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ABOUT SOME INEQUALITIES CONCERNING  
THE FRACTIONAL PART 

 
 

by 
Alexandru Gica 

 
 
 
Abstract. The main purpose of this paper is to find the rational numbers x which have the 
property that {2ⁿ⋅x}≥ 3

1 ,∀n∈N. 
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INTRODUCTION 

 
 
If n∈N, n≥2 has the standard decomposition n = ra

r
a pp ...1
1 , we define the 

length of n to be the number Ω(n) = ∑
=

n

i
ia

1
, Ω(1) = 0. In [1] and [2] I showed that 

∀n∈N, n > 3, there exists the positive integers a, b such that n = a + b and Ω(ab) is 
an even number. The second proof from [2] uses the following lemma: if r∈N∗, n∈ N 
, and pj has the usual meaning (the j-th prime number) and p is a prime number p ≡ ±3, 
there exist the natural numbers aj, j = r,1  such that 

 

{ ra
r

a pp ...1
1 p

n }≤ 
1

1
+rp  . 

 

If r = 1, it results that there is an a∈ N such that {2a⋅ p
n }≤ 3

1  . Starting from 

this point I posed the problem of finding the rational numbers x such that {2ⁿ⋅x}≥ 

3
1 ,∀n∈N. 
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THE MAIN RESULTS 
 
It is enough to consider the case when x = k

n  (n, k∈ N , (n, k) = 1) is a  rational 
number 0 < x < 1. After some multiplications with 2, we can suppose that k and n are 
odd numbers. If 1 > x > 2

1 , then {2x}= 2x – 1 < x and, after some multiplications with 

2, then we can suppose that 3
1  ≤ x < 2

1 . We will prove now the main statement of the 
paper.  

 
Proposition 1  
Let x a rational number x = k

n , where n, k are coprime, odd natural numbers. The 
number x has the property that: 
 

3
1  ≤ x < 2

1  
and 

{2mx}≥ 3
1 ,∀m∈ N. 

Then 

x = 
12

22...22
2

011

−

++++
+

−

r

rr

a

aaaa
 

where 

 a0 = 0 < a₁< a₂< ... < ar 

 

are natural numbers which satisfy the inequalities 
 

ai+1 - ai ≤ 2, ∀i = 1,0 −r . 

 

r ∈ N and ar + 2 is the smallest number l ∈ N∗ for which 

2l ≡ 1. 

Proof. We show by induction that ∀m∈ N we have 

[2m+2x] = 011 22...22 bbbb rr ++++ − , 
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where  b₀< b₁< b₂...< br = m are natural numbers depending on m and satisfying the 
inequalities 

bi+1 - bi ≤ 2, ∀ i = 1,0 −r . 

 

b₀ could be only 0 or 1. For m = 0 the statement is obvious since [4x] = 1; the 
last equality holds since 

3
1  ≤ x <

2
1 . 

 

The same inequality shows that [8x] = 2 or [8x] = 3 = 2 + 1. This means that the 
statement is true for m = 1. Let us suppose that the statement is true for m∈ N∗ and we 
want to prove the statement for m + 1. Using the induction hypothesis we infer that 

 

2m+2x = [2m+2x] + {2m+2x} = 011 22...22 bbbb rr ++++ − {2m+2x}, 

 

where  b₀< b₁< b₂...< br = m are natural numbers depending on m and satisfying the 
inequalities 

bi+1 - bi ≤ 2, ∀i = 1,0 −r . 

b₀ could be only 0 or 1. We analyze first the case 

{2m+2x}< 2
1 . 

We will show that in this case b₀= 0. Let us suppose that b₀= 1. It results that 
 

2m+1x = 1111 011 22...22 −−−− ++++ − bbbb rr + 2
1 {2m+2x}. 

 
From this last equality we obtain (taking into account that b₀=1 and {2m+2x}< 

2
1 ) that 

{2m+1x}< 2
1 {2m+2x}< 4

1 . 

The last inequality is impossible since from the hypothesis we know that 

{2m+1x}≥ 2
1 . 
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Therefore b₀=0. From the above equalities we obtain that 

2m+3x = 1111 011 22...22 ++++ ++++ − bbbb rr +2{2m+2x}, 

which lead us (taking into account the fact that that {2m+2x}< 2
1  at the conclusion that 

The properties of numbers bi together with b₀= 0 (then b₀+1 = 1) ensure us that 
the induction step is true in this case. We have to analyze the case 

{2m+2x}≥ 2
1 . 

Using again the equality 

2m+3x = 1111 011 22...22 ++++ ++++ − bbbb rr +2{2m+2x}, 

we  obtain that 
The properties of numbers bi ensure us that also in this case the induction step 

is proved. We showed therefore by induction that ∀m∈N we have the identity 

 [2m+2x] = 011 22...22 bbbb rr ++++ − , 

where  b₀<b₁<b₂...<br = m are natural numbers depending on m and satisfying the 
inequalities 

 bi+1- bi ≤ 2, ∀i = 1,0 −r . 

 b₀ could be only 0 or 1. Let ar + 2 the smallest l∈ N∗ such that 

 2l ≡ 1. 

ar + 2 exists since k is odd. We have ar + 2 ≥ 2 since k ≠ 1(do not forget that x = k
n , n 

and k being coprime odd natural numbers; also we have 2
1  ≤ x < 2

1 . Since 22 +ra  ≡ 1 it 
follows that 

{ 22 +ra
k
n } = { k

n } = {x} = x = 22 +ra x – [ 22 +ra x]. 

Taking into account these equalities and the statement proved above by 
induction, it results that 

x = 
12

22...22
2

011

−

++++
+

−

r

rr

a

aaaa
 

where 

a₀<a₁<a₂<...< ar 

are natural numbers which satisfy the inequalities 
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 ai+1- ai ≤ 2, ∀i = 1,0 −r . 

a₀ is 0 or 1. We have to show that a₀= 0. This result from 

 { 22 +ra x}= x < 2
1   

and from the first case of the induction above.  
We will show now that if 

 x = 
12

22...22
2

011

−

++++
+

−

r

rr

a

aaaa
  

where 

 a₀= 0 < a₁< a₂<...< ar 

are natural numbers which satisfy the inequalities 

 ai+1- ai ≤ 2,  ∀i = 1,0 −r  (r∈ N), 

then 

 {2mx}≥ 2
1 , ∀m∈ N . 

For proving this statement it is enough to show that the number 

 y = 
12

22...22
2

011

−

++++
+

−

r

rr

b

bbbb
  

(where 

 b₀= 0 < b₁< b₂<...< bs 

are natural numbers which satisfy the inequalities 

 bi+1- bi ≤ 2, ∀i = 1,0 −s ; s∈ N ) 

has the property that 

3
1  ≤ y < 2

1  . 

We have 

y ≤ 
12

2...22
2

01

−

+++
+

−

s

ss

b

bb
 = 

12
12

2

1

−

−
+

+

s

s

b

b
 < 2

1 . 

For showing the second inequality we will consider two cases. The first one is 
when bs = 2l; l∈ N. In this case we have 
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 y ≥ 
12

12...22
22

2222

−

++++
+

−

l

ll
 = 

3
1  

If bs = 2l + 1; l∈ N then y ≥ 
12

12...22
32

11212

−

++++
+

−+

l

ll
 = 

)12(3
12

32

32

−

+
+

+

l

l
 > 

3
1 . 

Using the same arguments as in the above Proposition we can show the 
following result: 

 
Proposition 2  

Let x a rational number, x = 
k
n , where n, k are coprime odd natural numbers. 

We suppose that x has the following property: 

5
1 ≤ x < 

4
1  

and 

{2mx}≥ 
5
1 , ∀m∈ N. 

Then 

x = 
12

22...22
3

011

−

++++
+

−

r

rr

a

aaaa
 

where 

a₀= 0 <a₁< a₂< ... <ar 

are natural numbers which satisfy the inequalities 

ai+1- ai ≤ 3,  ∀i = r,0  (r∈ N), 

If there is an i (0 ≤ i ≤ r) such that 

ai+1- ai = 3, 

then 

ai-1 = ai -1. 

We denote 

ar+1 = ar + 3; a₋₁= 0. 

 It will results that 
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ar-1 = ar -1, a₁≤ 2. 

The number ar + 3 is the order of 2 in U(Zk,⋅). 
 

Proof:  The proof is similar with that of Proposition 1. The fact that ar+1 = ar+3 
follows from the inequalities 

5
1  ≤ x < 

5
1 . 

 The only fact which has to be proved is that for any i (0≤i≤r) such that 

ai+1 - ai = 3, 

then 

ai-1 = ai -1. 

Replacing x by { xir aa −2 }, we observe that it is enough to show the statement 
only for i = r. We have to show that ar-1= ar -1. Let us suppose that 

ar-1 ≤ ar -2. 

Then 

x ≤
12

122
3

1

−

−+
+

−

r

rr

a

aa
 < 

5
1 . 

The last inequality is equivalent with 
32 +ra -5⋅ ra2 2-5⋅ 12 −ra  + 4 > 0 

and 
12 −ra + 4 > 0. 

The last inequality is obviously true since ar ≥ 1(if ar = 0 then x = 
5
1  < 

5
1 ; this 

is impossible). We obtained a contradiction since x is greater than 
5
1 . The second part 

of the proof is identical with that of Proposition 1. 
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