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1. INTRODUCTION

Let M™, N* be smooth manifolds and let f : M — N be a smooth mapping.
If z € M consider the rank of f at x to be defined by the non-negative integer

rank, (f) = rank(Tf), = dimgIm(7T'f),,

where (T'f)y : To(M) — Ty (M) is tangent map of f at . A point x € M
with the property that rank,(f) = min(m,n) is called a reqular point of f.
Otherwise, the point z is a critical point (or a singular point) of f, i.e., x is
called a critical point of f if the inequality rank,(f) < min (m,n) is satisfied.
The critical set of mapping f is defined by

C(f) ={x € M | z is a critical point of f},
and the bifurcation set is defined by

B(f) = f(C(f))
and represents the set of critical values of the mapping f.
Let p(f) be the total number of critical points of f, i.e., u(f) = |C(f)| (the
cardinal number of critical set C(f) defined above).
The ¢- category of pair (M, N) (or the functional category of pair (M, N))
is defined by:

(M, N) = min {u(f) : f € C*(M,N)}.
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It is clear that 0 < (M, N) < +oo. The relation ¢(M, N) = 0 holds if
and only if there is an immersion M — N (m < n), a submersion M — N
(m > n) or a locally diffeomorfism in any point of M (m =n). (M, N) can be
considered a differential invariant of pair (M, N).

Most of the previously known results consist of sufficient conditions on M
and N ensuring that ¢(M, N) is infinite. We are also interested to point out
some situations when ¢(M, N) is finite.

2. ¢o(M,N) FOR A PAIR OF SURFACES

In this paper we review some recent results concerning the invariant (M, N)
in case when manifolds M and N are oriented surfaces. These result are ob-
tained by D. Andrica and L. Funar in papers [2] and [3]. Let us note by >,
the oriented surface of genus ¢ and Euler characteristic y, and by S? the 2-
dimensional sphere. Denote, also, by [u] the greatest integer not exceeding u.
We have:

THEOREM 2.1 Let ) and Z/ be closed oriented surfaces of Euler charac-
teristics x and X', respectively.

(1) If X' > x , then o(3", 3 ) =00 ;

(2) If X' <0, then o(3.,5%) = 3;

(3) If X' < =2, then (52, 5°)) = 1;

(4)If2+2x <X <x < =2, then (3 > ) =00 ;

/
(5) If 0 <|x| < %, write |X'| = al|x| +b with 0 <b < |x|; then

Wz

In particular, if ¢ > 2(g —1)%, then

.9 —1
0if —— € Z
0> y:2,) = g—1 7

1 otherwise .

The method of proof uses a result given by S. J. Patterson [14]; he gave
necessary and sufficient conditions for the existence of a covering of a surface
with prescribed degree and ramification orders:

More precisely, let X be a Riemann surface of genus g > 1, and let pq, ..., px
be distinct points of X and my, ..., m; be strictly positive integers so that
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ié(mi — 1) = 0(mod 2)

and let d be an integer such that d > max m;. Then there exists a Rieman-

171 7777
nian surface Y and a holomorphic covering map f : Y — X of degree d such
that there exist k points qi, ..., g, in Y so that f(g;) = p;, and f is ramified to
order m; at ¢; and is unramified outside the set {q1, ..., qr} -

Proof of Theorem 2.1.

The first claim is obvious.

For the second affirmation, ¢(>', S?) < 3, because any surface is a covering
of the 2- sphere branched at three points (from [1]). On the other hand, assume
that f : Y — S? is a ramified covering with at most two critical points.
Then f induces a covering map .- f1(B (f))— S? - B (f), where B(f) is
the set of critical values and its cardinality |B(f)| < 2. Therefore one has an
injective homomorphism 7, (3" — f~H(B(f))) — m (5% = B(f)). Now m; (> is
a quotient of (3" —f~1(B(f))) and 71(S? — B(f)) is either trivial or infinite
cyclic, which implies that >_' = S2.

Next, the unramified coverings of tori are tori; thus any smooth map
f: Zg, — >, with finitely many critical points must be ramified, so that
gp(zg,, Y1) > 1,if ¢ > 2. On the other hand, by Patterson’s theorem, there
exists a covering Y. — >, of degree d = 2¢' — 1 of the torus, with a single
ramification point of multiplicity 2g’-1. From the Hurwitz formula, it follows
that >’ has genus ¢’ , which shows that P>y 2) =1

For the 4th affirmation we need the following auxiliary result:

LEMMA 2.1. (>, ) is the smallest integer k which satisfies

I /
[x k:]gx—l—k.
xX—k X

The proof of lemma 2.1 is given in [2] ( see also [8]).
Now, assume that 2 4+ 2y < ' < x <-2. If f: Y — Y was a ramified
/

covering, then we would have < 2, and Lemma 2.1 would imply that

X
X' = x , which is a contradiction. Therefore o(3>>",>" ) = 0o holds.

/
Finally, assume that XE < x < —2. One has to compute the minimal £

satisfying
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Y

{ax—b—k] <ax—b+k
x—k ]~ X

or, equivalently,

[b +>£1_—ka)k} . b;k‘

The smallest k for which the quantity in the brackets is non-positive is

k= [ b },in which case
a—1

For k smaller than this value, one has a strictly positive integer on the left-
hand side, which is therefore at least 1. However, the right hand side is strictly
smaller than 1; hence the inequality cannot hold. This proves the claim.

3. SOME RESULTS IN DIMENSION > 3

The situation changes completely in dimensions n > 3. The following result
is proved in [2].

THEOREM 3.1. Assume that M™ and N™ are compact manifolds. If
©(M™ ,N™) is finite and n > 3, then o (M™,N" )€ {0,1} . Moreover, p(M", N") =
1 if and only if M™ is the connected sum of a finite covering N™ of N™ with
an exotic sphere and M"™ is not a covering of N™.

Proof.

There exists a smooth map f : M™ — N™ which is a local diffeomorphism
on the preimage of the complement of a finite subset of points. Notice that f
is a proper map.

Let p € M™ be a critical point and let ¢ = f(p). Let B C N be a closed ball
intersecting the set of critical values of f only at q. We suppose moreover that
q is an interior point of B. Denote by U the connected component of f~1(B)
which contains p. As f is proper, its restriction to f~1(B — {q}) is also proper.
As it is a local diffeomorphism onto B—{q}, it is a covering, which implies that
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f:U—f"(q) — B—{q} is also a covering. However, f has only finitely many
critical points in U, which shows that f~!(q) is discrete outside this finite set,
and so f~1(q) is countable. This shows that U— f~!(q) is connected. As B—{q}
is simply connected, we see that f : U — f~'(q) — B—{q} is a diffeomorphism.
This shows that f~'(¢) N U = {p}, for otherwise H, (U — f~'(q)) would
not be free cyclic. Thus f : U — {p} — B — {¢} is a diffeomorphism. An
alternative way is to observe that f|y_g,) is a proper submersion because f
is injective in a neighborhood of p (except possibly at p). This implies that
f:U—{p} — B—{q} is a covering and hence a diffeomorphism since B — {¢}
is simply connected.

One can then verify easily that the inverse of f|y : U — B is continuous
at ¢; hence it is a homeomorphism. In particular, U is homeomorphic to a
ball. Since OU is a sphere, the results of Smale imply that U is diffeomorphic
to the ball for n # 4.

We obtain that f is a local homeomorphism and hence topologically a cov-
ering map. Thus M" is homeomorphic to a covering of N". Let us show now
that one can modify M™ by taking the connected sum with an exotic sphere
in order to get a smooth covering of N™.

By gluing a disk to U, using an identification h : U — 9B = S"~1,
we obtain a homotopy sphere (possibly exotic) >, = U U, B". Set M, =
M —int(U), Ng = N —int(B). Given the diffeomorphisms « : S"~! — 9U
and 3:S"! — 0B, one can form the manifolds

M@)=My U BN =N U B"
a:Sm—1—-9oU B:5"—1—-0B

Set h=f|sy : OU — 0B = S™'. A map F : M(a) — N(hoa) is then
given by

rifxe D"
F(x):{ f(2) if x € My

The map F' has the same critical points as f|y,; hence it has precisely one
critical point less than f: M — N.

We choose @ = h™! and we remark that M = M(h™)# 3", where the
equality sign stands for diffeomorphism equivalence. Denote M; = M(h™1).
We obtained above that f: M = M;# >, — N decomposes as follows. The
restriction of f to My extends to M; without introducing extra critical points,
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while the restriction to the homotopy ball corresponding to the holed ), has
precisely one critical point.

Thus, iterating this procedure, one finds that there exist possibly exotic
spheres Y . so that f : M = My#>  #> o..# >, — N decomposes as
follows: the restriction of f to the k - holed M has no critical points, and it
extends to M, without introducing any further critical point. Each critical
point of f corresponds to a (holed) exotic ) ,. In particular, M} is a smooth
covering of N.

Now the connected sum » => ", # >, ...# >, is also an exotic sphere. Let
A = > —int(B") be the homotopy ball obtained by removing an open ball
from ). We claim that there exists a smooth map A — B" that extends any
given diffeomorphism of the boundary and has exactly one critical point. Then
one builds up a smooth map M;# > — N having precisely one critical point,
by putting together the obvious covering on the 1 - holed M, and A — B".
This will show that (M, N) < 1.

The claim follows easily from the following two remarks. First, the homo-
topy ball A is diffeomorphic to the standard ball by [17], when n # 4. Further,
any diffecomorphism ¢ : S"! — S"~! extends to a smooth homeomorphism
with one critical point ¢ : B — B", for example

For n = 4, we need an extra argument. FEach homotopy ball A} =
>, —int(B*) is the preimage f~!(B) of a standard ball B. Since f is proper,
we can choose B small enough such that A} is contained in a standard 4-
ball. Therefore A* can be engulfed in S*. Moreover, A* is the closure of one
connected component of the complement of 9A* = S3 in S* The result of
Huebsch and Morse from [12] states that any diffeomorphism 5% — S3 has a
Schoenflies extension to a homeomorphism A* — B* which is a diffeomorphism
everywhere except for one (critical) point. This proves the claim.

Remark finally that o(M™, N™) = 0 if and only if M" is a covering of N™.
Therefore if M™ is diffeomorphic to the connected sum N "4 3" of a covering
N™ with an exotic sphere Y ", and if it is not diffeomorphic to a covering of N™,
then o(M", N") % 0. Now drill a small hole in N™ and glue (differently) an
n-disk B" (respectively a homotopy 4-ball if n = 4) in order to get N"# "
The restriction of the covering N™ — N™ to the boundary of the hole extends
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(by the previous argument) to a smooth homeomorphism with one critical
point over »_.". Thus o(M", N") = 1.

In the case of small nonzero codimensions we can state the following result
(see [2] and [8]):

THEOREM 3.2.If @o(M™,N"™) is finite and either m = n+1 # 4, m =
n+2#4, orm=mn+3 ¢ {56,8} (when one assume that the Poincaré
conjecture to be true) then M is homeomorphic to a fibration of base N. In
particular if m = 3,n = 2 then (M3, N?) € {0,00}, except possible for M?>
a non-trivial homotopy sphere and N? = S2.

In arbitrary codimension we have:

THEOREM 3.3. Assume that there exists a topological submersion f : M™ —
N™ with finitely many critical points, and m > n > 2. Then o(M,N) € {0,1}
and it equals 1 precisely when M is diffeomorphic to the connected sum of a
fibration N (over N ) with an exotic sphere without being a fibration itself.
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