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Abstract. Using Fan-Glicksberg fixed point theorem we obtain in this paper a fixed point
theorem for the composition of two Kakutani maps.As application of this we get a new fixed
point theorem, section properties and minimax inequalities.

1. Introduction

In order to give a simple proof for von Neuman minimax theorem, Kakutani
[11] extended the well-known Brower’s fixed point theorem to the case of an upper
semicontinuous map T of a n-disk into itself. In turn, Kakutani’s theorem was
extended to Banach spaces by Bohnenblust and Karlin [4] and to localy convex
Hausdorf topological vector spaces by Fan [5] and Glicksberg [8].

Using Fan-Glicksberg fixed point theorem we obtain in this paper a fixed
point theorem for the composition of two Kakutani maps. As application of thiswe get
a new fixed point theorem, section properties and minimax inequalities. Our results
seem to be new altough they are closely related to some known results

2. Preliminaries

A map (or a multifunction) T : X — Y isafunction from a set X into the power set
2" of Y ; that is, a function with the values T(X)c Y for xe X and the fibers
T (y)={xe X:yeT(x)jfor yeY.Giventwomaps S: X - Y,T:Y — Z then
composition T o S: X — Zisdefined by
(T o S)x)=T(S(x))={T(y): y « S(x)}-

Let X and Y be topological spaces. A map T: X — Y is said to be upper
semicontinuous (u.s.c.) if for each closed set F — Y the lower inverse of F under T,

thatis T"(F)={xe X :T(X)nF # ¢} isaclosed subset of X or, equivalently, if for
each open set GcY, the upper inveese of G under T, that is
T'(G)={xe X:T(X)c F} is an open subset of X. Note that if Y is compact
Hausdorff and T(x) is closed for each x € X , then T is upper semicontinuous if and
only if the graph of T, that is {(x,y)e X xY :y e T(x)} is closed in X x Y . Recall
also that the composition and the product of two u.s.c. are u.s.c., too.
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If X is atopological space and Y is a convex subset of a topological vector
space we define the classes of maps K(X,Y) and K(X,Y) asfollows:
Te IZ(X ,Y) < T isu.s.c. with compact values,

TeK(X,Y)< T eK(X,Y)and T(x)+ ¢ foreach xe X .
Throughout this paper, we assume that any topological space is Hausdorff.

3. Main result
The starting point is the following fixed point theorem:

Theorem 1. Let X, Y be two nonempty compact convex sets, each in alocally convex
topological vector space. Then for every two maps Se K(X,Y),T € K(Y, X), the
composition T o S hasafixed point.

Proof. Consider the diagram
. . . CTx8 .
XxYE2YxX < Xx)

where  p(x,y)=(y,x) and (TxS)y,x)=T(y)xS(x).It is easy to see that
[TxS]o pe K(XxY,X xY), hence by the Fan-Glicksberg fixed point theorem [5,
8], the map [T x S|o p has a fixed point. Therefore for some (x,,Y,)e X xY we
have (X5, Y,)€(TxS\Ye%). Then X, €Ty,,Y, € X,and  consequently
X, € (T o S)x,).

The previous result is a particular case of Theorem 4 in [12]. On the other
hand since any fixed point for T oS is a coincidence point for the maps T and S

Theorem 1 is equivalent with Theorem 4 in [9].
The next two results are direct consequences of Theorem 1.

Theorem 2. Let X, Y be two nonempty compact convex sets, each in alocally convex
topological space, S: X - Y a map with nonempty values and open fibers and

T e K(XxY).Then T o S hasafixed point.

Proof. It is well known that under the hypothesis of our theorem S admits a
continuous selection (see Ben-El-Mechaiekk, Deguire and Granas [2, 3]). In other

words there is a continuous function s: X — Y suchthat s(x)e S(x) forall xe X .
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Since se K(X,Y), by Theorem 1 there exists X, € X such that X, € (T o s)(X,).
Obvioudly X, isafixed pointfor ToS.

Theorem 3. Let X, Y be two nonempty compact convex sets, each in alocally convex
topological vector space and M, N be two open subsets of XxY such that
M U N = X xY . Suppose that the following conditions are satisfied:

(i) Foreach xe X,{yeY:(xy)e M }isconvex;

(i) For each y € X, {y e Y:(x,y)e N} isconvex.
Then at least one of the following assertion holds:

(8) There existsapoint X, € X suchthat {X,{xY c M .

(b) There exists apoint y, € Y suchthat X x {y,}c N.

Proof. Let M'=(X xY)\M and N'= (X xY)\ N . Define
S: X ->Y,T:Y > X by putting

Slz) ={ycY :(z,y)e M}, T(y) ={rec X :(x.y) € N’}

Since M’ isclosedin X x Y, each §X) isclosed in Y and the graph of Sis

closed in X x Y . Hence Sisu.s.c. and by (i) it followsthat Se K(X,Y).
Similarly we can provethat T K(X,Y) .
Suppose that both assertions (i) and (ii) are not true. Then for each X € X there exists
yeY suchthat (x,y)e M', thatis Se K(X,Y) and similarly T e K(X,Y). By
Theorem 1, T oS has a fixed point, or equivalently, there exists (X, Y,)e X xY
such that y, € S(X,) and X, € T(Yy,). Then, (X,,¥,)e M’ N’ which contradicts
MUN=XxY.

Corollary 4. Let X, Y be two nonempty compact convex sets, each in alocally convex
vector topological space and N be an open subset of X x Y satisfying:

(i) Thereexistsamap T € K(X,Y) suchthat graphT € N.
(i) Foreach y € Y,{x e X :(x,y) & N}is convex.
Then there existsapoint y, € Y suchthat X x {y,} < N.

Proof. Consider the set
M = X xY\ graphT
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Since T € K(X,Y) it readily follows that:

M is an open subset of X < Y;
for each x = X. ]l_.'l.' = Y - [, -“—: _11,“r 18 COnvex:
for each z € X, {z} x Y ¢ M.

Moreover M U N = X xY . The conclusion follows from Theorem 3.

Corollary 5. Let X be a nonempty compact convex subset of alocally convex vector
topological space and M be an open subset of XxX satisfying:

(i) A={x%):xeM}cM

(i) For each x e X,{y e X :(x,y)& M} is convex.

Then there exists apoint X, € X suchthat {X,}x X c M .

Proof. Apply Theorem 3 in the case Y = X,N = X x X\ A and observe that the
assertion (b) in the conclusion of this theorem cannot take place.

Theorem 6. Let X, Y, M, N be as in Theorem 3. Suppose that for each x e X there
exists an open subset (possibly empty) O, of Y such that:

(i) For each xe X,0, c {yeY:(x,y)e N}.
(V) U, X=Y.
Then there exists X, € X suchthat {X,}xY c M .

Proof. It suffices to prove that under conditions (iii) and (iv) the assertion (b) of the
conclusion of Theorem 3 does not hold.

Since Y is compact there exists a finite set A= {x1 Xy yeens xn}c X such that
Y=0L0, . Let {; :1<i <n} be a continuous partition of unity subordinated to

the open covering {O& 1<i < n} of the compact VY, that is, for each i, 1 Y — [0,1]

ai(y) > 0=y € Og:
w o — 1 foreach y €Y.

Define a continuous function p: X — Y by

iS continuous;

26



Mircea Balgj, Daniel Erzse-Fixed points and minimax inequalities

Let J(y)={x € A:e,(y)>0}. Then p(y)e conv{x :ie J(y)}. For each
x €J(y) we have yeO,, hence by (iii), (x,y)eN. Since the sets
{XEXI(X, y)e N} are convex (see condition (ii) in Theorem 3) we infer
(p(y),y)e N for each y €Y, hence the assertion (b) of the conclusion of Theorem
3 does not hold.

Theorem 7. Let X, Y be two nonempty compact convex sets each in alocally convex
vector topological spaceand f,g: X xY — IR two functions satisfying:

0 f<g;
(i) f isupper semicontinuous and g is lower semicontinuous on X xY.

(iii) For each x € X, f(x,-) isquasiconcaveon'Y .

(iv) Foreach yeY, g(-, y) is quasiconcave on X.

Then, givenany «, f € IR,a < [, at least one of the following assertions holds:
(a) Thereexists X, € X such that f(xo,y)< o foreach yeY.

(b) Thereexists Yy, € Y suchthat f(x,y,)> /3 foreach xe X.
Proof. Apply Theorem 3 to the sets:

M {r.y) e X xY : flz,y) < al,

‘l'|' -:I..f'_ i \ _: 1\‘ " '} : .'lu'l'_."_ iy Y~ 1}

From the hypothesis (i) — (iv) it follows readily that M, N are open in X x Y,
M UN = X xY and assumptions (i) — (iii) of Theorem 3 are verified. The desired
result follows now from Theorem 3.

It would be of some interest to compare the next minimax inequality with the
generalizations of the Neumann minimax theorem obtained by Simons [14] and
Nikaido [13].

Corollary 8. Under the hypotheses of Theorem 7 the following inequality holds:

inf max f{x.y) < sup min gz, y).
z=X =¥ oy e X
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Proof. First let us observe that if f is upper semicontinuous on X XY , then for each
Xe X, f(x,-) is also an upper semicontinuous function of y on Y and therefore its

maximum max ., f(x,y) on the compact set Y exists. Similarly inf,_, g(x,y) can
be replaced by min__, g(X, ).
Suppose the conclusion were false and chose two real numbers «, # such that
suprmin gl y) < 4 < o < anl max faroy).
yeY & X z=X y=Y
We prove that neither the assertion (a) nor the assertion (b) of the conclusion

of Theorem 7 cannot take place.
If (a) happens, then

inf max f(x,y) < max (g, y); a contradiction.
X ycy Yyl

If (b) happens, then

supimin glx. y) = minglx, yp); a contradiction again.
yeY ¥ X reX

The origine of our two last results goes back to Fan's minimax inequalities
[6]. Close results have been obtained by Allen [1], Granas and Liu [9], Fan [7] and Ha
[10].

Theorem 9. Let X, Y, f,gbeasin Theorem 7. If T : X — Y isamap with nonempty
values, then the following inequality holds:

inf f(x.y) < sup ming(z. y).
y=T(x) yoy =X

Proof. We may assume that inf, ., f(x, y)> —oo. Apply Theorem 7 in the case
a=inf ;. f (x,y), 8 =inf yer( | (X, y)— & where ¢ > 0 isarbitrarly fixed. Since
the values of T are nonempty, the assertion (a) of the conclusion of Theorem 7 cannot
take place. It follows that there exists Yy, € Y such that

ming(x.yg) > inf f(z,y)—=.
we X y=T(x)

Clearly thisimplies the desired minimax inequality.

Corollary 10. Let X be a nonempty compact subset of a locally convex topological
vector spaceand f,g: X x X — R two functions satisfying:

(i) f<g.
(i) f isupper semicontinuous and g is lower semicontinuous on X xX.
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(iii) For each x € X, f(x,-) isquasiconcaveonY .
(iv) For each y e, g(-, y)is quasiconcave on X.
Then we have

ul Fia. o UL TERHIL G a0 il
=X T s k'

Proof. Apply Theorem 9with X =Y, T(x) = {x}.
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