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THE CROSS-VALIDATION METHOD IN THE 
SMOOTHING SPLINE REGRESSION 

 
by 

 Nicoleta Breaz 
 
Abstract. One of the goals, in the context of nonparametric regression by smoothing spline 
functions, is to choose the optimal value for the smoothing parameter. In this paper, we deal 
with the cross validation method(CV), as a performance criteria for smoothing parameter 
selection. First, we implement a CV-based algorithm, in Matlab 6.5 medium and we apply it on 
a test function, in order to emphase the quality of the fitting by the CV-smoothing spline 
function. Then, we fit some real data with this kind of function. 
 
1.Introduction 
 
 We consider the observational regression model, 
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21 ,0~,...,, σεεεε ′=  and the data, iy , having the weights 
0 , >ii ww . If the plot of data presents some classical trend, as polynomial for 

example, we choose the parametric regression technique, else, we choose the 
nonparametric regression technique. 
 A parametric model is based on some assumed form of the regression function 
which depends on a finite number of many unknown parameters(see for example, the 
polynomial regression). In this case, the goal is to estimate these parameters. 
 By contrast, a nonparametric model doesn’t make assumptions about the 
shape of the estimator but about the “quality” of the estimator. This quality refers to 
some general properties as smoothness, for example. 
 Moreover, if the data are noisy, it is more appropriate to find an estimator that 
is not very close to data but is sufficiently smooth (see[6]). 
 Such estimator will minimize, for example, the following expression: 
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 First part of this expression represents the goodness-of-fit to the data and the 
second part represents the smoothness of the estimator. The parameter λ , called 
smoothing parameter, controls the tradeoff between the closeness to the data and the 
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smoothness. If  0=λ , we obtain the interpolant to the data and if ∞→λ , we obtain 
the straight line least squares approximation. Obviously a large value of λ  leads to a 
smooth curve but not so close to data and a small value of λ   leads to a rough curve 
that follows the data closely . 
 The expression (1) is often known, as penalized least squares criteria. If we 
search the solution of this variational problem in some appropriate space, we obtain 
the estimator called smoothing spline. The name “spline” comes from fact that the 
estimator is practically, a natural polynomial spline function, of 12 −m  degree (see 
[3]). 
 A case of interest is the particular case, 2=m , when we obtain as an 
estimator, the natural cubic spline function. These functions are piecewise-cubic 
polynomial function, with continuous first and second derivatives, at the break points. 
 Although the smoothing spline appears in the context of the nonparametric 
regression, however, the estimator depends on a parameterλ , namely, the smoothing 
spline parameter. There are known several methods to select the smoothing parameters 
and among these, is cross validation method (CV). 
 
 
2.The CV-smoothing parameter selection method 
  
 When we try to choose the optimal model to data we can use some 
performance criteria as a testing tool (see [1]). One of these performance criteria is 
based on a natural way to select that fitting and implicitly, that λ , which minimizes 
the expected prediction error, 
 

( ) ( )( )2xfyEPSE ′−′= λλ , 
 

where yx ′′,  are new data. 
 Since additional data are not usually available, an estimator of ( )λPSE  will 
be used instead of  ( )λPSE . According to [1], one of such estimator is the (leaving-
out-one) cross-validation function, given by  
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where ( )if −

λ   is the smoothing spline estimator, fitted from all data, less the i-th data. 
The (leaving-out-one) cross validation method uses n learning samples, everyone with 

1−n  data, to obtain the estimators ( )if −
λ , ni ,1=  and n test samples, with one data, in 
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order to validate the models. Since ( )λCV  is an estimator for ( )λPSE , a value of λ , 
that minimizes ( )λCV , represents an optimal choice for λ . 
 
 
3.Numerical experiments 
 
 In order to show how the CV method works, we implement in Matlab 6.5 
medium, the following algorithm, based on CV: 
 
 
CV-Algorithm  
 
Step 1. Read the sample data ( ) niyx ii ,1,, =  and if is necessary, order and reweight 

the data, in respect with data sites, ix . In stead of 1n  data, ( )
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 After this step, the data sites, ix , must be strictly increasing and having the 
tail nn ≤′ . 
 
Step 2. For each i, ni ′= ,1 , determine the cubic smoothing spline, ( )if −

λ , based on 
leaving-out-one resampling method. 
 
Step 3. Calculate the value of the function, ( )λCV . STOP. 
 In order to obtain λ  for which ( )λCV  is minimum, the following adequate 
step must be added: 
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Step 4. Calculate ( )λCV , for different values of λ . 
 

The appropriate value of λ  is CVλ , with   
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If we set  
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we can search λ , by searching q, over a grid on [ ]1,0 . In this paper, we use a regular 
grid, with 1000 points.  
 Obviously, a large value for q leads to a small value for λ  and consequently 
to a rough curve, closely to data points. By contrast, small values for q give large 
values for λ  and smooth, but not closely to data, curves. 
 In that following, we will consider the test function, 
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and the noisy data ( ),, ii yx  with  
 

n
ixi = , ( ) iii xfy ε+= , ( )1,0 ;0Ni ∈ε , 100,1=i . 

 
Here iε , 100,1=i , come from a random number generator simulating independently 
and identically distributed, random variables. 
 
 By running the algorithm presented above, for 100 replicates, we obtain an 
average value 9996,0=CVq , that leads to 4104 −⋅=CVλ . 
 The following three figures represent the plot of the data, the test function and 
the smoothing spline function, obtained for three different values of λ : a too large 
one, 0,0526 (spline 1), a too small one, 610− (spline 2), and the CV-value. 
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Fig. 1 
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Fig. 2 
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Fig. 3 

 
We observe that, for a too large value of λ , the estimated curve is not so close 

to data but is more smooth than real curve and for a too small value of λ , the 
estimated curve is not so smooth but is closer to data than the real curve is. 
 By contrast, the CV-value of λ  gives us an optimal  estimator. In this case, 
the estimated curve is more like the real one, not too close to data and not too smooth. 
 
4.An application to real data 
 
 We will consider the same data as in [2], namely the observed values for the 
gas productivity, ix  and the feedstock flow, iy , during 15 days, in the cracking 
process. 
 In that paper, the cubic smoothing spline was obtained also from CV method, 
but using the bootstrap method, for resampling. The optimal value for λ  was 0,11. 
 For the same data, we apply our algorihtm presented here and we obtain the 
optimal value for λ , 0102,0=CVλ . 
 In the following figure, we plot the data, our CV-estimated smoothing 
spline(cv-spline 1) and the 0,11-estimated smoothing spline, from [2](cv-spline 2). 
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Fig. 4 

 
It can be observed that our curve is more closely to data and 0,11-curve is 

more smooth. 
 But obviuosly, at this point, we cannot say that the estimator presented here is 
better than estimator from [2], but just that the estimator presented here is more close 
to data. For choosing one method, inspite the other, we must know more about the real 
process. 
 For example, if one knows that he is interested more in goodness of fit than in 
smoothness, he will choose the estimator with 0102,0=λ . 
 As a conclusion, if we know something prior about the “quantum” of the 
goodness of fit, or about the “quantum” of the smoothness, we can impose that the 
related term from (1) does not exceed an assumed tolerance. 
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