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DIFRACTION ONE DIMENSIONAL NETWORK

by
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Abstract. Noncommutative geometry extend the notion from classical differential geometry
from differential manifold to discrete spaces and even noncommutative spaces which are
given by noncommutative algebra (over R or C). Such an algebra A replace the commutative

algebra of function of class C” over a smooth manifold.

In this work I present some aspects about the calculus of the distance in the
noncommutative geometry case. An important role in the distance calculus is playing by the
Dirac operator.
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1. Introduction

Definition 1.1_ Let V be a finite dimensional vector space over the scalar field K,
where K=R or C.
A Quadratic form on V is a mapping Q:V — K such that:

1) Q(Av) = Q(v)
2) The associated form B(v, w) = %{Q(v) +QW) -Q(v—w)}  v,weV is biliniar

In this case (V,Q) is a Quadratic space.
Definition 1.2 The pair (A v)is said to be a Clifford algebra for the quadratic space

(V,Q) when :
1) A is generated as an algebra by {v(v)|veV} and {/7,1 |4 e K}

2) (V) =-QW)l, veV

Example:1) The R-algebra of complex numbers C is generated by 1 and i,
verifying the relation:

i? =—1, itis a Clifford algebra for the quadratic space (R,Q) and the Clifford map C,
where Q:R—>R and c: R—C are given by:
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QX =—-x*, c(x)=
2)When we take Clg (R”"%, Q) where Q is the quadratic form

Q(x) = xl o+ X —xp+l xp+q

we use the notation CI(p, (), we put Cl(n)=Cl(0,n) and Cl*(n)=Cl(n,0)

Hence, for the universal real Clifford algebra Clc (V,-Q) over the vector space V=R",
where Q comes from the biliniar form of the usual euclidian product in R", we use the

notation Cl(n), that means that if we take an orthonormal basis €,€,,...,, in R", we

We have for instance:

Cl(D=C, Cl(2)=H, CI3)=H@®H
3)Let be the Pauli matrices in C***:

_1 0 _1 0 _O —i _0 1
7o 1) 7o =) %7 o) 7T o
and the associated matrices would be:

_1 0 _i 0 B 0 1 _0 i
““lo 1) % o 5) %71 0) %710 o)

We have:

00_0-1_0-2_03_| qz ef ef

and 0,0, =—io|, €6 = q where j,K,l} are cyclic permutation of the set{l 2 3} .

Let A, ={lo,,1eR}, A ={ J|x yeR}

A, = x Y x,yeR
Nl _ y X l >
Xo +1X X, +iX, . — z, z
= X. €eR :0,3 = — =z eC
At {— X, +iX; X, —iX, J‘ e } {(— z, z J‘ i< }
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Then we have: A, =R, A =2R®R A, =C, A, =H.
2. Dirac operator relative to a vector bundle

Given a riemannian manifold M, an operator A € Diff ¥ (E, E) of order 2 is
said to be a generalized laplacian if o,(A)(&,) =—H§pH:|Ep where | is the

metric norm of M , and an operator of order 1 ,D e Diff V(E,E) is said to be a
Dirac operator relative to the vector bundle (E,M,K”) whenever D?is a
generalized laplacian. If D is a Dirac operator we can define for any &, € T; M an
K -endomorphism c(&,)of E, given by ¢(&,)=0,(D)(&,) or, alternatively we
define a map:

7o T,MxE, > E,

(£9:Up) = C(E,)(U,) = CE)U,

for the tensorization of T;M by C we use the above relation TCM = (T; M )®R C,so
if we don’t want to precise if K =R or C we will write TcM =(T ;M) ®g K, and
obviously TeM =T ;M , note that the map y,could be defined using T,M instead
of T,M .

The endomorphisms c(& ) verify the condition ¢(& p)2 = —H§ sz | E, > equivalent to

C($p)C(mp) +C(17,)C(Sp) = —29(Sp,77p)] E, > this means that we got for any pe M a
K -bilinear map :(T;M)pr—)Ep that is a K -linear map (T,M) ®, E,—E,,

with the preceding property.
The set of K -linear operators ¢(&,): E, — E, generates an associative and unital

sub algebra A of the K —algebra Endy (E,) (with 1=1 g, as element one) and there
exista K -linear map c: TyM — A givenby & p = C(&p) and verifying

C(&p)C(1,) +C(17,)C(S ) = =29(S 7)1

This means that A is a Clifford algebra for the quadratic space (TyM,—g)and c is
the Clifford mapping. The vector bundle E is a Clifford vector bundle and
y :TcM xE — E, given by 7(§,u)‘ p =7 p(&p,Uy) =C(&p)U, is the coresponding
Clifford action.
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The following property exhibit the compatibility of D with the Clifford action:

D(sf) =c(df )s+ D(s) f (f eFc(M), sel'(M,E))

or alternatively, making F, (M) act multiplicatively in ['(M,E) through T(S) =g,
we will have :

D(sf)~D(9)f = (Do F)(9)~(f o D))= (Do F)~(f o D))(9)=[D, f]=c(df)s,
that is:

[D, 1= c(df)
or we can write using the previus conventions:
[D, f]=c(df).

We can say that any Dirac operator, relative to the vector bundle (E,M,K"), with a

riemannian manifold in the basis, determines in this vector bundle a structure of
Clifford bundle compatible with D in the preceding sense.

Any Clifford vector bundle on a riemannian manifold endowed with a covariant
derivative

V:I'(M,E) > T(M,E®T;M)
compatible with a Clifford action y :T,M ® E — E in a sense to be precise later, is

associated to a Dirac operator acting on the sections of this vector bundle and
compatible with the Clifford action, we will call such a vector bundle a Clifford-Weyl
bundle.

The compatibility of V with the Clifford action $pS=0C(5,)s means the

following:
Vx(@-9)=Vy0-S+0-Vxs (0eQ'(M,K))
or alternatively,
Vx (c(@)s) = ¢(V y 0)s+C(@)V xS (0 € Q' (M,K))

where V: X, (M) > X, (M)®Q'(M,K) orelse Vy : X, (M) > 8, (M)
for any X e Xy (M), is the Levi Cevita covariant derivative in M, determining a
covariant  derivative V:Q'(M,K)> Q' (M,K)®Q'(M,K) or actually,
Vy :Q'(M,K) > Q'(M,K) forany X e N, (M).
The set I'(M,E) of the sections of a Clifford-Weyl vector bundle has a structure of
(Cl (T*™M),F (M)) -bimodule, with the following properties of compatibility:
V(sf)=V(s)f + s® df
V(w-S)= (Vo) S+ o-Vs
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Next, I will prove the folowing result, which is the distance between two
diferent points on the straight line, in noncommutative geometry case:

de(xy) = SfUIZ{|f(X)— f(y)|: D, 1] <1 =Sfu1/:{|f(x)— Fy):[[F]l <1 =x-y

We know that [D,?]: A—> A

g—[D,fl(g)=(Do f —foD)g)=
=D(fg)- f(Dg)=(fg)' - fg'=fg+ fg'— fg'=f’
where I use the definition T(S) =sf .

In general for an operator T : E — E , we have : ||T|| = sup”T(f)”
el

In this case
D, £1] = sup| f &] = sup| f | = | ']
¢t l¢l<t
and using the inequality:

[FO0=f <[ ]-[x=¥
I prove the distance relation.

Now, I will use the Dirac operator to recover the distance between atoms in a
periodical one dimensional diffraction network.
Let assume that we have a network in which, between two atom we have the same
distance.
So, we can represent the network in this way:

1 2 n

Using this network we can construct the incidence matrix puting the element 1 when
we have a link between two atom and puting 0 if we don’t have link.
So, the incidence matrix would be:
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We define:
0 sin @ 0 0 0
ﬂ/ .
0 0 sin @ 0 0
2’ .
Dy=[0 0 o Sind 0 |
A

0 0 0 0 sin &
A

0 0 0 0 0

0

Letbe N = {1,2,..., n} the set of atoms.
We will denote with A, the algebra of all maps f :N —>C.
The function f is represented as
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f, 0 0 0

£, 0 0

~ 0 f 0
fo>f= 3 eC",

0O O f,

0O O 0

where f(n)= f_, and with this representation we can construct the function

Y

We can associate to the complex function f , areal function F with the properties:

F =0and F,, =F +[f, —f].

We have the operator
5_[0 D
Dy O

We know that in general, the distance in noncommutative geometry is given by:

do (X%, y) = Sfug{| ()~ f(y):|[D, 1| <1

In our case we can compute, and is easy to prove that

H[Ii f];y” = H[Ii F];y” for w eC".

So, after easy computation we will get:

A sin@ siné
[D,f]‘:max{ o= e 2 |fN—fN_1},
and using the condition”[D, f ]|| <1, we get:
d@d,i+n)= 'ﬂ +..+ ,ﬂ = M .
sind sind sinf

We can find the same result if we start from physics.
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