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ABSTRACT. The solution of the equations governing the two-dimensional
slow viscous fluid flow is analysed using a novel technique based on a Lapla-
cian decomposition instead of the more traditional approaches based on the
biharmonic streamfunction formulation or the velocity-pressure formulation.
This results in the need to solve three Laplace equations for the pressure and
two auxiliary harmonic functions, which in turn stems from Almansi decom-
position. These equations, which become coupled through the boundary con-
ditions, are numerically solved using the boundary element method (BEM).
Numerical results for both direct and inverse problem are presented and dis-
cussed considering a benchmark test example in a non-smooth geometry.

2000 Mathematics Subject Classification: 76D07, 35J05, 66N38, 65N12,
65M32.

1. INTRODUCTION

The Stokes equations describe fluid flows at low Reynolds number when the
viscous forces dominate over the inertial forces. These laminar flows are impor-
tant in flows in pipes and open channels, seepage of water and oil underground,
for very small bodies, such as small spheres, in a highly viscous fluid, in the
theory of lubrication, etc. During the last few decades there has been interest
in applying the BEM for the solution of Stokes flow problems, e.g. see Higdon
(1985), Zeb et al. (1998), Lesnic et al. (1999) and Zeb et al. (2000).
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2. MATHEMATICAL FORMULATION

The Navier-Stokes equations of motion are mathematical statements of the
dynamical conditions within a viscous fluid flow, and as such are expected to
accurately apply to each and every problem involving a laminar viscous fluid
flow. However, due to the mathematical complexity of the equations, it is well
known that the general solution of these equations is not possible. Therefore in
order to construct tractable mathematical models of the fluid flow systems, it is
necessary to resort to a number of simplifications. One of these simplifications
occurs when viscous forces are of a higher-order of magnitude as compared
to the inertial forces. Consequently, one may drop the inertia terms from the
steady Navier-Stokes equations to obtain the Stokes equation:

nWg=VP (1)
where q is the fluid velocity vector, u the viscosity of the fluid and P the
pressure. Non-dimensionalizing equation (1), using typical velocity and length

scales Uy and L, respectively, and defining 7 = Lr, ¢ = Fog and P = ”—?P,
gives

Vig=V P (2)

Since the fluid flow is assumed to be incompressible, we also have the continuity
equation

V.g=0 (3)

Differentiating the x and y components of equation (2) with respect to z and
y, respectively, then adding these together and using the continuity equation,
results in V2P = 0.

In order to simplify equations (2) and (3), the following formulation for the
velocity components are introduced:

u:f+gP (4)
v:g+%P (5)

resulting in f and ¢ being solutions of the Laplace equation, namely V2f = 0
and V2g = 0. It is the above substitutions that have reduced the Stokes equa-
tions (2) and (3) to the solution of three Laplace equations. A similar idea has
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been proposed by Jaswon (1994) for solving the biharmonic equation.

BEM - Integral equation

In this paper, the development of the BEM for discretizing the Laplace equa-
tion is the classical approach, see Brebbia et al. (1984), and it is based on
using the fundamental solution for the Laplace equation and Green’s identi-
ties. Thus, e.g. equation V?f = 0 may be recast as follows:

n(@)f(q) = / (F(@)G(a,d) — F()C (0.4 }dTy (6)

where
(i) g€ QUT and ¢’ € I' = 09, and I' is the boundary of the domain €2,
(ii) dI'y denotes the differential increment of I' at ¢/,

(iii) n(q) =1if ¢ € Q, and n(q) = the internal angle between the tangents to
I' on either side of ¢ divided by 27 if g € T,

(iv) G is the fundamental solution for the Laplace equation which in two-
dimensions is given by

/ 1 /
G(q,q) = —gln\q—ql (7)

(v) G', f" are the outward normal derivatives of G, f and g, respectively.

In practice, the integral equation (6) can rarely be solved analytically and
thus some form of numerical approximation is necessary. Based on the BEM,
we subdivide the boundary I' into a series of N elements I';, j = 1,N, and
approximate the functions f and f” at the collocation points of each boundary
element I'; by f; and f}, respectively. Thus the boundary integral equation
(6) can be approximated as follows:

N

v =310 [ Gty - [ Cadirg @

j=1 Ly J

where ¢’ € ' and ¢; is the centroid node of each element I'; when the BEM
with constant elements (CBEM) is used, the end points of each element when
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using BEM with linear elements (LBEM) and the points are placed at a quar-
ter of each segments length from the boundary edges when using BEM with
discontinuous linear elements (DLBEM).

For the CBEM, we introduce

A, - / Glai, )Ty (9)
N

J

B, = / G (¢ )Ty + 1(0:)5 (10)
Ty

where §;; is the Kronecker delta and then equation (8) reduces to the following
linear algebraic equations:
N
> A f; = Biif;] =0 (11)

Jj=1

The values of the integral coefficients (9) and (10) depend solely on the ge-
ometry of the boundary I' and can be calculated analytically, see for example
Mera et al. (2001).

Now the mathematical formulation of the problem can be reduced to a
system of 3N equations in 6N unknowns, i.e.

Af'—Bf =0
Ag’'— Bg =0 (12)
AP’ — BP =0

and 3N appropriate boundary conditions. Due to some practical reasons it
may be impossible to measure certain quantities, such as one, or both, of the
velocity components on particular sections of the boundary, and instead one
has to work with extra information from elsewhere.

Direct problem

First, we consider the case in which the two velocity components, namely
and v, are specified over the whole boundary of the solution domain. Thus
the two boundary conditions, together with the three Laplace equations (12),
provide a system of 5N equations with 6/N unknowns. In order to acquire the
extra boundary condition to solve this higher-order system of equations, ad-
ditional information is sought from within that already prescribed. Thus, the
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remaining N equations necessary to solve the system of equations are appro-
priately obtained by enforcing the continuity equation (3) on the boundary, i.e.
using the normal derivative of the normal component of velocity, which in the
case of a square domain can be expressed directly in terms of the tangential
derivative of the known tangential component of the velocity. This results in
an equation connecting f’, ¢/, P and P’ on the boundary.

Dividing the boundary such as I' = I'y Uy UT's UT'y, where I'y = {(z,y)| —
% <z < %,yz _%}71—‘2 ={(z,y)|z = %7_% <y< %}71—‘3 = {(x>y)|_% <z <

5.y =3} Lo ={(2,y)|z = =5, —3 <y < 5}, the problem can be described

mathematically by (12) and the following boundary conditions:

f+5P= ul™) on I’
g+iP = vl onT
f’—i-VlP—i-%P’:u'(‘m) on 'y UTy
g +wnP+iP = v’ onTMUT;,

(13)

) Y&
ii75 s 0ij 5 Oigl1(j) and

z ¥ — 2@/2) % are the matrices 4§ i

where 3, 2, vy = =5=, 1p =
52']‘1/2(]-), respectively .

Since u and v are given on the boundary, v’ and v" can be clearly obtained
analytically by using equations g—z = :l:% = $g—z and % = ig—Z = :F%,
respectively.

In a generic form, the system of equations (12) and (13) can be rewritten
as

Ax =05 (14)

where A is a known 6N x 6N matrix which includes the matrices A and B,
x is a vector of 6N unknowns which includes the vectors f, f’, g, g’, P and
P’, and b is a vector of 6N knowns which includes u, v and the derivatives of
velocity. This system of equations can be solved using, for example, a Gaus-
sian elimination procedure. Then, using the calculated boundary data, interior
solutions for the two harmonic functions and the velocity can be determined
explicitly using equation (6), see Brebbia et al. (1984). We note that when
using the DLBEM the system of equations (14) has 12N equations and 12N
unknowns.

Since the combination between the harmonic functions is not unique, see
Jaswon (1994), we have to establish the appropriate constraint in order to
overcome this problem.
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Uniqueness of the solution
Let fo, go and Py be solutions to the problem. Given u = fy + 5P and
v = go + §F, then the transformation P = Py + a with V2P = 0, implies
the corresponding transformations f = fo — % and g = go — % which require
V(%) = 0 and V(%) = 0. These two last equalities are clearly satisfied.
Moreover, substituting accordingly f, f’, g, ¢’, P and P’ from the above trans-
formations into the last two equations of the system (13) then these equations
are also satisfied. Thus, the unique solution of the system (14) is obtained
provided that we impose the value of the unknown harmonic function P at
one point on I'.

Imposing the uniqueness condition, the system of linear equations (14) is
now over-determined and the solution vector «

x = (A"A)"TA"b (15)
is obtained on applying the least squares approach, see Strang (1976).

Inverse problem

Next, we investigate an inverse Stokes problem in which it is not possible to
specify two conditions at all points of the boundary I' = I'y U I'* of the solu-
tion domain. Consequently, a part of the boundary remained under-specified
and in order to compensate for this under-specification we used the pressure
as extra information on another part of the boundary, which gives rise to a
portion of boundary being over-specified.

In the inverse formulation of the Stokes problem considered, both compo-
nents of the fluid velocity, namely u and v, are specified on the section of the
boundary I'*, whilst only u is given on I'y. However, this under-specification
of the boundary conditions on I'y is compensated by the additional pressure
measurements over ['*.

Suppose that the number of constant boundary elements N on I' is such
that Ny belongs to I'g =1y and N — Ny to [ =T, UT'sUTy, in a generic form
the inverse problem reduces to the following system of equations:

Cx=d (16)

where, C is a known (6 N — Ny) x (5N + Ny) matrix which includes the matrices
A and B, x is a vector of 5N + Ny unknowns which includes the N vectors
£, f', g, g, P and the N, vector P, and d is a vector of 6N — Ny knowns
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which includes w, v, P™ and the derivatives of velocity and the specified
numerical boundary pressure. We note that when using DLBEM the system
(16) has 12N — 2N, equations and 10N + 2N, unknowns. Due to the ill-
posed nature of the inverse problem, the system of linear equations obtained
is ill-conditioned and cannot be solved using a direct approach, e.g. Gaussian
elimination method or a simple inversion scheme. Furthermore, as the least
squares solution also fails, the Tikhonov regularization method is used in order
to solve the inverse problem.

The zeroth-order regularization method modifies the least squares approach

and finds a stable approximate numerical solution of the system of equations
(16) which is given by, see Tikhonov and Arsein (1977),

) = (C'C + \)"'C'd (17)

where [ is the identity matrix and A > 0 is the regularization parameter,
which controls the degree of smoothing applied to the solution and whose
choice may be based on the L-curve method, see Hansen (1992). For the zero-
th order regularization procedure we plot on a log-log scale the variation of
||z,]| against the fitness measure, namely the residual norm ||Cz) — d|| for a
wide range of values of A > 0. In many applications this graph results in a
L-shaped curve and the choice of the optimal regularization parameter A > 0
is based on selecting approximately the corner of this L-curve.

3. NUMERICAL RESULTS

In this paper we investigate the solution of Stokes problem given by equations
(2) and (3) in a simple two-dimensional non-smooth geometry, such as the
square Q = {(z,y)] — 3 <z < i, —3 <y <3}

In order to investigate the convergence and the stability of the solution
obtained by using the technique employed, we consider the following test ex-
ample, namely the analytical expressions for the three harmonic functions f, g
and P are given by:

) = 43— 122% (18)
g = 423 4 3xy — 1 — 1229 (19)
P = 24zy — 2z (20)
with the corresponding fluid velocity given by:
u = % 4 4y (21)
v = a3 22y — 1 (22)
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The numerical results obtained for P on the boundary of the square, as a

function of ¢ - the fraction of the number of boundary elements measured anti-
clockwise round the boundary from the point (—3,3) when using 20, 40 and

80 constant and discontinuous boundary elements, as well as the analytical so-
lution given by equation (20), are plotted in Figure 1 (a) and (b), respectively.

Figure 1: The numerical boundary solution for P obtained with N = 20(- - -),
N =40(— — —)and N =80(—-—-—-) (a) constant and (b) discontinuous
linear boundary elements, and the analytical solution (——) with u and v
specified on the boundary.

From these figures it can be observed that the numerical solutions accu-
rately estimate the analytical solution and converge to their corresponding
analytical solution as the number of boundary elements increases. Similar ob-
servations can be made for the solutions for f and g on the boundary and
therefore these results are not presented. The oscillations which appear at the
corners for f, g and P no longer appear for u and v, which is to be expected
as the combinations forming them are prescribed boundary conditions. The
oscillatory behaviour of the harmonic functions near the corners when using
CBEM, diminish greatly when using DLBEM. The numerical solutions for «
and v in the solution domain are in excellent agreement with the analytical
solutions, e.g. see Figure 2 (b) for v. Moreover, the pressure inside the domain
is also accurate in comparison with the analytical solution as N increases, as
can be seen in Figure 2 (a).

Solving the direct problem with u and v known on I'; we obtain the pressure
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Figure 2: The numerically obtained interior (a) pressure P, and (b) fluid
velocity v, with N = 20(---), N = 40(— — — )and N = 80(— - — - —)
discontinuous linear boundary elements and the analytical solution (— )
with v and v specified on the boundary.

P on I' and, in particular, over I'*. This numerically calculated pressure,
denoted by P™ is used in the inverse problem in which v is assumed unknown
on I'y. The numerical solutions are obtained for the unspecified values of both
the normal component of the fluid velocity and the boundary pressure.

Whilst in the direct Stokes problem we observed that the difference between
the analytical solution and the numerical results for P using N = 80 was less
than 1%, in the inverse problem we found N = 40 was sufficiently large for
the numerical solution to agree graphically with the corresponding numerical
solution from the direct problem.

Further, it is to be noted that if for a fixed value of N, instead of its nu-
merical results from solving the direct problem, we impose the analytical value
P for the extra condition P|p«, we would be generating a “numerical noise”
which originates from the discretisation of I" into a finite number of straight line
boundary elements and from the piecewise constant function approximation of
P over each boundary element. This “numerical noise” is O(||P(@™ — P™||)
which becomes zero when we impose the numerically obtained data P™ for
the extra condition over I'*. Consequently, the regularization parameter A > 0
is very small (can be chosen as small as the computer double precision, namely
107%), because in this case we are really using errorless boundary data.
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The stability of the regularized boundary element technique is investigated
by adding small amounts of random noise into the input boundary data in
order to simulate measurements errors which are innately present in a data
set of any practical problem. Hence, we perturb the boundary data - data
obtained for the direct problem - by adding random noisy perturbations € to
the boundary pressure P™ namely P = P™ +¢. The random error € is
generated by using the NAG routine GO5DDF and it represents a Gaussian
random variable with mean zero and standard deviation o, which is taken to
be some percentage o of the maximum value of P™, i.e. ¢ = max |P™| x 2.

Figure 3 shows the L-curve for the inverse problem as a log-log plot of
the smoothness measure, namely the norm ||, || of the solution, against the
fitness measure, namely the residual norm ||Cx) — d||, for various amounts of
noise a = {5, 10,20} introduced in P™|r. and for the various values of the
regularization parameter A taken from the range [107!3,107!]. We choose the

10°
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Figure 3: The L-curve plot of the solution norm || «, | as a function of
the residual norm || Cx) — d || in the inverse Stokes problem for N = 40,
A = [10713,107"], when various level of noise @ = {5, 10,20} are added.

optimal value of the regularization parameter A\, corresponding to the coner of
the L-curve, as Aoy = O(1077) if a =5 and A\, = O(1079) if a = 10, 20.
The numerical solution for the retrieved normal velocity v and pressure
P over I'y, obtained using both the exact and noisy data, for A, remains
stable and agrees with the values specified in the direct problem reasonably
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well according to the amount of noise introduced in the input data for pressure
P|p+ as can be seen in Figure 4 (a) and (b).

Figure 4: The numerical boundary solution for (a) the fluid velocity v|r,,
and (b) the pressure P|p, retrieved on the boundary I'y = I'y, using N =
40 discontinuous linear boundary elements when various levels of noise are

introduced in P|p«—r,ursur,, namely, direct solution (——), @ = 0(e e o),
a=5—- — —),a=10(—-—-—-), and o = 20(- - -) for the inverse Stokes
problem.

The numerical solutions for the pressure P inside the solution domain, ob-
tained using both the exact and noisy data, are displayed in Figure 5 and it
can be observed that as the amount of noise decreases then the numerical so-
lutions approximate better the solution obtained in the direct problem (which
was found to be accurate in comparison with the analytical solution), whilst
at the same time remaining stable.

It is important to note that increasing the under-specified part of the
boundary the accuracy of the retrieved values decreases.

4. CONCLUSIONS

In this paper a novel technique based on a Laplacian decomposition has been
introduced for solving direct and inverse Stokes problems. BEM has been ap-
plied to the resulting Laplace equations. The technique has been validated for
a benchmark test examples in a square domain. It has been concluded that
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Figure 5: The lines of constant pressure P inside the cavity 2 obtained with
N = 40 discontinuous linear boundary elements when various levels of noise
are introduced in P|ps—p,ursur,, namely, direct solution ( ),a=0(eee),
a=5—- — —),a=10(—-—-—), and a = 20(- - -) for the inverse Stokes
problem.

the regularized boundary element technique retrieves an accurate, stable and
convergent numerical solution, both on the boundary and inside the domain,
with respect to increasing the number of boundary elements and decreasing
the amount of noise in the input data.
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