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Abstract. A linear model of natural convection under microgravity con-
ditions for a binary liquid layer in the presence of the Soret effect is investigated
analytically using a general method for treating two-point eigenvalue problems
depending on several physical parameters. The secular equation, which allows
us to obtain the neutral curve, is obtained and discussed for different values
of the parameters.
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1. Introduction

The crystal growth, measurement of thermophysical properties, fluid flows,
complex plasmas are a few fields where the microgravity conditions occur.

The term ”microconvection” was introduced to characterize non-solenoidal
flows driven by density changes with the temperature. Then it was extended
to convective motions of weakly compressible liquids. The first model of mi-
croconvection concerned the convection in a closed cavity under low gravity,
with the density depending on the temperature only [8].

In the natural convection the patterns are due to the buoyancy effect: the
temperature induces density variations in fluids. So, when heated the fluids
become buoyant and tend to rise, while when cooled due to the gravity they
tend to come down.

Theoretically the motion can be induced by temperature differences even
in the absence of gravity. At low gravity, small variations of the thermophys-
ical properties of the medium can influence the natural convection. For a
single component fluid, the model of natural convection under microgravity
conditions was studied in [1].
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We are concerned with a class of microconvection models with strong Soret
effect in a binary liquid layer. Assume that an infinite horizontal layer of this
binary fluid of thickness d is bounded by two impermeable walls on which the
normal heat flux is specified. The gravity is constant g. Then the nondimen-
sional governing conduction-convection

equations and the boundary conditions are [1]

∇v = S∆T + Le∆C,

Pr−1εv∇v = −∇p” + ∆v − G(T + C)k

1 + ε(T + C)
,

εv∇T = ∆T,
εv∇C = Le∆(C − σT ),

(1)

u = w = 0, Tz = −1, Cz = σTz, S = 1− Leσ, at z = 0 and 1. (2)

where p′′ = p − ρ0gkx − (η/3)∇v, v = (u, w) is the velocity field, T is the
temperature, C is the concentration, ε is the Boussinesq parameter, Le is the
Lewis number, σ is the separation ratio and G stands for the Galileo number.
In addition, ∇ and ∆ are the nabla and Laplace operators respectively and k
is the unit vector in the upwards vertical direction.

The direct method based on the characteristic equation is one of the most
simple methods to treat two-point problems for linear ordinary differential
equations with constant coefficients. It was first systematically applied to hy-
drodynamic stability theory by one of the authors (A.G.) and then extensively
used by her group e.g. [2]-[7]. By means of it we write the general form of
the solution of the two-point problem for the governing differential equations
in terms of these roots. Further introduction of the general solution into the
boundary conditions leads to the secular equation. The neutral manifolds, in
particular the neutral curves, separate the domain of stability from the domain
of instability. Their determination is our aim.

2.The eigenvalue problem

Take the following mechanical equilibrium

u0 = w0 = 0, T0z = −1, C0z = −σ.

as the basic state, decompose the perturbed fields into a sum of basic and per-
turbation fields, namely (u, v, T, C) = (u0, v0, T0, C0)+(u′, v′, T ′, C ′), introduce
the perturbation stream function Ψ′ such that

u′ = Ψ′
z + ST ′

x + LeC ′
x, w

′ = −Ψ′
x + ST ′

z + LeC ′
z,
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where the subscripts stand for the differentiation, and substitute the normal
mode perturbations

(Ψ′, T ′, C ′) = (Ψ′(z), T ′(z), C ′(z))exp(−iax)

into the equations (1) linearized about this equilibrium to get the two-point
eigenvalue problem [1]

(D2 − a2)2Ψ′ + iaG′(T ′ + C ′) = 0,

−ε(iaΨ′ + SDT ′ + LeDC ′) = (D2 − a2)T ′,

εσ(iaΨ′ + SDT ′ + LeDC ′) = Le(D2 − a2)(C ′ − σT ′),

(3)

where D =
d

dz
, G′ =

G

1 + ε(T0 + C0)2
. [1] Assume that G′ is constant.

The boundary conditions read [1]

DΨ′ = ia(ST ′ + LeC ′), Ψ′ = DT ′ = DC ′ = 0, at z = 0 and 1. (4)

The unknown functions Ψ′, T ′, C ′ are the eigenvectors of the problem (3)-
(4) corresponding to the eigenvalue Le.

Using the last two equations from (3) and the boundary conditions DT ′ =
DC ′ = 0 at z = 0 and 1, we have{

(D2 − a2)U = 0,
DU = 0 at z = 0 and 1,

where U = σ(1 − Le)T ′ + LeC ′. This implies U = 0, ∀z ∈ [0, 1], whence the
following relationship between the unknown functions T ′ and C ′

C ′ =
σ(Le− 1)

Le
T ′. (5)

In order to write (3), (4) into a more convenient form we use (5) in the first
two equations (3) and eliminate Ψ′ between them to obtain

Le(D2−a2)3T ′+εLe(1−σ)D(D2−a2)2T ′+a2εG′[Le+σ(Le−1)]T ′ = 0, (6)

or, since, from physical reasons, Le 6= 0 and letting a1 = ε(1 − σ), a2 =
a2εG′[1 + σ(1− 1/Le)],

(D2 − a2)3T ′ + a1D(D2 − a2)2T ′ + a2T
′ = 0. (7)
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The boundary conditions (4) written in T ′ only read

DT ′ = (D2 − a2)T ′ = D3T ′ = 0 at z = 0 and 1. (8)

Thus (3)-(4) is equivalent to the two-point eigenvalue problem (6),(7) de-
pending on three parameters: a, a1, a2. In order to solve it we investigate
the multiplicity mi of the roots λi of the characteristic equation associated
with the six order ordinary differential equation (6). Then, we write the cor-
responding form of the general solution of (6) and introduce it into (7) to get
the secular equation. Then, the secular and characteristic equation are solved
simultaneously to yield the solution Le = Le(a, ε, σ) of the eigenvalue problem
(6), (7).

Since irrespective of mi the general solution of (6) is a sum of products of
polynomials in z by eλiz, it follows that for every fixed wave number, a > 0,
the set of eigenvalues of the problem (3)-(44) is discrete and is situated on
the half-axis Le > 0. As a varies, while other parameters are kept fixed, the
smallest eigenvalue generates the neutral curve Le = Le(a).

3.The general secular equation

The algebraic equation associated with equation (6) reads

(λ2 − a2)3 + a1λ(λ2 − a2)2 + a2 = 0. (9)

This a six order linear algebraic equation with the roots λi, i = 1, .., 6. In this
section we treat the general case, i.e. when (9) has six mutually distinct roots.
Then the general solution of (7) has the form

T ′(z) =
6∑

i=1

Aie
λiz, (10)

where Ai, i = 1...6 are constants. Then from (5) and from (3)2, we obtain

C ′(z) =
σ(Le− 1)

Le

6∑
i=1

Aie
λiz, Ψ′ =

i

εa

6∑
i=1

[ε(1− σ)λi + (λ2
i − a2)]Aie

λiz. (11)
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The boundary conditions (11) lead to the following linear system of alge-
braic equations

6∑
i=1

Aiλi = 0,

6∑
i=1

(λ2
i − a2)Ai = 0,

6∑
i=1

λ3
i Ai = 0,

6∑
i=1

Aiλie
λi = 0,

6∑
i=1

(λ2
i − a2)Aie

λi = 0,

6∑
i=1

λ3
i Aie

λi = 0.

(12)

Imposing the condition that the determinant of the system (11) to vanish
we obtain the secular equation

λ1 λ2 λ3 λ4 λ5 λ6

λ1e
λ1 λ2e

λ2 λ3e
λ3 λ4e

λ4 λ5e
λ5 λ6e

λ6

µ1 µ2 µ3 µ4 µ5 µ6

µ1e
λ1 µ2e

λ2 µ3e
λ3 µ4e

λ4 µ5e
λ5 µ6e

λ6

λ3
1 λ3

2 λ3
3 λ3

4 λ3
5 λ3

6

λ3
1e

λ1 λ3
2e

λ2 λ3
3e

λ3 λ3
4e

λ4 λ3
5e

λ5 λ3
6e

λ6

= 0, (13)

where µi = λ2
i − a2, i = 1...6. The solution a1 = a1(a, a2), i.e. Le = Le(a, ε, σ),

of (13) is obtained numerically by solving the system consisting of (13) and
the six equations (9) for λ1, ..., λ6.

4. Case of multiple roots of (9)

For various values of the physical parameters, equation (9) can have mul-
tiple roots. In these cases, the form of the general solution of (6) and, conse-
quently, the form of the secular equation will change accordingly.

The algebraic equation (9) has the simplified form

λ6 + a1λ
5 − 3a2λ4 − 2a1a

2λ3 + 3a4λ2 + a1a
4λ + a2 − a6 = 0. (14)
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Let us prove that (14) has no solutions of third order algebraic multiplicity.

Using the notations µ =
λ

a
, 6b =

a1

a
, d =

a2 − a6

a6
, we rewrite (14)

µ6 + 6bµ5 − 3µ4 + 12bµ3 + 3µ2 + 6bµ + d = 0. (α1)

A root µ1 = µ2 = µ3 is a common root for (α1) and for the first and the second
derivatives of (α1),i.e. (α2), (α3), where

µ5 + 5bµ4 − 2µ3 − 6bµ2 + µ + b = 0, (α2)

5µ4 + 20bµ3 − 6µ2 − 12bµ + 1 = 0. (α3)

In order to obtain a root of (α1), (α2), (α3) we performed algebraic combi-

nations of (αi), i = 1, 2, 3 and we found a possible root µ =
(25b3 + 3)b

375b4 + 46b2 + 1
.

If this root is a common root for (αi), i = 1, 2, 3 then the following relation
must be satisfied

b(1 + 92b2 + 3640b4 + 78450b6 + 965000b8 + 6375000b10 + 17578125b12) = 0.

This way, (14) has solutions of third order algebraic multiplicity only for
b = 0, i.e. a1 = 0.

This case is treated in the next section.

5. Case σ = 1

Subcase Le = 0.5. The eigenvalue problem becomes
(D2 − a2)2Ψ′ + iaG′(T ′ + C ′) = 0,
−ε(iaΨ′ + LeDT ′ + LeDC ′) = (D2 − a2)T ′,
ε(iaΨ′ + LeDT ′ + LeDC ′) = Le(D2 − a2)(C ′ − T ′),

(15)

and, with (5), C ′ = −T ′. In this case, equations (15) lead to

(D2 − a2)3T ′ = 0, (16)

such that the characteristic equation has the form (λ2−a2)3 = 0. Therefore, the
secular equation is no longer (13) and we must derived it from the beginning.
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The general solution of (16) has the form

T ′(z) = (A0 + A1z + A2z
2) cosh(az) + (B0 + B1z + B2z

2) sinh(az). (17)

The expression of the unknown function Ψ′ is found from−iεaΨ′ = (D2−a2)T ′,

Ψ′ = − 2

iεa
[A2 + (B1 + 2B2z)a] cosh(az) + [(A1 + A2z)a + B2] sinh(az).

Taking into account the boundary condition, the secular equation has the form

16a6 sinh a(sinh2 a− a2) = 0. (18)

Since this equation is satisfied only for a = 0, it follows that T ′ = C ′ =
Ψ′ = 0. Hence, there are no secular points (Le, a, σ) = (0.5, a, 1).

Subcase Le 6= 0.5, G′ =
a4Le

ε(2Le− 1)
(d = 0). The equations (3) imply

(D2 − a2)3T ′ + a6T ′ = 0, (19)

so the characteristic equation reads (λ2 − a2)3 + a6 = 0. The solutions of the
characteristic equation are

λ1 = −λ4 =
a

2

√
6 + 2i

√
3, λ2 = −λ5 =

a

2

√
6− 2i

√
3, λ3 = λ6 = 0,

so, two of the sheets of the hypersurface defined by (9) coalesce. The general
solution of (19) has the form

T ′(z) = A + Bz +
2∑

i=1

Ai cosh(λiz) + Bi sinh(λiz). (20)

such that, with (5) we get C ′ =
Le− 1

Le
(A+Bz+

2∑
i=1

Ai cosh(λiz)+Bi sinh(λiz))

and

Ψ′(z) =
a

iε
(A + Bz)− 1

εia

2∑
i=1

Aiµi cosh(λiz) + Biµi sinh(λiz).
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If we denote di = cosh λi − 1, it leads to the secular equation

λ1 sinh λ1 λ2 sinh λ2 λ1d1 λ2d2

µ1d1 µ2d2 µ1 sinh λ1 µ2 sinh λ2

0 0 λ3
1 λ3

2

λ3
1 sinh λ1 λ3

2 sinh λ2 λ3
1d1 λ3

2d2

= 0, (21)

equivalent to sinh
λ1

2
sinh

λ2

2

(
λ3

2µ1 cosh
λ2

2
sinh

λ1

2
−λ3

1µ2 cosh
λ1

2
sinh

λ2

2

)
= 0.

Let ε1,2 =
−1∓ i

√
3

2
be two third order roots of 1. Then µ1,2 = −ε1,2a

2 and

λ1 = a 4
√

3
√
−iε2, λ2 = a 4

√
3
√

iε1. It is immediate that (21) admits the unique
solution a = 0. This implies T ′ = C ′ = Ψ′ = 0. Thus the neutral curve does

not contain secular pointsof the type (Le, σ, ε,G′) = (Le, 1, ε,
a4Le

ε(2Le− 1)
).

Subcase Le 6= 0.5, G′ 6= a4Le

ε(2Le− 1)
(a2 6= 0).

The ordinary differential equation satisfied by the unknown function T ′ is

(D2 − a2)3T ′ + a3T
′ = 0, (22)

where a3 =
εa2G′(2Le− 1)

Le
.

The corresponding characteristic equation (λ2 − a2)3 + a3 = 0 has the
following roots:

λ3 =
√

a2 − 3
√
−a3, λ1 =

√
a2 + 3

√
−a3ε1,

λ2 =
√

a2 + 3
√
−a3ε2, λ4 = −λ1, λ5 = −λ2, λ6 = −λ3.

(23)

For G = a6, we obtain the previous case.
Since, in this case, ε, a,G′ are different from zero, the conditions imposed to

the parameters, imply that the roots of the characteristic equation are distinct,
so, we can write the general solution of (22)

T ′(z) =
3∑

i=1

Ai cosh(λiz) + Bi sinh(λiz). (24)
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From (3) it follows

C ′(z) =
Le− 1

Le

3∑
i=1

Ai cosh(λiz) + Bi sinh(λiz),

Ψ′(z) = − 1

iεa

3∑
i=1

Aiµi cosh(λiz) + Biµi sinh(λiz).

Sustituting (24) into the boundary conditions (8) we obtained the secular
equation

0 0 0 λ1 λ2 λ3

λ1 sinh(λ1) λ2 sinh(λ2) λ3 sinh(λ3) λ1 cosh(λ1) λ2 cosh(λ2) λ3 cosh(λ3)
µ1 µ2 µ3 0 0 0

µ1 cosh(λ1) µ2 cosh(λ2) µ3 cosh(λ3) µ1 sinh(
λ1

2
) µ2 sinh(λ2) µ3 sinh(λ3)

0 0 0 λ3
1 λ3

2 λ3
3

λ3
1 sinh(

λ1

2
) λ3

2 sinh(
λ2

2
) λ3

3 sinh(
λ3

2
) λ3

1 cosh(
λ1

2
) λ3

2 cosh(
λ2

2
) λ3

3 cosh(λ3)

= 0,

(25)
which can be simplified taking into account that the eigenvalue problem is
symmetric with respect to z = 0.5 [6](the boundary conditions are the same on
the lower and the upper surface). The simplification is obtained by performing
the change of variable x = z − 0.5.

Then the eigenvalue problem is the same as (3),(4), with the only differ-
ence that the boundary conditions are taken at x = ±0.5 and the unknown

functions depend on x. In particular, now D ≡ d

dx
. Since the characteristic

equation keeps its form, the general solution T ′ is given by (24) and imposing
the boundary conditions (4) at x = ±0.5 it follows that the secular equation
has the form ∆ = ∆e ·∆o = 0[6], where

∆e =

λ1 sinh(
λ1

2
) λ2 sinh(

λ2

2
) λ3 sinh(

λ3

2
)

µ1 cosh(
λ1

2
) µ2 cosh(

λ2

2
) µ3 cosh(

λ3

2
)

λ3
1 sinh(

λ1

2
) λ3

2 sinh(
λ2

2
) λ3

3 sinh(
λ3

2
)

=0

and

∆o =

λ1 cosh(
λ1

2
) λ2 cosh(

λ2

2
) λ3 cosh(

λ3

2
)

µ1 sinh(
λ1

2
) µ2 sinh(

λ2

2
) µ3 sinh(

λ3

2
)

λ3
1 cosh(

λ1

2
) λ3

2 cosh(
λ2

2
) λ3

3 cosh(
λ3

2
)

= 0.
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Numerical evaluations [6] showed that the best eigenvalue corresponds to ∆e =
0. In order to simplify the secular equation, column i is divided by cosh(λi),
i = 1, 2, 3, for cosh(λi) 6= 0.

Then the simplified form of the secular equation is

µ1 tanh(
λ2

2
) tanh(

λ3

2
)λ2λ3(µ2 − µ3) + µ2 tanh(

λ3

2
) tanh(

λ1

2
)λ3λ1(µ3 − µ1)+

+µ3 tanh(
λ1

2
) tanh(

λ2

2
)λ1λ2(µ1 − µ2) = 0

(26)

It is only cosh(
λ1

2
) that can be equal to zero. This occurs when λ1 is a pure

imaginary solution of the characteristic equation and, consequently, cosh(
λ1

2
)

becomes a cosine function which vanish for an argument of the form
(2n + 1)π

2
.

In this way, the solution of cosh(
λ1

2
) = 0 has the form λ2

1 = −(2n + 1)2π2,

n ∈ N [6]. Then, the equation

Le =
(
2− [(2n + 1)2π2 + a2]3

εa2G′

)−1

(27)

define the secular hypersurface.

Subcase σ =
Le

1− Le
, Le 6= 0.5(a2 = 0). The stability is governed by the

following boundary value problem

(D2 − a2)3T ′ +
ε(1− 2Le)

1− Le
D(D2 − a2)2T ′ = 0,

DT ′ = (D2 − a2)T ′ = D3T ′ = 0 at z = 0, 1.

(28)

In this case the general solution of (28) reads

T ′(z) = −C ′(z) = (A + Bz) cosh(az) + (C + Dz) sinh(az) +
2∑

i=1

Aie
λiz,

and leads to

Ψ′(z) =
[
− 1

ia
L(B + Ca)− 2D

iε

]
cosh(az) + iLBz sinh(az) +

[−1

ia
L(Aa + D)−

−2B

iε

]
sinh(az) + iLDz cosh(az) +

2∑
i=1

[−1

ia
Lλi −

1

iεa
µi

]
Aie

λiz.
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where λ1,2 are roots of the equation λ2+
ε(1− 2Le)

1− Le
λ−a2 = 0, λ3,4 = −λ5,6 = a

and L = ε
1− 2Le

1− Le
. Then the secular equation reads

λ1 λ2 0 0 1 0
λ1e

λ2 λ2e
λ2 1 a sinh a cosh a sinh a + a cosh a

0 0 0 0 L 2a

0 0 0 (2 + L)a sinh a L cosh a (2 + L)a cosh a + L sinh a
λ3

1 λ3
2 0 2a2 a2 0

λ3
1e

λ1 λ3
2e

λ2 a2 2a2 cosh a + a3 sinh a a2 cosh a 3a2 sinh a + a3 cosh a

= 0.

6.Conclusions

The direct method was applied in order to determine the secular equation
in a problem of natural convection under microgravity conditions for a binary
liquid layer in the presence of the Soret effect. It is shown that there are not
multiple roots of order greater or equal to three of the characteristic equation.
Then four particular cases were treated and the simplified secular equations
were obtained in each of these cases.

Taking into consideration that the governing eigenvalue problem depends
on four parameters the investigation of the bifurcation of manifolds was a
difficult problem.

When the characteristic equation has double roots it is possible to obtain
false secular points, that is why all this cases remains to be investigated. In a
future work we shall obtain a complete analytical caracterization of this case.
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