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A RESULT ON THE EXISTENCE OF CRITICAL POINTS

by
Gabriela Clara Crisan

Abstract : The main purpose of this paper is to present a short review on two variants of the so
called three critical points theorem. The first variant was given in the context of Finsler
manifolds in the paper [2] and the second one is presented in under some locally linking
hypotheses.
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1. Preliminaries on the existence of critical points

Let Mbea C ' Banach manifold without boundary (dM=0) and let T(M) be the total
space of tangent bundle of M . A continous function

|| || :TM)— R, is a Finsler structure on T(M) if the following conditions are
satisfied:

(i) For each xeM the restriction || || ,= | [[/TX(M) is an equivalent

normon TX(M) ;
(ii) Foreach X, €M, and k>1 ,there is a trivializing neighbourhood U of X,

suchthati" Lo<ll 1w <kl |, forallxeu.

M is said to be a Finsler manifold if it is regular (as a topological space) and if
it has a Finsler structure on T(M) .

It is known that every paracompact C'-Banach manifold admits Finsler
structures on its tangent bundle and that every C'-Riemannian manifold is a Finsler

manifold .
Suppose that M is connected .For x,y € M define

Q(x,y)= {O' :[0,1] > M, C'suchthato(0) = x, (1) = y}.The length of curve
o€ Q(X, y)is given by

1

(o)= | a(t)(a(t)dt. (1)

Consider the Finsler metric on M defined as follows

117



Gabriela Clara Crisan- A result on the existence of critical points

d.(x,y)=inf{l(c):ceQ(xy). @
The pair (M, d) is a metric space and the induced topology is equivalent to

the topology of the manifold of M (see K.Deimling [4] ).
To a given Finsler structure on T(M) there correspond a dual structure on the

cotangent bundle T~ (I\/I ) given by
J=suplux): I, ~1haeeT ().

Let f:M —>®R be a C'-differentiable mapping .A locally Lipschitz
continous vector field v : M — T(M) such that for each x € M the following relations
are satisfied: (i) ||VX|| < 2||(df )X"

(i) (df ), (v,) =|(df ),
where ||(df )X
vector field of f (in short p.g.f. of f).

is given by Finsler structure on T, (M), is called a pseudogradient

If M is a C*-Finsler manifold and f :M — Ris a C'-differentiable mapping, then
V(f) =0, where

V(H={ve X(M):visp.gf of f } 4)

Let us note that if M is a Hilbert manifold with the Riemannian structure || , the

norms || ||X come from inner product by || ||X = <,>1X/2 , and we can define a p.g.f. of f
by p> (grad f)(p) , where (grad f)(p) is given via Riesz representation theorem by
(df )p(X) = (X, (gradf )(p)) ,¥X € T,(M).

Let M be a C?-Finsler manifold , connected and without boundary . For a C'-
differentiable real-valued function f : M — R, let us define by

CH={peM:(df), =0} (5

the critical set of f and by B(f)=f(C(f)) the bifurcation set of f . The elements of
C(f) are called the critical points of f and the elements of B(f) represent its critical

values . If pg C(f) , s¢ B(f) , then p is a regular point and s is regular value of the
mapping f .
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For se R denote by C_(f)=C(f)n f'(s), the critical point set of f at
the level s. It is obvious that s a regular value of f if and only if C () =0. We also
consider the set f*:=M_(f)=f ((— 0, S])

It is well-known that if sgB(f) then f'(S)is @ or a differentiable
submanifold of M , of codimension 1 , and M (f) is a differentiable submanifold
with boundary of M , of codimension 0, and M (f) = f ~'(s).

Suppose that the manifold M and the mapping f satisfy the following
hypoteses:

(a) (Completeness) (M,d;) is a complete metric space, where O represents the

Finsler metric on M defined by (2) .
(b) (Boundedness from below) If B=inf {f (x) : xe M} then B>-00 .

(c) (The Palais-Smale condition) Any sequence (Xn )nzo in M with the properties that
(f(X,)),ois bounded and H(df )xn

(Xnk )kzo’ with X, = P

— 0 has a convergent subsequence

The above conditions (a)-(c) are sometimes called compactness conditions
because if M is a compact manifold they are automatically verified. It is clear that the
point p, which appears in condition (c) of Palais-Smale, is a critical point of f ,

peC).
Letve V(f ) be a p.g.f. of f and let X€ M be a fixed point .Because v is
locally Lipschitz the following Cauchy problem

¢(t) = Uy) ©),
¢(0)=x

has a unique maximal solution ¢" :(a)\_' (X), " (X))—) M, where @"(x)<0<"(x).
Denote by ¢, (X) the above solution and by t— ¢, (X) the corresponding integral
curve of (6). Taking into account the hypotheses (a)-(c) it follows that @ (X) =400,
ie. {(ot" }120 is a semigroup of diffeomorphisms of M (see K.Deimling [4].

For a vector ve X(I\/I) let us consider the sets Z(v)={pe M :v =0},
Fix(go"): {Xe M :¢'(x)=xVte (a)f(x), a)j(x))} . It is easy to see that the

following relations hold :

119



Gabriela Clara Crisan- A result on the existence of critical points

C(H= vt Z(v) (7)
co=, 0, File’)  ®
If xg C(f), then f((pt\'(x))< f(X) for t>0 and f((otv (X))> f(x) for t<0

The following three critical points type result was proved in the paper [2].

Theorem 1: Let M be a C? -Finder manifold, connected and without boundary , and
let f:M —> R be a C'-differentiable real-valued mapping . Assume that the
hypotheses (a)-(c) are satisfied and there exist two local minima points off f . Then
f possesat least three distinct critical points.

The following two corollaries are obtained from the above important result.

Corollary 1: Let M be a C?-Finder manifold, connected and without boundary, and
let f:M — R be a C'-differentiable real-valued mapping . Assume that the
hypotheses (a)-(c) are satisfied and f has a local minimum point which is not a
global minimum point. Then f posses at least three distinct critical points.

Corollary 2: Let M™ be a mdimensional C?*-manifold which is closed (i.e. M is
compact and without boundary) and connected . If f : M — R isa C'-differentiable
real-valued mapping with two local minima points, then f posses at least four
distinct critical points.

Remark : The following exemple shows that exist smooth functions f :R*> — R
having two global minima points and without other critical points,

Hence some supplementary hypotheses are necessary to be imposed. The polynomial
function f (X, y) = (X2 - X- 1)2 + (X2 — 1)2 has global minima at the points (1,2) and
(-1,0) and it has no other critical points.

2.Existence of critical points under some linking conditions

In what follows we prove the existence of three critical points for a function
which is bounded below and has a local linking at 0 .
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Definition 1:Let X be a Banach space with a direct sum decomposition
X = X' @ X?.The function f e CI(X, R) has a local linking at O, with respect to

fu)z0,ue X' |ul<r,

fu)<o,ue X, |u|<r.
Remark: If mapping f has a local linking at 0 , then 0 is a critical point of f .

the pair of subspaces (X tX? ) , if’, for some r>0 ,

Consider two sequences of subspaces:

Xec X! c..e X', XX c..c X?,suchthat X' =U X/}, j=12.

neN
For every multi-index o = (0{1 , O, ) e N?, we denote by X, the space X (il @ X ;2 .
Letusrecallthat < f < a, < f,a, < f3,.

We say that a sequence (an)e N* is admissible if, for every a € N* there is
me N suchthat N>2mM=oa, >2a .

Forevery f: X — R, we denote by f,_ the function f restricted to X, .
We shall use the following compacteness conditions .

Definition 2: Let ce R and f e CI(X, R). The function f satisfies the (PS)Z

condition if every sequence (uan) such that (an) is admissible and

u, €X,, f(uan )—) c f ;n (uan )—) 0 , contains a subsequence which converges to

Un

a critical point of f .

Definition 3: Let f € CI(X, R) . The function f satisfied the (PS)* condition if
every sequence (uan ) such that (0{ n ) is admissible and
u, €X, ,sup f (uan )—) o, f ;n (uan )—) 0 , contains a subsequence which

[24

converges to a critical point of f .

Remarks: 1) When X! := X, X2 :={0} for every ne N, the (PS), conditions is a
usual Palais-Smale conditions at the level c.

2) The (PS) conditions implies the (PS), conditions for every ce R.

Let us recall some standard notations in this context:

S, ={ue X :dist(u,S)< 5},
fe={ueX:f(u)<c},
K, ={ueX:f(u)=c, f'(u)=0}
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Lemma 1: Let f be a function of class C' defined on a real Banach space X . Let

Sc X,6,0>0 and ceR be such that, for every
ue f'(Jc-2s,c+2¢])n S,;, thefollowing inequality holds
| ') =4/,

then there exists 77 € C([0,1]x X, X) such that
(i) 7(0,u)=u,vue X,

(i) f(77(,u))isnonincreasing, Vue X,

(i) f(n(t,u))<cvtelp,lvue f°ns,
@) 7L, £ AS)c £,

W) [n(t,u)-u| <5, vtef01]} vue X.

Definition 4: Let A, B be closed subsets of X . By definition, A<" B if there is
S € N? such that , for every a > 8 there exist 77, € C([0,1]x X, X_) such that

(i) 7(0,u)=u,Yue X,
(i) 7(l,u)e B,vue AN X_,.

Lemma 2 Let f e C'(X,R)and ce R, p>0 . Let N be an open neighborhood of
K,. Assume that f satisfies (PS), . Then, for all £>0 small enough ,
fFE9\NN<” 977, Mor eover the corresponding deformations
1, :[01]x X, - X satisfy
I, (tu)-u| < p,vte0llVvue X,,  (9)
f(n,(tu)<cvteloi]vue fE\N.  (10)
Proof The condition (PS)Z implies the existence of ¥ >0 and £ € N* such that,
forevery > f# and ue f_'([c-2y,c+2y])n (X, \N), , fa(uj‘ >y.
It suffices then to choose o = min{y /2, p,4},0 < & <9y /4 and to apply Lemmal to
S=X,\N.

2y

Lemma 3 Let f € C'(X,R) be bounded below and let d:=inf, f. If (PS),

holdsthen disa critical valueof f .
Proof. If d is not a critical value of f , then, by Lemma2 , there exist & > 0 such that
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fd+g _<oo .I:d—s. (11)
From the definition of d, f ™ is empty for all @ and f ‘" is non-empty for a large
enough . This contradicts (11).

Lemma 4: Let f e C'(X,R) bebounded below . If (PS), holdsfor all ce R, then
f iscoercive.

Proof. If f bounded below and not coercive then c:=sup{de R: f 4 s bounded} is
finite . It is easy to verify that K, is bounded . Let N be an open bounded
neighborhood of K. By Lemma?2 , there exist & > 0 such that

f9ANN <™ £9°, (12)

Moreover we can assume that the corresponding deformations satisfy (9) with p=1. It
follows from the definition of ¢ that f°“>\N is unbounded and that

f8 < B(O, R) for some R>0 . It follows from (9) and (12) that, for all a large
enough, f ™"\ N c B(O, R+1). But then f**'*\N B(O, R+1) )

This is a contradiction .
The main result in this section is the following:

Theorem 2 Supposethat f e CI(X, R) satisfies the following assumptions
(A1) f hasalocal linkingat 0

(A2) f satisfies (PS)';

(A3) f mapsbounded setsinto bounded sets ;

(A4) f isbounded frombelowand d :=inf, f.<O.

Then f hasleast three critical points.

Proof . 1) We assume that dim X' and dim X* are positive , since the other cases
are similar . By Lemma3 , f achieves its minimum at some point V,. Supposing

K:={0, V,} to be the critical set of f, we will be led to a contradiction . We may
suppose that I < ||V0||/3 and B(VO,I’)C fa/2, (13)
By assumption (A2) and Lemma2 , applied to f and to g:=—f, there exists
& € 0,~d/2[ such that

fo\B(0,r/3)<" f*, (14)

g°\B(0,r/3)<" g™*, (15)
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f\B(v,,r)<” 7 =@. (16)
Moreover , we can assume that the corresponding deformations exists for
az (mo , mo) and satisfy (9) with p=1/2 . Assumption (A2) implies also the existence

of M = m, and >0 such that, for o > (ml, m, ),

f.)=s. amn

2) Let us write « := (n, n) where N> m, is fixed . It follows from (13) and (16) that
f4 = X, NB(v,,r)c f42. (18)

Using (14) and (17) , it is easy to construct a deformation o : [O,I]X S —» X,

where S,f = {u IS er ||u|| = r} , j=1,2, such that

f(o(t,u))<0,vte 0] vue S? and f(o(l,u))=d+svYueS:. (19)
By (18) there exists € C(Bﬁ,X{Z) , where B/ = {u e X/ ||u|| < r} , =12
such that w(u)=o(l,u)ue S?,

ue f'([d+s-¢)=

w(B2 )= X, nB(v,,r)c £, (20)
Set Q= [O,l]x B’ and define a mapping @ : 6Q — fa0 by
®(t,u)=u,t = 0,uc B?,
®(t,u)=o(t,u)d<t<lue S,
®(t,u)=w(u)t=1LueB’.
Lemma 4 implies the existence of R>0 such that f° < B(0,R) .

Hence there is a continuous extensions of @, @ :Q — X, such that

sup f(&))ﬁ C, == sup f. (21
Q B(0.R)

By assumption (A3), C, is finite .
3) Let n, depending on o ,be the deformation given by (15) . We claim that ®(0Q)
and S:= 77(1, Srl]) link nontrivially . We have to prove that , for any extension

D ecC(Q,X,)ofd, D(Q)NS#0.
Assume , by contradiction , that
n(Lu)=otyu,) @2
for all u, € S',u, e B2t €[0,1] . It follows from (15) , (19) and (9) that (22) holds
for all u, Brlpu2 € Sj,t € [0,1] . By (20) we obtain (22) for t =1 and for all
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u, e Brl] u,e Bﬁ . Using homotopy invariance and Kronecker property of the degree ,

we have
deg(F,,Q.,0)=deg(F,,Q,0)=0,  (23)
where
Q= Brl1 X Brf ,
F(u)=n(Ly,)- o(t.u, )
We obtain from (9)

ntu)=u, (24
for all U, e B;,u2 € Srf,'[ € [0,1] . Tt follows from (15) that (24) holds for all
u eS,u, eBXtel0l] . Let us define on [0,1]x the map
G, (u):=n(t.u,)-u, .

Using (23) and homotopy invariance of the degree , we have

0= deg(G1 ,Q,O) = deg(GO,Q,O) = deg(l:’n1 - Pnz,Q,O);t 0 , a contradiction .
4) Let us define C:= %}nfr’ sup f(qN)(u)) , where
€ ueQ

I={®eC(Q X,): B(u)= d(u) Vu e 5Q
It follows from (21) and from the preceding step that ¢ <C<C,.
Assumption (A2) implies the existence of M, 2mM, and y>0 such that , for
a>(m,m,),
ue f'(ec,)=

f (u)ﬂ >y . (25)

By the standard minimax argument , C € [8, Co] is a critical value of f, , contrary to
(25).

Corollary3: Assumethat f € C'(X,R) satisfies (A2) and (A3) . If f hasa global
minimum and a local maximumthen f hasa third critical point
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