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TRACKING PROBLEM FOR LINEAR PERIODIC,
DISCRETE-TIME STOCHASTIC SYSTEMS IN HILBERT
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Abstract. The aim of this paper is to solve the tracking problem for
linear periodic discrete-time systems with independent random perturbations,
in Hilbert spaces. Under stabilizability conditions, we will find an optimal
control, which minimize the cost function associated to this problem, in the
case when the control weight cost is only nonnegative and not necessarily
uniformly positive.
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1.Notations and the statementof the problem

Throughout this paper the spaces H, V , U are separable real Hilbert
spaces. We will denote by L(H, V ) (respectively L(H)) the Banach space
of all bounded linear operators which transform H into V (respectively H).
We write 〈., .〉 for the inner product and ‖.‖ for norms of elements and op-
erators. If A ∈ L(H) then A∗ is the adjoint operator of A. The operator
A ∈ L(H) is said to be nonnegative and we write A ≥ 0, if A is self-adjoint
and 〈Ax, x〉 ≥ 0 for all x ∈ H. For every Hilbert space H we will denote by
Hs the Banach subspace of L(H) formed by all self-adjoint operators, by H+

the cone of all nonnegative operators of Hs and by I the identity operator on
H. The operator A ∈ H+ is positive (and we write A > 0) if A is invertible.
The sequence Ln ∈ L(H, V ), n ∈ Z is bounded on Z if sup

n∈Z
‖Ln‖ < ∞ and is τ

-periodic if Ln = Ln+τ for all n ∈ N. We say that the sequence Ln ∈ Hs, n ∈ N
is uniformly positive if there exists a > 0 such that Ln ≥ aI for all n ∈ N.
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Let (Ω,F , P ) be a probability space and ξ be a real valued random variable
on Ω. If ξ is a real or H -valued random variable on Ω, we write E(ξ) for mean
value (expectation) of ξ and we will denote by L2(Ω,F , P, H) or L2(H) the
Hilbert space of all equivalence class of H-valued random variables η such that
E ‖η‖2 < ∞.

Let ξn ∈ L2(R), n ∈ Z be real and independent random variables, which
satisfy the conditions E(ξn) = 0 and let Fn, n ∈ Z be the σ− algebra generated

by {ξi, i ≤ n−1}. Let Ũk be the set of all sequences {un}n≥k, where un is an U -
valued random variable, Fn− measurable with the property sup

n≥k
E ‖un‖2 < ∞.

We consider the system with control, denoted {A : D, B : H}
xn+1 = Anxn + ξnBnxn + (Dn + ξnHn) un (1)

xk = x ∈ H, k ∈ Z

and the output
yn = xn + Pnun (2)

where An, Bn ∈ L(H), Dn, Hn ∈ L(U,H), Pn ∈ L(U, V ) for all n ∈ Z, n ≥ k

and the control u = {uk, uk+1, ...} belongs to the class Ũk. If one of Dn or Hn

are missing we will remove it from the notation {A : D, B : H}(e.g. {A, B} if
D = H = 0).

Throughout this paper we assume the following hypothesis:

H0: The sequences An, Bn ∈ L(H), Dn, Hn ∈ L(U,H), Pn ∈ L(U,H), Kn ∈
U+, rn ∈ H and bn ∈ R,n∈ Z are τ -periodic, τ ∈ N∗ and

D∗
nDn + bnH

∗
nHn ≥ δI, δ > 0 for all n ∈ {0, .., τ − 1}. (3)

The tracking problem consist in finding a feedback control u in a suitable
class of controls such us the solution xn of the controlled system (1) is ”as close
as possible” to a given, bounded signal r = {rn}.

For every x ∈ H and k ∈ Z, we look for an optimal control u ∈ Uk,x, which
minimize the following cost functional

Ik(x, u) = lim
q→∞

1

q − k
E

q−1∑
n=k

[‖xn − rn‖2 + < Knun, un >], (4)

where xn is the solution of (1) and u ∈ Uk,x (Uk,x ⊂ Ũk is the subset of all
admissible controls with the property that (1) has a bounded solution). Now
it is clear that if u ∈ Uk,x then Ik(x, u) < ∞.
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Under stabilizability conditions (see Theorem 12) we will design the optimal
control, which minimize the functional cost Ik(x, u). We note that in most of
the previous work (see [2], [5], [7] and the references therein) the control weight
Kn is positive definite for the well posedness of the problem. Recently works
(see [1] for the continuous case) show that some stochastic quadratic control
problems (and consequently some tracking problems with reduces to such a
problems) with Hn 6= 0 are nontrivial even for Kn < 0. For this reason we
consider in this paper the control weight Kn belonging to the largest class U+

and this choice is compenssed by a quadratic term, which is related to Hn(see
(3)).

2.Bounded solutions of the affine discrete time systems

Let us denote by X(n, k) n ≥ k ≥ 0, the random evolution operator asso-
ciated to {A, B} that is X(k, k) = I and X(n, k) = (An−1 + ξn−1Bn−1)...(Ak +
ξkBk), for all ṅ > k. Then it is known that the linear discrete time sys-
tem {A, B} with the initial condition xk = x ∈ H has a unique solution
xn = xn(k, x) given by xn = X(n, k)x.

Definition 1. We say that {A, B} is uniformly exponentially stable iff there
exist β ≥ 1, a ∈ (0, 1) such that we have

E ‖X(n, k)x‖2 ≤ βan−k ‖x‖2

for all n ≥ k ≥ n0 and x ∈ H.

Remark 2.If Bn = 0 for all n ∈ Z, we obtain the definition of the uniform
exponential stability of the deterministic system xn+1 = Anxn, xk = x ∈ H, n ≥
k denoted {A}.
Proposition 3. (see [8], or [2] for the finite dimensional case) If gn ∈ H, n ∈ Z
is a bounded sequence and {A} is uniformly exponentially stable then the system

yn = A∗nyn+1 + gn (5)

has a unique bounded on Z solution. Moreover, if H1 holds and gn is τ -periodic,
then yn is τ -periodic.

Definition 4. A sequence {ηn}, n ∈ Z of H-valued random variables is τ -
periodic, τ ∈N∗ if

P{ηn1+τ ∈ A1, ..., ηnm+τ ∈ Am} = P{ηn1 ∈ A1, ..., ηnm ∈ Am}, (6)
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for all n1, n2, ..., nm ∈ Z and all Ap ∈ B(H), p = 1, ..,m.

Reasoning as in [8], we can establish the following result:

Proposition 5.Assume that the sequences Dn, Hn, bn and qn ∈ H are bounded
on Z. If {A, B} is uniformly exponentially stable then the system

xn+1 = Anxn + ξnBnxn + (Dn + ξnHn) qn (7)

(without initial condition) has a unique solution in L2(H) which is mean square
bounded on Z, that is there exists M > 0 such that E ‖xn‖2 < M for all n ∈ Z.
Moreover, if H1 is satisfied and the sequences qn, {ξn}, n ∈ Z are τ -periodic,
then the unique solution of (7) is τ−periodic.

3.Discrete-time Riccati equation of stochastic control

We consider the mappings

Dn : Hs → U s,Dn(S) = D∗
nSDn + bnH

∗
nSHn,

Vn : Hs → L(H, U),Vn(S) = D∗
nSAn + bnH

∗
nSBn

An : Hs → Hs,An(S) = A∗nSAn + bnB
∗
nSBn

and we define the transformation

Gn(S) = (Vn(S))∗ (Kn +D(S))−1Vn(S), S > 0,

Gn(0) = 0

It is easy to see that if S > 0, then it follows, by (3) that Kn + D(S) is
invertible. We introduce the following Riccati equation

Rn = An(Rn+1) + I − Gn(Rn+1) (8)

Rn > 0, n ∈ Z, (9)

connected with the quadratic cost (4).

Definition 6.A sequence {Rn}n∈Z, Rn > 0 such as (8) holds is said to be a
solution of the Riccati equation (8).
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Let us consider the sequence R(M, M) = 0, we will prove that the following
sequence

R(M, n) = An(R(M, n + 1)) + I − Gn(R(M, n + 1)) (10)

is well defined for all n ≤ M − 1.

Lemma 7. The sequence R(M, n) has the following properties
a) R(M, n) > I, R(M + τ, n + τ) = R(M, n)
b) R(M − 1, n) ≤ R(M, n).

for all n ≤ M − 1

Proof. a) Let us denote

F (M, n) = − [Kn +Dn(R(M, n + 1))]−1 Vn(R(M, n + 1)), n ∈ N∗.

Then (10) can be written

R(M, n) = [A∗n + F ∗(M, n)D∗
n] R(M, n + 1) [An + DnF (M, n)] +

bn [B∗
n + F ∗(M, n)H∗

n] R(M, n + 1) [Bn + HnF (M, n)] + I

+ F ∗(M, n)KnF
∗(M, n)

and it is clear that R(M, n) ≥ I for all M > n. Using H0 we obtain R(M +
τ, n + τ) = R(M, n) and arguing as in the proof of the Lemma 3 from [7] it
follows b).

Definition 8.[3] The system (1) is stabilizable if there exists a bounded on Z
sequence F = {Fn}n∈Z, Fn ∈ L(H, U) such that {A+DF, B+HF} is uniformly
exponentially stable.

Definition 9.[3]A solution R = (Rn)n∈Z of (8) is said to be stabilizing for
(1) if {A + DF, B + HF} with

Fn = −(Kn +Dn(Rn+1))
−1Vn(Rn+1), n ∈ Z (11)

is uniformly exponentially stable.

Theorem 10. Suppose (1) is stabilizable. Then the Riccati equation (8)
admits a nonnegative τ - periodic solution. Moreover, this solution is stabilizing
for (1).

Proof. Since (1) is stabilizable it follows that there exists a bounded on
N∗ sequence F = {Fn}n∈N∗ , Fn ∈ L(H, U) such that {A + DF, B + HF} is
uniformly exponentially stable.

219



V. M. Ungureanu - Tracking problem for linear periodic, ...

Let xn be the solution of {A + DF, B + HF} with the initial condition
xk = x and let us consider un = Fnxn.

Since Fn is bounded on N∗, it is not difficult to see that un ∈ Ũk,x. As
in the proof of Proposition 3 in [7] it follows that there exists the positive
constant λ such as

0 ≤ 〈R(M − 1, k)x, x〉 ≤ 〈R(M, k)x, x〉 ≤ V (M, k, x, u) ≤ λ ‖x‖2 .

where R(M, n) is the solution of the Riccati equation (8) with the final con-
dition R(M, M) = 0. Thus, there exists Rk ∈ L(H) such that 0 ≤ R(M, k) ≤
Rk ≤ λI for M ∈ N∗, M ≥ k and R(M, k) →

M→∞
Rk in the strong operator

topology. We denote

L = lim
M→∞

(< Gn(R(M, n + 1))x, x > − < Gn(R(n + 1))x, x >)

, PM,n = Kn+Dn (R(M, n + 1)), Pn = Kn+Dn (R (n + 1)) Yn = Vn (R (n + 1))
and YM,n = Vn (R (M, n + 1)). From the definition of Gn we get

L = lim
M→∞

(
〈
P−1

M,nYM,nx, YM,nx
〉
−

〈
P−1

n Ynx, Ynx
〉
)

= lim
M→∞

(
〈(

P−1
M,n − P−1

n

)
Ynx, Ynx

〉
+

〈
P−1

M,n (YM,nx− Ynx) , (YM,nx− Ynx)
〉

+ 2
〈
P−1

M,nYnx, (YM,nx− Ynx)
〉
).

Using Lemma 7 it follows that PM,n ≥ Dn (R(M, n + 1)) ≥ δI, δ > 0 and
we deduce that

∥∥P−1
M,n

∥∥ ≤ 1
δ

for all M ≥ n + 1 ≥ k. Thus

lim
M→∞

∥∥P−1
M,nx− P−1

n x
∥∥ ≤ lim

M→∞

∥∥P−1
M,n

∥∥ ‖PM,nu− Pnu‖

≤ 1

δ
lim

M→∞
‖PM,nu− Pnu‖ = 0 (12)

where u = P−1
n x. Now it is a simple exercise to prove that L = 0 and

lim
M→∞

〈Gn(R(M, n + 1))x, x〉 = 〈Gn(R(n + 1))x, x〉 .

From the definition of R(M, n) and the above result we deduce that Rn is a
nonnegative, bounded on Z solution of (8). From the statement a) of Lemma
7 it follows that Rn is τ - periodic.
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Before to prove the last statement, we will see that the Riccati equation
(8) is equivalent with the following equation

Rn = (A∗n + F ∗nD∗
n) Rn+1 (An + DnFn) +

bn (B∗
n + F ∗nH∗

n) Rn+1 (Bn + HnFn) + I + F ∗nKnF
∗
n ,

where Fn is given by (11). If we denote W̃n = I +F ∗nKnF
∗
n ≥ I, it is clear that

the Lyapunov equation

Ln = (A∗n + F ∗nD∗
n) Ln+1 (An + DnFn) +

bn (B∗
n + F ∗nH∗

n) Rn+1 (Bn + HnFn) + W̃n,

has a nonnegative bounded on Z and uniformly positive ( Ln > I) solution,
namely Rn. It follows (see [6]) that {A + DF, B + HF} is uniformly expo-
nentially stable. Hence the nonnegative τ - periodic solution of the Riccati
equation is stabilizing for (1).

Remark 11. As in [7] it can be proved that the Riccati equation considered in
this paper has at most one stabilizing solution. Thus, it follows that, under the
hypotheses of the above theorem, the Riccati equation has a unique nonnegative
and τ - periodic solution.

4.The main results

Let us denote fn = Anrn − rn+1 and pn = Bnrn. The following theorem
gives the optimal control, which minimize the cost function (4).

Theorem 12. Assume that the hypotheses of the Theorem 10 hold. Let Rn

be the unique τ -periodic solution of the Riccati equation (8). If gn and hn are
the unique τ -periodic solutions of the Lyapunov equations

gn = (An + DnFn)∗gn+1 + Rnfn−1 (13)

hn = (An + DnFn)∗hn+1 + bn (Bn + HnFn)∗Rn+1pn (14)

where Fn is given by (11), then

I(u) =
1

τ

τ∑
i=1

−
∥∥∥V

−1/2
i [D∗

i (gi+1 + hi+1) + biH
∗
i Ri+1pi]

∥∥∥2

(15)

− 〈Ri+1fi, fi〉+ bi 〈Ri+1pi, pi〉+ 2 〈gi+1 + hi+1, fi〉]
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where the optimal control is

un = Fnxn − Fnrn − [D∗
n (gn+1 + hn+1) + bnH

∗
nRn+1pn] , (16)

n ≥ k, xn is the corresponding solution of the system (1) and Vn = Kn +
Dn(Rn+1).

Proof. The equations (13) and (14) have unique solutions according
Proposition 3, since the solution of the Riccati equation (8) is stabilizing for
(1). Let us consider the function

vn : H → R, vn(x) = 〈Rnx, x〉+ 2E 〈gn −Rnfn−1 + hn, x〉 .

If xn is the solution of the system (1), then

Evn+1 (xn+1 − rn+1) = Evn (xn − rn)− E[‖xn − rn‖2 + 〈Knun, un〉] (17)

+E
∥∥V 1/2

n

(
Fn (xn − rn)− un − V −1

n [D∗
n (gn+1 + hn+1) + bnH

∗
nRn+1pn]

)∥∥2

−
∥∥V −1/2

n [D∗
n (gn+1 + hn+1) + bnH

∗
nRn+1pn]

∥∥2

−〈Rn+1fn, fn〉+ bn 〈Rn+1pn, pn〉+ 2 〈gn+1 + hn+1, fn〉 .

Let xn be the solution of the system (1), where

un = Fnxn − Fnrn − V −1
n [D∗

n (gn+1 + hn+1) + bnH
∗
nRn+1pn] .

It is not difficult to see that xn and un are bounded on {n ∈ N,n ≥ k} and
u ∈ Uk,x. Using (17) we get

1

n− k
[vk(x− rk)− Evn+1 (xn+1 − rn+1)] = (18)

1

n− k

n−1∑
i=k

E[‖xi − ri‖2 + 〈Kui, ui〉]+∥∥∥V
−1/2
i [D∗

i (gi+1 + hi+1) + biH
∗
i Ri+1pi]

∥∥∥2

+

〈Ri+1fi, fi〉 − bi 〈Ri+1pi, pi〉 − 2 〈gi+1 + hi+1, fi〉 .

Since rn is bounded on Z and Rn is stabilizing we deduce that there exists
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P > 0 such that Evn+1 (xn+1 − rn+1) ≤ P . As n →∞ in (18), it follows

Ik(x, u) = lim
n→∞

1

n− k

n−1∑
i=k

[−
∥∥∥V

−1/2
i [D∗

i (gi+1 + hi+1) + biH
∗
i Ri+1pi]

∥∥∥2

− 〈Ri+1fi, fi〉+ bi 〈Ri+1pi, pi〉+ 2 〈gi+1 + hi+1, fi〉]

=
1

τ

τ∑
i=1

[−
∥∥∥V

−1/2
i [D∗

i (gi+1 + hi+1) + biH
∗
i Ri+1pi]

∥∥∥2

− 〈Ri+1fi, fi〉+ bi 〈Ri+1pi, pi〉+ 2 〈gi+1 + hi+1, fi〉]

If u ∈ Uk,x, it is not difficult to deduce from (17), that Ik(x, u) ≤ Ik(x, u).
Thus min

u∈Uk,x

Ik(x, u) = Ik(x, u).

Remark 13.Assume that the hypotheses of the above theorem fulfilled. If
un is given by (16), then (1) has a unique bounded solution on Z, according
Proposition 5. Denoting by X(n, k) the random evolution operator associated
to the system {A + DF, B + HF}, we get

xn = −
n−1∑

i=−∞

X(n, i + 1) (Di + ξiHi) (19)

{V −1
i [D∗

i (gi+1 + hi+1) + biH
∗
i Ri+1pi] + Firi}

Since the optimal cost doesn’t depend on the initial value, xk, it is not
difficult to see that, if we use the above solution in (16), we obtain the optimal
control, which minimize the cost function (4).

Moreover, if {ξn}, n ∈ Z is τ -periodic, then xn is τ -periodic (19).
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