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SOLVING A BILOCAL LINEAR  

SINGLE PERTURBATED PROBLEM 
 

by 
Mihaela  Jaradat  

 
 
Abstract. This paper presents algorithms for solving a boundary layer bilocal linear single 
perturbated problem, which appears when we want to describe certain flows in the fluids 
mechanics. We can obtain very good results when solving this problem through approximation 
methods, results that are compared in the end of this paper to the numerical results.  
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As we all know from the specialized literature. There are many methods to 

determine a uniform solution for the single perturbated problems attached to some 
bilocal problems, methods that are technical but most of the time laborious, requiring 
expensive calculation in order to obtain an approximacy of a precise exactly. There, 
for the study of such single perturbated problems attached to some ordinary 
differential equation, of first order can be performed in very good conditions using 
approximation methods. As a consequence to these problems we look for asimptotic 
solutions using the method of the matching asymptotic expansion and the multiple 
scales method. In both cases the results are compared to the numerical results.  
 Let’s consider the following bilocal linear problem:  
 

0=+′+′′ yyyε  (1a) 

 

( ) ( ) βα == 1,0 yy  (1b) 

 
for which we determine a first order uniform expansion through the two mentioned 
approximation  methods, expansions compared afterwards to (the precise solution) 
exact solution of the problem 
 
Exact solution of the problem 
 
 We shall look for the solution for the homogeneous equation (1a) under the 
following exponential form y = exp (sx). Then (1a) will have the next characteristic 
equation: 
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012 =++ ssε   

which has the following solutions 
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There for the general solution of the (1a) equation is: 
 
 

xsxs ececy 21
21 +=  (2a) 

Substituting (2a) in (1b) we shall obtain the following system: 
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which has the next solutions:  
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So, the solution of the (1a) homogeneous equation is: 
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(2b) 

 
 
The matching asymptotic expansions method 
 
 The outer expansion. We choose the first-order outer-expansion under the 
next form:  
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K+= )(0 xyy o  (3) 

Since the small parameter multiplies the largest derivative and the position of the 
boundary layer depends on the y ‘ coefficient which is 1 and it is positive, the 
boundary layer is in x = 0 (in the vicinity of the origin). So the outer expansion has to 
satisfy the second condition, namely condition (1b). Substituting (3) in (1a) with 
y(1)=β and equalising coefficients of the same power of ε, we obtain: 
 

000 =+′ yy ,     ( ) β=10y   

which has the next solution: 
 

xey −= 1
0 β   

Therefore, the outer expantion will be written under the following form: 
 

K+= −xo ey 1β  (4) 

 
 The inner expansion. In order to be able to study y behaviour in the 
boundary layer, we have to introduce the modified transformation:  
  

0, >= λ
ε

ξ λ

x  
 

Under the terms of the modified variable, equation (1a) can be written like 
this: 
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(5) 

 

 

of which minimum degenerated form is: 
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subject to λ = 1, for ε → 0, where yi is a note for y belonging to the boundary layer. In 
this way we chose the inner expansion under the form: 
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( )
ε

ξξ xYy i =+= ,0 K  
(6) 

 
The inner expansion has to satisfy the first boundary condition in (1b). Since x = 0 
corresponds to  
ξ = 0, 
 

( ) α=0iy  (7) 

 

 Substituting (6) in (5), with λ = 1, and in  (7) and equalising the same powers 
of ε, we obtain the first approximation under the form: 
 

( ) α==′+″ 0,0 000 YYY   

which has the solution: 
 

ξα −+−= eccY 110   

Therefore: 
 

K++−= −ξα eccy i
11  (8) 

 
 The matching. Next, we match the inner expansion to the outer expansion, 
term by term, so we obtain: 

- The first term of the outer expansion:                    y ∼ βe1 – x 
-             we rewrite it in the inner variable:                = βe1 – ε ξ   

  
-             we develop for the small ε                          = βe ( 1 - εξ + …) 
-             the first term of the inner expansion             = βe  

  (9a) 
- The first term of the inner expansion:                   y ∼ α - c1 + c1e-ξ 
-            we rewrite it in the inner variable:                = α - c1 + c1e-x / ε 
-            we develop for the small ε                            = α - c1 + EST 
-            the first term of the inner expansion             = α - c1   

 (9b)  
Equalising (9a) with (9b), after the main matching we obtain 
 

α - c1 = βe 
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so                                                                    
c1 = α - βe 

and the inner expansion is written: 
 

( ) K+−+= −ξβαβ eeey i   

The relation will give the form of the uniform expansion 
 

( ) ( ) K+−−++=−+= −− eeeeeyyyy xiic ξβαββ ξ100   

or 
 

( ) ξβαβ −− −+= eeey xc 1  (10a) 

We compared (10a) to the exact solution (1b) and we note that: 
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Therefore  exp (s2) is a much smaller exponent, if compared to exp (s1), so negligible, 
therefor (2b) is written: 
 

( ) K+−+= −− εβαβ /1 xxxe eeey  (10b) 

and we have 
 

( ) ( ) K+−−=− − 1/ xxce eeeyy εβα   

 
which is of the O(ε) order in the inner region x = O(ε) and of a small exponent in the 
outer region.  
 
The multiple scales methods 

 We shall choose the first-order outer expansion under the form: 
 

K++= ),(),(),( 10 ηξεηξε yyxy  (11a) 
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where   
 

ε
ξη xx == and  

 

 

then, the first and second order partial derivates of y will be:  
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and equation (1a) becomes: 
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(12) 

 

 

Substituting (11a) in (20) and equalising the coefficients of the same powers of ε, we 
obtain: 
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(14) 

The general solution of equation (13) must be written under the form: 
 

( ) ( ) ξηη −+= eBAy0  (15) 

where A and B are functions that will be determined out of a line of approximates, 
given by (14). The equation (14) becomes 
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 The relation given by y1 / y0, for any ξ, must be limited, Therefore we have: 
 

A’ + A = 0,      B’ - B = 0 
 

from where we obtain the general solution under the form:  
 

ξη −− == ebBeaA ,  (16) 

A and B being constant. Substituting (16) in (15), and the result in (11a) we obtain: 
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(17) 

 

Substituting (17) in (1b) we obtain the system 
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which has the solution  
 

eb

ESTea

βα

β

−=

+=
and  

 

Then equation (17) can be written under the next form: 
 

( ) K+−+= −− εβαβ /1 xxx eeey  (18) 

We can notice that equation (18) is in perfect concordance with equation 
(10b), meaning, with the numerical solution of the problem. 
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