108



C. C. Dragos-Patru - A few results about the p-Laplace’s operator

Remark(Gauss-Ostrogradscki): Let Ω ⊂ RN be open and bounded

with C1-boundary. Then for all
−→
f : Ω −→ RN such that

−→
f ∈ C(Ω) ∩ C1(Ω).

We have ∫
Ω

div
−→
f dx =

∫
∂Ω

−→
f · υdσ(x).

Theorem 3.3. If u ∈ C2(Ω) such that ∆pu ∈ C(Ω) then∫
Ω

∆pudx =

∫
∂Ω

∂u

∂υ
|∇u|p−2 dσ(x). (3.1.)

Proof. In theorem Gauss-Ostrogradscki let
−→
f = |∇u|p−2∇u.

We have

∫
Ω

div
(
|∇u|p−2∇u

)
dx =

∫
∂Ω

(
|∇u|p−2∇u

)
· υdσ(x) =

∫
Ω

∆pudx =∫
Ω

|∇u|p−2 ∆2udx +
∫
Ω

∇
(
|∇u|p−2) · ∇udx =∫

∂Ω

∂u
∂υ
|∇u|p−2 dσ(x)−

∫
Ω

∇
(
|∇u|p−2) · ∇udx+∫

Ω

∇
(
|∇u|p−2) · ∇udx =

∫
∂Ω

∂u
∂ν
|∇u|p−2 dσ(x)

Moreover, we easily obtain Green’s formulas for the p-Laplace operator:

Theorem 3.4. Let Ω ⊂ RN be open and bounded with C1-boundary.
Then for all u, v ∈ C2(Ω) such that ∆pu ∈ C(Ω), we have

G1)
∫
Ω

(∆pu) vdx =
∫
∂Ω

v |∇u|p−2 ∂u
∂υ

dσ(x)−
∫
Ω

∇v ·
(
|∇u|p−2∇u

)
dx

G2)
∫
Ω

[(∆pu) v − (∆pv) u] dx =
∫
∂Ω

(
v |∇u|p−2 ∂u

∂υ
− u |∇v|p−2 ∂v

∂υ

)
dσ(x).

(3.2.)

Proof. G1) Let
−→
f = v

(
|∇u|p−2∇u

)
.We have

div
[
v

(
|∇u|p−2∇u

)]
= vdiv

(
|∇u|p−2∇u

)
+∇v ·

(
|∇u|p−2∇u

)
.

So ∫
Ω

[
v∆pu +∇v ·

(
|∇u|p−2∇u

)]
dx =

∫
∂Ω

v |∇u|p−2 ∂u

∂υ
dσ(x).
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Proof. G2) By G1) we have∫
Ω

(∆pu) vdx =

∫
∂Ω

v |∇u|p−2 ∂u

∂υ
dσ(x)−

∫
Ω

∇v ·
(
|∇u|p−2∇u

)
dx (3.3.)

we inverse the role u and v,so∫
Ω

(∆pv) udx =

∫
∂Ω

u |∇v|p−2 ∂v

∂υ
dσ(x)−

∫
Ω

∇u ·
(
|∇v|p−2∇v

)
dx (3.4.)

Using (3.3.) and (3.4.) we deduce G2)

4.Green function, Kelvin transform, or Poisson Kernel?

The following ideas are from [3]: From a physical standpoint equation
(1.1.), or rather its generalizations, arises naturally, e.g., in the steady rectilin-
ear motion of incompressible non-Newtonian fluids or in phenomena of phase
transition. A glimpse at (1.1.) immediately reveals two unfavorable features:

(i) the operator is badly nonlinear;
(ii) ellipticity is lost at points where ∇u = 0.
The strong nonlinearity makes it impossible to develop a potential theory

along the lines of classical one. p-harmonic functions do not enjoy integral
representation formulas such as

u(x) =

∮
∂Br(x)

udσ =

∮
Br(x)

udy,

there is no Green function, or Kelvin transform, or Poisson Kernel. p-subharmonicity
is not preserved by the clasical mollification processes, as is the case for sub-
harmonic functions. This makes it impossible to regularize p-subharmonic
functions. In retrospect, this obstruction is also deeply connected with (ii)
above. The lack of ellipticity results in loss of regularity of p-harmonic func-
tions.

By results of Lewis [4], solutions to the p-Laplacian are C1,α for some α > 0,
for instance the function

u(x) = |x|
p

p−1

satisfies the equation

∆pu = const, but u /∈ C2, when p > 2.
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In particular |∇u| is Cα in any region where u satisfies the p-Laplace equation

∆pu = 0.

However the operator Lu, defined above, may fail to have the maximum/comparison
principle. The weak maximum principle for the p-Laplace operator is well
known and can be find in standard literature in this filed; see [3], [5] and [1],
the latter treats the parabolic case.

5.The existence of positive solutions in C2(RN) for the problem
with p-Laplacian

Consider the problem
−∆pu = p(x)f(u) in RN

u > 0 in RN

u(x) → 0 as | x |→ ∞ ,
(5.1.)

where N > 2, ∆pu (1 < p ≤ 2) is the p-Laplacian operator and
-the function p(x) fulfills the following hypotheses:
(p1) p(x) ∈ C(RN) and p(x) > 0 in RN .
(p2) we have

∫ ∞

0

r
1

p−1 Φ
1

p−1 (r)dr < ∞ if 1 < p ≤ 2

where Φ(r) := max
|x|=r

p(x).

-the function f ∈ C1((0,∞), (0,∞)) such that lim
u→0

f(u) = ∞ and satisfies

the following assumptions:
(f1) mapping u −→ f(u)

up−1 is decreasing on (0,∞);

(f2) lim
u↘0

f(u)
up−1 = +∞;

(f3)lim
u→0

inf f(u) > 0.

It easy to prove that
Theorem 5.1. If j : I ⊆ R −→ R is a integrable nonnegative function,

then (
1

b− a

∫ b

a

j(x)dx

)h

≤ 1

b− a

∫ b

a

jh(x)dx
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∀ a, b ∈ I, a < b and 1 < h < +∞
Theorem 5.2.Under hypotheses (f1)− (f3), (p1), (p2), the problem (5.1.)

has a radially symmetric solution u ∈ C2(RN\{0}) ∩ C1(RN).
Proof. By Theorem 1.3. in [2] the problem{

−∆pU = p(x)f(U), if |x| < k,
U = 0, if |x| = k.

has a radially symmetric solution in C
(
Bk

)
∩ C1 (Bk) ∩ C2 (Bk\(0))

We now prove the existence of a positive function u ∈ C2
(
RN

)
. As in [2]

we construct first a positive radially symmetric function w such that −∆pw =
Φ(r), (r = |x|) on RN and lim

r−→∞
w(r) = 0.

We obtain

w(r) := K −
∫ r

0

[
ξ1−N

∫ ξ

0

σN−1Φ(σ)dσ

] 1
p−1

dξ,

where

K =

∫ ∞

0

[
ξ1−N

∫ ξ

0

σN−1Φ(σ)dσ

] 1
p−1

dξ.

We first show that (p2) implies that∫ +∞

0

[
ξ1−N

∫ ξ

0

σN−1Φ(σ)dσ

] 1
p−1

dξ,

is finite.
Let 1 < p ≤ 2, so 0 < p− 1 ≤ 1, follows that 1 ≤ 1

p−1
< +∞.

Using Theorem 5.1. for any r > 0, we have∫ r

0
ξ

1−N
p−1

[
ξ
ξ

∫ ξ

0
σN−1Φ(σ)dσ

] 1
p−1

dξ =
∫ r

0
ξ

1−N
p−1 ξ

1
p−1

[
1
ξ

∫ ξ

0
σN−1Φ(σ)dσ

] 1
p−1

dξ ≤∫ r

0
ξ

2−N
p−1 1

ξ

∫ ξ

0
σ

N−1
p−1 Φ

1
p−1 (σ)dσdξ =

∫ r

0
ξ

2−N
p−1

−1
∫ ξ

0
σ

N−1
p−1 Φ

1
p−1 (σ)dσdξ =

− p−1
N−2

∫ r

0
d
dξ

ξ
2−N
p−1

∫ ξ

0
σ

N−1
p−1 Φ

1
p−1 (σ)dσdξ =

p−1
N−2

[
−r

2−N
p−1

∫ r

0
σ

N−1
p−1 Φ

1
p−1 (σ)dσ +

∫ r

0
ξ

1
p−1 Φ

1
p−1 (ξ)dξ

]
≤ p−1

N−2

∫ r

0
ξ

1
p−1 Φ

1
p−1 (ξ)dξ,

so ∫ r

0

[
ξ1−N

∫ ξ

0

σN−1Φ(σ)dσ

] 1
p−1

dξ < ∞
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as r −→∞.
Then we obtain

K =
p− 1

N − 2
·
∫ ∞

0

ξ
1

p−1 Φ
1

p−1 (ξ)dξ if 1 < p ≤ 2,

clearly, we have

w(r) ≤ p− 1

N − 2
·
∫ ∞

0

ξ
1

p−1 Φ
1

p−1 (ξ)dξ if 1 < p ≤ 2.

An upper-solution to (5.1.) will be constructed.
Consider the function

f(t) = (f(t) + 1)
1

p−1 , t > 0.

Note that
f(t) ≥ f(t)

1
p−1

f(t)
tp−1 , is decreasing, (f

′
1)

lim
t−→0

f(t)
t

= ∞, (f
′
2)

Let v be a positive function such that

w(r) =
1

C

∫ v(r)

0

tp−1

f(t)
dt where C > 0

will be chosen such that

KC ≤
∫ C

1
p−1

0

tp−1

f(t)
dt.

We prove that we can find C > 0 with this property. By our hypothesis (f
′
2)

we obtain that

lim
x−→+∞

∫ x

0

tp−1

f(t)
dt = +∞.

Now using L’Hopital’s rule we have

lim
x−→∞

∫ x

0
tp−1

f(t)
dt

xp−1
= lim

x−→∞

x

(p− 1) f(x)
= +∞.
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From this we deduce that there exists x1 > 0 such that∫ x

0

tp−1

f(t)
dt ≥ Kxp−1, for all x ≥ x1.

It follows that for any C ≥ x1 we have

KC ≤
∫ C

1
p−1

0

tp−1

f(t)
dt.

But w is a decreasing function, and this implies that v is a decreasing function
too.

Then∫ v(r)

0

tp−1

f(t)
dt ≤

∫ v(0)

0

tp−1

f(t)
dt = Cw(0) = CK ≤

∫ C
1

p−1

0

tp−1

f(t)
dt.

It follows that v(r) ≤ C
1

p−1 for all r > 0. From w(r) −→ 0 as r −→ +∞
we deduce v(r) −→ 0 as r −→ +∞.

By the choice of v we have

∇w =
1

C
· vp−1

f(v)
∇v

follows that

∆pw =
1

Cp−1

(
vp−1

f(v)

)p−1

∆pv + (p− 1)
1

Cp−1
|∇v|p

(
vp−1

f(v)

)p−2 (
vp−1

f(v)

)′

.

(5.2.)

From (5.2.) and u −→ f(u)
up−1 is a decreasing function on (0, +∞), we deduce

that

∆pv ≤ Cp−1

(
f(v)

vp−1

)p−1

∆pw = −Cp−1

(
f(v)

vp−1

)p−1

Φ(r) ≤ −f(v)Φ(r). (5.3.)

It follows that v is a radially symmetric solution of the problem:
−∆pu ≥ p(x)f(u) in RN

u > 0 in RN

u(x) → 0 as | x |→ ∞ ,
(5.4.)
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By the proof of Theorem 1.1. in [2] the problem (5.1.) has positive solu-
tions.

Now using

u′(r) =
[
r1−N

∫ r

0
σN−1p(σ)f(u(σ))dσ

] 1
p−1

u
′′
(r) = −p(r)f(u(r))+(1−N)r−N

∫ r
0 σN−1p(σ)f(u(σ))dσ

p−1

[
r1−N

∫ r

0
σN−1p(σ)f(u(σ))dσ

] 2−p
p−1 ,

2−p
p−1

≥ 0 ⇐⇒ 1 < p ≤ 2

lim
r−→0

∫ r
0 σN−1p(σ)f(u(σ))dσ

rN = 0

lim
r−→0

∫ r
0 σN−1p(σ)f(u(σ))dσ

rN−1 = 0

we deduce lim
r−→0

u
′′
(r) is finite, so u(r) ∈ C2(RN).
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