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Abstract.The main result shows that if f : [1, +∞) → R is a continuous
function such that lim

x→∞
xf(x) exists and it is finite, then

lim
n→∞

n
∫ a

1
f(xn)dx =

∫ +∞

1

f(x)

x
dx,

for any a > 1. Two applications are given.
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1.Introduction

There are many important classes of sequences defined by using Riemann
integral. We mention here only one which is called the Riemann-Lebesgue
Lemma: Let f : [a, b] → R be a continuous function, where 0 ≤ a < b.
Suppose the function g : [0,∞) → R to be continuous and T -periodic. Then

lim
n→∞

∫ b

a
f(x)g(nx)dx =

1

T

∫ T

0
g(x)dx

∫ b

a
f(x)dx. (1)

For the proof we refer to [4] (in special case a = 0, b = T ) and [5]. In the
paper [1] we proved that a similar relation as (1) holds for all continuous and
bounded functions g : [0,∞) → R of finite Cesaro mean.

In this note we investigate another class of such sequences, i.e. defined by
n
∫ a
1 f(xn)dx, where f : [1, +∞) → R is a continuous function and a > 1 is a

fixed real number.

2.The main result

Our main result is the following.

Theorem.Let f : [1, +∞) → R be a continuous function such that lim
x→∞

xf(x)

exists and it is finite. Then, the improper integral
∫∞
1

f(x)
x

dx is convergent and
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lim
n→∞

n
∫ a

1
f(xn)dx =

∫ ∞
1

f(x)

x
dx, (2)

for any a > 1.

Proof. Consider lim
x→∞

xf(x) = l, where l ∈ R. Then, we can find a real

number x0 > 1 such that for any x ≥ x0 we have

l − 1

x2
≤ f(x)

x
≤ l + 1

x2
.

Let us choose a real number m > 0 satisfying the inequality l− 1 + m ≥ 0.
Then, for any x ≥ x0 we have

0 ≤ l − 1 + m

x2
≤ f(x)

x
+

m

x2
≤ l + 1 + m

x2
(3)

Define the function J : [1, +∞) → R by

J(t) =
∫ t

1

(
f(x)

x
+

m

x2

)
dx.

The function J is differentiable and we have

J ′(t) =
f(t)

t
+

m

t2
≥ 0

for any t ≥ x0. Therefore J is an increasing function on interval [x0, +∞).
Moreover, by using the last inequality in (3) we get by integration

J(t) =
∫ x0
1

(
f(x)

x
+ m

x2

)
dx +

∫ t
x0

(
f(x)

x
+ m

x2

)
dx

≤
∫ x0
1

(
f(x)

x
+ m

x2

)
dx + (l + 1 + m)

∫ t
x0

dx
x2

≤
∫ x0
1

(
f(x)

x
+ m

x2

)
dx + l+1+m

x0
,

for any t ≥ x0. It follows that lim
t→∞

J(t) is finite. But, we have

J(t) =
∫ t

1

f(x)

x
dx + m

(
1− 1

t

)
,
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hence

lim
t→∞

∫ t

1

f(x)

x
dx = lim

t→∞
J(t)−m,

which is finite.
For a fixed real number a > 1, denote

J(t) = t
∫ a

1
f(xt)dxandU(t) =

∫ at

1

f(x)

x
dx.

Because function g : [1, +∞) → R, g(x) = xf(x), is continuous and
lim

x→∞
g(x) is finite, it follows that g is bounded, i.e. we can find M > 0 with

the property

|g(x)| ≤ M, x ∈ [1,∞) (4)

Changing the variable x by x = ut, we get dx = tut−1du, hence

U(t) = t
∫ a

1

f(ut)

u
du (5)

From (4) and (5) we obtain

|J(t)− U(t)| = t
∣∣∣∫ a

1 f(xt)dx−
∫ a
1

f(xt)
x

dx
∣∣∣ =

= t
∣∣∣∫ a

1

(
f(xt)− f(xt)

x

)
dx
∣∣∣ ≤ t

∫ a
1 |f(xt)|x−1

x
dx =

= t
∫ a
1 xt|f(xt)| x−1

xt+1 dx ≤ tM
∫ a
1

x−1
xt+1 dx =

= Mt
[

1
1−t

(a−t+1 − 1)− 1
t
(1− a−t)

]
, t > 0

(6)

Because

lim
t→∞

[
1

1− t
(a−t+1 − 1)− 1

t
(1− a−t)

]
= 0,

from (6) it follows that

lim
t→∞

J(t) = lim
t→∞

U(t),

i.e. we have

lim
t→∞

∫ t

1

f(x)

x
dx = lim

t→∞

∫ a

1
f(xt)dt

and the desired result follows.

Remark. The relation (2) is a natural reformulation of the first part of
Problem 5.183 in [3] proposed by the second author and S. Rădulescu.
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3.Two applications

Application 1. Let us evaluate

lim
n→∞

n
∫ a

1

dx

xn + k
, (7)

where k > 0, a > 1 are fixed real numbers.
Using the result in Theorem for function f(x) = 1

x+k
, x ≥ 1, we obtain

lim
n→∞

n
∫ a

1

dx

xn + k
=
∫ ∞
1

dx

x(x + k)
=

1

k
ln

x

x + k

∣∣∣∞
1

=
1

k
ln(k + 1).

Note that for k = 1 we get

lim
n→∞

n
∫ a

1

dx

xn + 1
= ln 2,

i.e. the second part of Problem 5.183 in [3].

Application 2. Let us evaluate

lim
n→∞

n
∫ 1

0

xn−2

x2n + xn + 1
dx, (8)

which is a problem proposed by D. Popa to Mathematical Regional Contest
”Grigore Moisil”, 2002 (see [2] for details).

Fix a ∈ (0, 1) and we can write

n
∫ 1

0

xn−2

x2n + xn + 1
dx = n

∫ a

0

xn−2

x2n + xn + 1
dx + n

∫ 1

a

xn−2

x2n + xn + 1
dx.

For the first term in the right side we have

0 ≤ n
∫ a

0

xn−2

x2n + xn + 1
dx ≤ n

∫ a

0
xn−2dx =

nan−1

n− 1
→ 0.

For the second term we obtain

n
∫ 1

a

xn−2

x2n + xn + 1
dx = n

∫ 1

a

xndx

x2(x2n + xn + 1)
= n

∫ 1/a

1

tn

t2n + tn + 1
dt.
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The function f(t) = t
t2+t+1

satisfies lim
t→∞

tf(t) = 1 and we have

∫ ∞
1

f(t)

t
dt = lim

t→∞

∫ ∞
1

dt

t2 + t + 1
=

2√
3
arctg

t + 1
2√

3
2

∣∣∣∞
1

=
π

3
√

3

Applying the result in Theorem it follows that

lim
n→∞

n
∫ 1

0

xn−2

x2n + xn + 1
dx =

π

3
√

3
.
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2004.

[4] Dumitrel, F., Problems in Mathematical Analysis (Romanian), Editura
Scribul, 2002.
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