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SQUARE-STABLE AND WELL-COVERED GRAPHS
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ABSTRACT. The stability number of the graph G, denoted by «(G), is
the cardinality of a maximum stable set of G. In this paper we characterize
the square-stable graphs, i.e., the graphs enjoying the property o(G) = a(G?),
where G? is the graph with the same vertex set as in GG, and an edge of G?
is joining two distinct vertices, whenever the distance between them in G is
at most 2. We show that every square-stable graph is well-covered, and well-
covered trees are exactly the square-stable trees.

Keywords: stable set, square-stable graph, well-covered graph, matching.

2000 Mathematics Subject Classification: 05CT5, 05C69, 05C05, 05C70.

1. INTRODUCTION

All the graphs considered in this paper are simple, i.e., are finite, undi-
rected, loopless and without multiple edges. For such a graph G = (V, E) we
denote its vertex set by V = V(G) and its edge set by E = E(G). If X C V,
then G[X] is the subgraph of G spanned by X.

By G — W we denote the subgraph G[V — W] ,if W C V(G). By G — F
we mean the partial subgraph of G obtained by deleting the edges of F', for
F C E(G), and we use G — e, if W = {e}.

The graph G stands for the complement of G, and by G + e we mean the
graph (V(G), E(G) U {e}), for any edge e € E(G).

By Cy, P, K, Ky, ,, we denote the chordless cycle on n > 4 vertices, the
chordless path on n > 3 vertices, the complete graph on n > 1 vertices, and
the complete bipartite graph on m + n vertices, respectively.
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A matching is a set of non-incident edges of GG, and a perfect matching is
a matching saturating all the vertices of G.

If IN(v)| = |{w}| = 1, then v is a pendant verter and vw is a pendant
edge of G, where N(v) = {u: u € V(G),uv € E(G)} is the neighborhood of
v € V(G). If G[N(v)] is a complete subgraph in G, then v is a simplicial vertex
of G. A clique in G is called a simplezx if it contains at least a simplicial vertex
of G, [2].

A stable set of maximum size will be referred as to a stability system of G.
The stability number of G, denoted by a(G), is the cardinality of a stability
system in G.

Let Q(G) stand for the family of all stability systems of the graph G, and
core (G) =n{S : S € QG)} (see [10]).

G is a well-covered graph if every maximal stable set of GG is also a maximum
stable set, i.e., it belongs to (G) (Plummer, [11]). G = (V,E) is called
very well-covered provided G is well-covered, without isolated vertices and
|V| = 2a(G) (Favaron, [4]). For instance, each Cy,,n > 3, is not well-covered,
while Cy, C5, C7 are well-covered, but only C} is very well-covered.

The following characterization of stability systems in a graph, due to Berge,
we shall use in the sequel.

ProPOSITION 1.([1]) S € Q(G) if and only if every stable set A of G,
disjoint from S, can be matched into S.

By 0(G) we mean the clique covering number of G, i.e., the minimum
number of cliques whose union covers V(G). Recall also that:

G) = min{|S| : S is a mazximal stable set in G},

i
v(G) = min{|D| : D is a minimal dominating set in G},
where D C V
zy € E(G).
In general, it can be shown (e.g., see [12]) that these graph invariants are
related by the following inequalities:

(G) is a domination set whenever {x,y} N D # (), for each

a(G?) < 0(G*) <4(G) <i(G) < a(G) < 0(G).
For instance,
a(C2) = 2 < 3= 0(C2) = A(Cy) = i(C7) = a(Cy) < 4= 0(C5)

(see also the graph G from Figure 1).
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Figure 1: a(G?) = 0(G?) =3 <~(G )=T.

Recall from [5] that a graph G is called:

(i) a~-stable if a(G — e) = a(G), for every e € E(G), and

(ii) a*-stable if a(G + ) = a(G), for each edge e € E(G), .

Recall the following results.

PROPOSITION 2.([6]) A graph G is:

(i) at-stable if and only if |core (G)| < 1;

(i) a™-stable if and only if |N(v) NS| > 2 is true for every S € Q(G) and

eachv e V(G) — S.

By Proposition 2, an at-stable graph G may have either |core (G)| =0 or
|core (G)| = 1. This motivates the following definition.

DEFINITION 1.(/8]) A graph G is called:

(i) af -stable whenever |core (G)| = 0;

(i) o -stable provided |core (G)] = 1.

Any C,,n > 4, is at-stable, and all Cs,,n > 2, are a-stable. For other
examples of ag -stable and «; -stable graphs, see Figure 2.

AN D AN ) W2

K3+6

Figure 2: K3 + e is af -stable, while the graphs Gy, G, G3 are ag -stable.

In [6] it was shown that an a*-stable tree T' # K; can be only ag-stable,
and this is exactly the case of trees possessing a perfect matching. This result
was generalized to bipartite graphs in [7].

The distance between two vertices v, w € V(G) is denoted by distg (v, w),
or simply dist(v,w), if there is no ambiguity. By G? we denote the second
power of the graph G = (V| F), i.e., the graph having:

V(G*) =V and B(G?) = {vw : v,w € V(G?),1 < distg(v,w) < 2}.
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Clearly, any stable set of G? is stable in G, as well, while the converse is not
generally true. Therefore, one may assert that

1 <a(G?) < alG).

Let us notice that the both bounds are sharp.
For instance, it is easy to see that, if:

e (G is not a complete graph and dist(a,b) < 2 holds for any a,b € V(G),
then a(G) > 2 > 1 = a(G?); e.g., for the n-star graph G = K, with
n > 2, we have a(G) =n > a(G?) = 1;

e G = Py, then o(G) = a(G?) = 2.

Randerath and Volkmann proved the following theorem.

THEOREM 1.([12]) For a graph G the following statements are equivalent:

(i) every vertex of G belongs to exactly one simplez of G;

(ii) G satisfies a(G) = a(G?);

(iii) G satisfies 0(G) = 0(G?);

(iv) G satisfies a(G?) = 0(G?) = v(GQ) =i(G) = a(G) = 0(Q).

We call a graph G square-stable if «(G) = «(G?). In this paper we continue
to investigate square-stable graphs. For instance, we show that any square-
stable graph having non-empty edge-set is also ag -stable, and that none of
them is a~-stable. We deduce that the square-stable trees coincide with the
well-covered trees.

Clearly, any complete graph is square-stable. Moreover, since K? = K,
we get that

Q(K,) = QK?) = {{v} : v € V(K,)}.

Some other examples of (non-)square-stable graphs are depicted in Figure 3.

Gl GQ Gg G4

Figure 3: G, G5 are square-stable graphs, while G5, G4 are not square-stable.

PROPOSITION 3.A graph G is square-stable if and only if Q(G*) C Q(G).
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Proof. Clearly, each stable set A of G? is stable in G, too. Consequently, if G
is square-stable, then every stability system of G? is a stability system of G,
as well, i.e., Q(G?) C Q(G).

The converse is clear. O

Let us notice that if H;,1 <14 < k, are the connected components of graph
G, then S € Q(G) if and only if SNV (H;) € Q(H;),1 < i < k. Since, in
addition, G and G? are simultaneously connected or disconnected, Proposition
3 assures that a disconnected graph is square-stable if and only if each of its
connected components is square-stable. Therefore, in the rest of the paper all
the graphs are connected, unless otherwise stated.

2. MAIN RESULTS

PROPOSITION 4.For any non-complete graph G, he following statements
are true:

(i) of S € Q(G?), then distg(a,b) > 3 holds for any distinct a,b € S;

(ii) if G is square-stable, then for every S € Q(G?) and each a € S, there
is b € S with distg(a,b) = 3;

(i) G is square-stable if and only if there is some S € Q(G) such that
distg(a,b) > 3 holds for all distinct a,b € S.

Proof. (1) If S € Q(G?) and a,b € S,a # b, then distg(a,b) > 3, since
otherwise ab € E(G?), contradicting the stability of S in G*.

(ii) Suppose, on the contrary, that there are S € Q(G?) and some a € S,
such that distg(a,b) > 4 holds for any b € S. Let v € V be such that
distg(a,v) = 2. Hence, distg(v,w) > 2 is valid for any w € S, and conse-
quently, SU{v} is stable in G, thus contradicting the fact that S is a maximum
stable set in GG, as well.

(1ii) If G is square-stable, then Proposition 3 ensures that Q(G?) C Q(G),
and, by part (i), dist(a,b) > 3 holds for every S € Q(G?) and all distinct
a,besS.

Conversely, let S € Q(G) be such that dists(a,b) > 3 holds for any a,b € S.
Hence, S is stable in G2, as well, and consequently, we obtain

S| < a(G?) < a(G) =15,

which clearly implies a(G?) = a(G), i.e., G is square-stable. O
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PROPOSITION 5.Q(G?) = Q(G) if and only if G is a complete graph.

Proof. Suppose, on the contrary, that Q(G?) = Q(G) holds for some non-
complete graph G. Let S € Q(G) and a € S.

Since Q(G) = Q(G?), Proposition 4 (i) implies that distg(a,v) > 3 holds
for every v € S — {a}, and, according to Proposition 4 (i), there is some
b € S with distg(a,b) = 3. Now, if ¢ € Ng(a) and distg(c, b) = 2, Proposition
4 (i11) implies that S U {c} — {a} € Q(G) — Q(G?), contradicting the equality
Q(G?) = Q(G).

The converse is clear. O

Let A A B denotes the symmetric difference of the sets A, B, i.e., the set
AANB=(A-B)U(B-A).

THEOREM 2.For a graph G the following assertions are equivalent:

(i) G is square-stable;

(ii) there exists S € Q(G) that satisfies the property

P1: any stable set A of G disjoint from S can be uniquely matched into S;

(iii) every S € Q(G?) has property P1;

(iv) for each S; € Q(G) and every Sy € Q(G?),G[S1 A Ss] has a unique
perfect matching.

Proof. (i) = (ii), (i) By Proposition 3 we get that Q(G?) C Q(G). Now,
every S € Q(G?) belongs also to Q(G), and consequently, if A is a stable set
in G disjoint from S, Proposition 1 implies that A can be matched into S.
If there exists another matching of A into S, then at least one vertex a € A
has two neighbors in S, say b,c. Hence, bc € F(G?) and this contradicts the
stability of S. Therefore, each S € Q(G?) C Q(G) has property P1.

(1)) = (i) Let Sy € Q(G) be a stability system of G that satisfies the
property P1. Suppose, on the contrary, that GG is not square-stable. It follows
that Sy ¢ Q(G?), i.e., there are v, w € Sy with vw € E(G?). Hence, there must
be some u € V — {v,w}, such that uv,uw € E(G). Consequently, there are
two matchings of A = {u} into Sy, contradicting the fact that Sy has property
P1.

(1ii) = (iv) Let S; € Q(G) and Sy € Q(G?). Then |Sp| < ]S/, and since
S1— 955 is stable in G and disjoint from Sy, we infer that S; —.S; can be uniquely
matched into Sy, precisely into Sy —S7, and because |Sy — S1| < |S] — Sz, this
matching is perfect. In conclusion, G[S; A Ss] has a unique perfect matching.
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(iv) = (i) If G[S; A Ss] has a perfect matching, for every S; € Q(G)
and each Sy € Q(G?), it follows that |S; — S| = |Sy — Si|, and this implies
|S1] = |Ss], i.e., a(G) = a(G?) is valid. O

COROLLARY 1. There exists no a™-stable graph having non-empty edge set,
that is square-stable.

Proof. According to Proposition 2, G is o~ -stable provided |N(v)NS| > 2
holds for every S € Q(G) and each v € V(G) — S. If, in addition, G is
also square-stable, then Theorem 2 assures that there exists some Sy € Q(G)
satisfying property P1, which implies that |N(v) N Sy| = 1 holds for every
v € V(G) — Sp. This incompatibility concerning Sy proves that G can not be
simultaneously square-stable and a~-stable. O

In Figure 4 are presented some non-square-stable graphs: K, — e, which
is also a~-stable, Cg, which is both a~-stable and a*-stable, and H, which is
neither o -stable, nor a™-stable.

wee /N, oL L] N/

Figure 4: Non-square-stable graphs: K4 — e and Cy are also a™-stable graphs,
while H is not a~-stable.

Recall the following characterizations of well-covered trees.

THEOREM 3.([13]) (i) A tree having at least two vertices is well-covered if
and only if it has a perfect matching consisting of pendant edges.

(i) ([9]) A tree T # K, is well-covered if and only if either T is a well-
covered spider, or T is obtained from a well-covered tree T and a well-covered
spider Ty,by adding an edge joining two non-pendant vertices of T, Ts.

a2

as

bs

Qg
SG I b2 5 I
K, K, Py
[ J by bo be

Figure 5: Well-covered spiders.

a4 @ Qs

a1
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It turns out that a tree T" # K is well-covered if and only if it is very
well-covered. Clearly, K is both well-covered and square-stable, but is not
very well-covered.

THEOREM 4. (i) Any square-stable graph is well-covered.

(ii) Any square-stable graph with non-empty edge set is ag -stable.

(iii) A tree of order at least two is square-stable if and only if it is very
well-covered.

Proof. (i) Assume, on the contrary, that there exists a square-stable graph
G which is not well-covered. Hence, there is in G some maximal stable set
A having |A] < a(G). According to Theorem 2 (i), for every S € Q(G?),
there is a unique matching from B = A — SN A into S, in fact, into S — A.
Consequently, SU B — N(B) N S is a stability system of G that includes A,
contradicting the fact that A is a maximal stable set.

(7i) Suppose, on the contrary, that G is a square-stable graph, but is not
ag -stable, i.e., there exists an a € core (G). Hence, every maximal stable set
containing some b € N(a) can not be maximum, in contradiction with the fact,
by part (i), G is also well-covered.

(7i) According to part (i), every square-stable tree T is well-covered, and,
by Theorem 3, T' is very well-covered, since it has at least two vertices.

Conversely, if T" is a very well-covered tree, then, by Theorem 3, it has a
perfect matching

{abi s 1< i< [V(T)] /2, deg(a;) = 1},

consisting of pendant edges only. Hence, S = {a; : 1 < i < |[V(T)|/2} is a
stable set in T' of size |V(T')| /2, i.e., S € Q(T), because o(T) = |V(T)| /2.
Moreover, S € Q(T?), since distr(a;,a;) > 3, for i # j. O

Actually, Theorem 4 (i) is stated implicitly in the proof of Theorem 1 from
[12]. The converse of Theorem 4 (i) is not generally true; e.g., Cs is well-
covered, but is not square-stable. The square-stable graphs do not coincide
with the very well-covered graphs. For instance, P, is both square-stable and
very well-covered, C} is very well-covered and non-square-stable, but there are
square-stable graphs that are not very well-covered; for example, the graph G
in Figure 6. Let us also remark that there are af -stable graphs that are not
square-stable; e.g., Cj.

THEOREM 5.For a graph G the following statements are equivalent:
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Figure 6: A square-stable graph which is not very well-covered.

(i) G is square-stable;
(ii) there is Sy € Q(QG) that has the property
P2 : for any stable set A of G disjoint from Sy, AU S* € Q(G) holds
for some S* C Sy.

Proof. (i) = (ii) By Theorem 2, for every S € Q(G?) and each stable set A
in G, disjoint from S, there is a unique matching of A into S. Consequently,
S* =S5 —N(A)N S has |S*| = |S| — |A] and S*U A € Q(G).

(i) = (i) Tt suffices to show that Sy € Q(G?). If Sy ¢ Q(G), there
must exist a,b € Sy such that ab € E(G?), and this is possible provided
a,b € N(c) NSy for some ¢ € V — Sy. Hence, |SoU {c} — {a,b}| < |So| and
this implies that {c} US* ¢ Q(G) holds for any S* C S, contradicting the fact
that Sy has the property P2. Therefore, we deduce that Sy € Q(G?), and this
implies that a(G) = a(G?). O

As a consequence of Theorem 5, we obtain that Q(G) is the set of bases of
a matroid on V' (G) provided G is a complete graph.

COROLLARY 2.Q(G) is the set of bases of a matroid on V(G) if and only
if QG?) = Q(G).

Proof. 1If Q(G) is the set of bases of a matroid on V, then any S € Q(G)
must have the property P2. By Theorem 5, GG is square-stable and therefore
Q(G?*) C Q(G). Suppose that there exists Sy € Q(G) — Q(G?). It follows that
there are a,b € Sy and ¢ € N(a) N N(b). Hence, {c} is stable in G and disjoint
from Sy, but S* U {c} ¢ Q(G) for any S* C Sy, and this is a contradiction,
since Sy has property P2. Consequently, the equality Q(G?) = Q(G) is true.
Conversely, according to Theorem 5, any S € Q(G?) = Q(G) has the
property P2. Therefore, (G) is the set of bases of a matroid on V. 0

Combining Proposition 5 and Corollary 2, we get the following result.
COROLLARY 3.(/3]) Let G be a disconnected graph. Then Q(G) is the set
of bases of a matroid on V(G) if and only if G is a disjoint union of cliques.
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3. CONCLUSIONS

In this paper we continue the research, started by Randerath and Volkmann
[12] in 1997, on the class of square-stable graphs, by emphasizing a number of
new properties. It turns out that any of the two equalities: o(G?) = a(G) and
6(G?) = 0(G), is equivalent to a(G?) = 0(G?) = v(G) = i(G) = a(G) = 0(G),
and it could be interesting to study graphs satisfying other equalities between
the invariants appearing in the relation:

a(G?) < 0(G*) <4(G) <i(G) < a(G) <0(G).
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