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Jordan's type. The basic theory of Jordan's totient function J, is reobtained by using some

properties of our second function.
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1. Introduction

An arithmetic function generalizing the well-known Euler totient function ¢ is
the Jordan's function of order k, where k is a positive integer. This function is

denoted by J, and it is defined by J,(n) = the number of all vectors (a,,...,
ak)er with the properties a, <n, i= 1,2, ...,k and gcd(ay,... ,a;,n) = 1.
It is clear that J;=¢. The early history of the function J, is presented in [4].

The function J, has some interesting properties and numerous applications.

In what follows we recall few of them.

1.The function J, is multiplicative, i.e. for any positive integers m, n with
ged(m,n) = 1 the relation J, (mn)=J, (m)J, (n) holds ([7], [8]).

2. If p is a primp and a is a positive integer, then
Ji(p®)=p* - p"?
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3. If the unique prime decomposition of nis n= p;* ... p*" then

Jk(n)znk{l—ik] {1—LJ
pl pm

An easy argument for this formula is the inclusion-exclusion principle (see [7],

[8D).

4. (Gauss' type formula) The following formula holds

D Jd)y=n"

d/n
(see [7] and [8]).

5. The following formula holds
Z ud) _Jy(n) (n)
dfn
where n is the Mobius inversion function. That is for all positive integers n

Ji(n) = Z[ j utd) =3 d" /{ j =(¢ x p)(n)
d/n d/n
where (, (n) =" and "*" is the Dirichlet convolution defined by

(f*g)n)= §jfang[ j

din

for any functions f,g - Z, — C ([8, pp. 12-13]).

6. Recall that the Riemann ¢ function is defined by

{@:Z%ghzﬂ
n=1

The following formula holds
_ N (")

n=1
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7. The following asymptotic formula holds ([8, pp. 265-272])
1 < 1

lim— > J, (8)=—————

= 27:) (k+1)¢ (k +1)

s=1
In the case k=2m-1 we get

lim — - Zszl()— Gm =D

n—w p m= 1|B2m| 2m

8. The von Sterneck function H, is defined by
H,(n)= z (s1)-- (5¢)

e
where [sj,...., s/ denotes the latest common multiple of integers s;,..., s For all
positive integers k the following formula is true ([8. Proposition 1.7, pp. 15]):

J,=H

9. The interpretation of the integer Ji(?) in the theory of finite groups is the
following. Consider the Abelian group defined as the cross product Z f =Z x...Z,

where (Z,, +) is the well-known group of residues modulo n. Then for #\n we have

(see [11])
J, () =tH{ge Z,’f rord(g) =t}

10. Some interesting applications in determining the order of some matrices finite
groups are given by

m(m=1) m

GL(m,Z,)| =n > []/.(n)
k=1

m(m-1) m

H Ji(n)
k=2
=n" H S (n)
k=1

where GL(m,Z,), SL(m,Z,), Sp(2m, Z,) are the general linear group, the special linear
group and the symplectic group, respectively, of matrices of order m with elements
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in the ring Z,. The first two formulas are obtained by C. Jordan [7] and they are also
contained in [1]. The third formula is given in [11]. The multiplicative group G(n) is
defined by

_ [ P
G(n)—{(y 5

For any positive integer n > 3 the order of G(n) is given by
|G(m)| = 2nJ5(n).

J:a,ﬁ,y,é’eZn and ad — Py = £1}

11. Other applications of the Jordan's function ./, are given in Diophantine Anal-
ysis (see [3]). Some special properties of J; are obtained in the paper [5], [6] and [10].

There are few generalizations of Jordan's totient function. We mention here the
recent one given in [12] and defined by

Sam= 21

I<aqy,....a,,<n

ged(ay ...,y k)=1

where m and k are fixed positive integers. It is dear that. S ,f (n)=J,(n).

In this paper we introduce two functions of Jordan' type and we make the con-
nection with the function J;. The basic theory for Jordan's function J; is reobtained by
using our second function.

2. Thearithmetic function J{"

For a fixed positive integer k define Z**' = Z_x...xZ, and consider the sets

k+1times

M, (n)={a,,...a.,)ezZ""1<a <...<a,,, <nand

gcd(al,...ak+1,n)=1}

N,(n)={(a,,...a,,n)e Z*" 1 1<a, <...<a,,, <nand

ged(a,,...a,,n)=1}
The cardinal numbers of these finite sets are denoted by
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Fia (") =#M . (n) and J;EI) (”) =#N, (n)
It 1s clear that for £k = 1 we obtainJl(U =J, = ¢, the well-known Euler
totient function.
The Gauss' type formula for the function J ,El) is given in
Theorem 2.1. The following formula holds

W n+k—1
DI = @.1)
d/n k
Proof. First of all let us note the following relation
Fioa(n)=Fpy(n=1) +J{"(n) (2.2)

Consider the set
S,(n)={(a,,...a,,,)eZ"" 1 1<a, <...<a,,, <nand

ng(al"“ak-H ) =d}
We have the relations

n+k n n n
(M] 2#8u(m =) (L{D (23)
Replacing 7 by n-1 in the above relation we get
n+k-1 —SF n—1 (24)
k+1 ) o ot s '
From (2.3) and (2.4) and then by using (2.2) it follows
n+k—1 n+k n+k-1 n n—1
= - => F | F —1|-F —_—
[ k+1 ] [k+1] ( ke+1 J ; ’”{ "“ﬂdD "”a d m
=2 (Fa(d)=F(d-1))= >,/ (a)

d/n d/n
For k= 1. from (2.1) we obtain the classical Gauss' formula.

Theorem 2.2. Fur any positive, integer k > 2 the following relation is satisfied
Fo(n)=Y_J" (m) 2.5)
m=2

Proof. From (2.1) and from the well- known Mobius inversion formula we have
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Ji <n>=2u(§jfk () (2.6)
d/n

where f,(m)= i ie. I, '(n)=f, *p. Using the relations (2.2) and
(2.6) the formula (2.5) quickly follows.

Theorem 2.3. The following formula holds

JOmy= 3 iJS_’l (m) 2.7)

s<n m=1
ged(s,n)=1

Proof. We have

T =HN ()= Y #Sg(m= F[ED: > gJ,E”I(m)

s<n s<n s<n m
ged(s,n)=1 ged(s,n)=1 ged(s,n)=1

and the formula is proved.
Corollary 2.4. If n is a prime, then

(p(m)z%(nz +n-2) 2.8)

s=1  m=1

Proof. Consider £ = 2 in (2.7).

3. Thearithmetic function J,iz) and the connection to Jordan'sfunction J,
Consider the set
P.(n)= {(al,...ak)e VAR gcd(al,...ak,n)z 1}
and define G, (n) =#P,(n). Let us define the integer

JP (n) =#{(a,,...a, )€ P, : atleast acomponent a;is equal n}

The Gauss' type formula for the function J ]§2) is given by
18
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Theorem 3.1. The fallowing formula holds

> @) =n* ~(n-1f 3.1)
d/n

Proof. Note that the following relation is valid
G (n)=G,(n-1) +J(n) (3.2)

Consider the set
N,(n)={(a,,...a,)e ZF :1<a, <...<a, <nand gcdla,,...a,)=d}

and obtain
n* = Zn:#Ns(n) =in([3D (3.3)
s=1 s=1 s

Replacing n by n - 1 we get

(n=1) :ZG,{[”‘ID (3.4)

N

It follows

2 70(d)= 2 (G(d)- G ld -1))=n" ~(n-1)

d/n d/n
Remarks.
1) If £ = 2, then

o [2 () if n>1
/s (n)_{z (n)-1=1  if n=1

and from relation (3.1) we obtain

D JPd)=>2 (d)-1=n*-(n-1) =2n-1
d/n d/n
that is the classical Gauss' formula for Eulers totient function.

2) The functions J\"”, J!* are not multiplicative. Indeed, if f:Z, — Cis

a numerical function with f{/) = I, define its summation function S by formula
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S(n)z f (d ) . It is easy to see that if f'is multiplicative then S is multiplicative.
d/n

From formulas (2.1) and (3.1) the summation functions of J\"and J* are
not multiplicative, hence these functions are not multiplicative.

Theorem 3.2. The fallowing formla holds
G (n)=1+>J(m) (35)
m=2

Proof. Applying the Mobius inversion formula, from (3.1) we obtain

T2 (n Zy( jgk (d) (3.6)

d/n
where gy(m) = m* - (m - 1 )*. Thatis J\” =g, * . From (3.6) and (3.2) it follows
relation (3.5).

The connection between J 22) and the Jordan's functions J; is given by

Theorem 3.3. The following relation holds
k+1
JP(n) = Z [" u 1) ps (m) (3.7)

Proof. Note that we can wrlte

T (n) = Z”( J(d"” (d- 1)“1) D H (deHl” 2 -1 (_j_

d/n d/n d/n
. k+1 . k+1 s
=Jea(m=Y (d-1)" ( ] Jeam=>> (= "‘[ J(Zjd:
d/n d/nm=0
k+1 o k+1
DG I TAN0
5=1 S

Remarks.
1) An other argument for formula (3.7) can he obtained by using
inclusion-exclusion principle as follows. Denote by M the set of all vectors
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(al,...,akﬂ)er”such that 1<a, <...<a;, Sn,gcd(al,...ak+1)=l and n is a

component of the vector (al,...akﬂ) at least once. Also, consider the sets M,

. . k+1
consisting in all vectors (al,...ak+1 ) ez,

" component of the

1<a <...<a,, <n,ged(a,,...a,,,)=1, and n is the s'
vector, s = 1,2,..., k+1.
k+1
It is clear that M = UM , and from inclusion-exclusion principle we have

s=1

k+l1
HM =Y #M — > #M[(\M; +...
s=1 1<i<j<k+1
That is
5w =) (£

i.e. the connection between J ,52) and Jordan's functions given in the formula
(3.7).

2) Consider n= p' ... p" the prime factorization of n. Using formula (3.7)
and a simple mathematical induction argument it follows

JP () = (ﬂjd"z k{l—lj...(l—ij (3.8)
c ;ﬂ d U P

From formula (3.8) we deduce immediately that the Jordan function J; is mul-

tiplicative.
Also, by using formula (3.8) and Md&bius inversion formula we obtain the Gauss'
formula for J;, i.e.
2 i(d)=n'
d/n
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