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Abstract. In this paper we consider the linear discrete time systems with periodic coefficients
and independent random perturbations (see [4] for the finite dimensional case). We give
necessary and sufficient conditions for the exponential stability property of the discussed
systems. In order to obtain these characterizations we use either the representations of the
solutions of these systems obtained by the authoress in [5] or the Lyapunov equations. These
results are the periodic versions of those given in [5].

Key Words: periodic systems, exponential stability, Lyapunov equations.

1. Introduction

In this paper we treat the problem of the exponential and uniform exponential
stability of time-varying systems described by linear difference equations, with
periodic coefficients, in Hilbert spaces. We yield some characterizations of the
uniform exponential stability property, which used the two representation theorems of
the solutions of these systems given in [5]. We also prove that in the periodic case (but
not in the general case), the uniform exponential stability is equivalent with the
exponential stability. Another necessary and sufficient conditions for the exponential
stability was obtained in terms of Lyapunov equations.

2.Preliminaries

Let H be a real separable Hilbert space and L(H) be the Banach space of all
bounded linear operators transforming H into H. We write (., .) for the inner product
and || . || for norms of elements and operators. We denote by a ® b, a, b € H the
bounded linear operator of L(H) given by a ® b(h) = (h, by a forall h € H.

2.1 Nuclear operators

The operator A € L(H) is said to be nonnegative, and we write 4 > 0, if 4 is self
adjoint and (4x, x) > 0 for all x € H. We say that 4 € L(H) is a positive operator (4 >
0) if there exists y > 0 such that 4 > yI, where [ is the identity operator on H. For 4 €
L(H), A > 0 we denote by 4” the square root of A (see [2]) and by |4| the operator
(A*A)*. Let A € L(H), A > 0 and{e,}n < x+ be an orthonormal basis in H. We define
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Tr(A) by Tr (A)= Z< Ae, e >. 1t is not difficult to see that 7r(4) is a well defined
n=1
number independent of the choice of the orthonormal basis {e,} < n+.

If 4 e L(H) we put || 4|, =Trace(j4])=Trace(|4]) < = and we denote by C;(H)
the set{4d € L(H)/ ||A || 1 <oo}. The elements of Ci(H) are called nuclear operators.

It is known (see [3]) that C|(H) (the operators’ trace class ) is a Banach space
endowed with the norm || . ||1 and for all 4 € L(H) and B € C(H) we have AB, BA
e C(H).

We denote by H and N the subspaces of L(H) and C,(H) formed by all self
adjoint operators and by K (respectively K,) the cones of all nonnegative operators of
H (respectively N ). H is a Banach space and since N is closed in C;(H) with respect to
|| . || 1 we deduce that it is a Banach space, too.

2.2 Covariance operators

Let (Q, [, P) be a probability space and & be a real (or H) valued random
variable on Q. WE write E(€) for his mean value (expectation). We denote by L* = L*
(Q, 0, P, H) the space of all equivalence class of H-valued random variables & such
that £ || & || ? < oo, (with respect to the equivalence relation & ~1 < E ("& - || H =
0).

It is useful to recall (see [1]) that if & is a H valued random variable such as F
| &% < o, then we have (E(&), u) = E(& u ) forallu eH.

If & e L?, we define the operator E (§ ® &) : H— H, E (£ ® &) (u) = E((u, &) &)
forallu eH.

It is easy to see that £ (§ ® &), which is called the covariance operator of &, is a
linear, bounded and nonnegative operator. The operator E (§ ® &) is nuclear and

lecee i=£] ] (M

2.3 Representations of the solutions of linear discrete-time systems
Let us consider the stochastic system

Xn+1= Anxn+ a_;:anxn ’

X=X 2)
wheren, ke N,n>k A,, B,, € L (H)and &, are real independent random variables,
which satisfy the conditions £(&,) =0 and £ | & | 2=p,<oforalln e N.

We denote by X(n, k), n > k> 0 the random evolution operator associated with
the linear system (2) i.e X (k, k) = [ and X(n, k) = (4,.1+ it But)...(A+EBy) for all
n>k

If x, = x,, (k, x) is the solution of the system (2) then it is unique and x, (k, x) =
X(n, k)x.

It is not difficult to see that E(x, ® x,) is a nuclear , nonnegative operator and

| ECe. ®@x) || = E]| .|| (3)

Xn
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We consider the linear operator U, : N — N,

UY)=A4,YA", +b,B,YB, (4)

Which is well-defined because N is a (left and right) ideal of space L(H).
Since || U.(Y) || 1= (| AP+ | B.|» || Y||1 we deduce that U, € L(N ). We associate to
(2) the deterministic system defined on N :

Yn+1 = Unyn » (5)
Ww=R,ReN’

If Y(n, k) is the evolution operator associated with the system (5) then Y(n, k) =
UnpU,s ...Upif n-1 > k and Y(k, k) =1, where [ is the identity operator on N. Since, U,
e L(N) it follows that ¥(n, k) € L(N ) for all n > k> 0.

Let us denote by y,= y,(k, R) the solution of (5) with y, = R € N ; it is clear that
it is unique and y,(k, R)= Y(n, k) (R) foralln, k e N,n>k R e N.

The fallowing theorem gives a representation of the covariance operator
associated to the solution of (2) by using the evolution operator Y(n, k).

Theorem 1 (see [S]If x, = x,(k, x) is the solution of (2), then E(x, ® x,) is the
solution of the system (5) with the initial condition y; = x ® x. So
E||xtm x||? = | v, b c® ) ||, (6)
forall n>k>0andx € H.
We consider the mapping O, : H - H
0.(S)= A, SA,+b, B, SB,, @)
where A4, ,B,and b,=E | &, 2 < o0 are defined as above.
It is easy to see that 0, is a linear and bounded operator.
Let us define the operator 7(n, k) by T(n, k) = OiQk+1...On1 € L(H ) for all n-1>
k and T(k, k) = I, where [ is the identity operator on H .

Theorem 2 [5] If X(n, k) is the random evolution operator associated with the system
(2) then we have

(T(n, k)(S)x, y) = E(S X (n, k)x, X (n, k)y) ®)
foralln>k>0,Se H andx, y € H.

The following lemma is known (see [6]).

Lemma3 Let 7 eL(H). If T(K) ¢ K then|T|| = || 7(1)||, where I is the identity
operator on H.

Since O,(K) < K for all p € N we deduce that 7(n, k) (K) < K. Then" T(n,
Bl = |76 b

The following theorem establishes a relation between the operator 7(n, k) and
the evolution operator Y(n, k).

Theorem 4 [5] If H is a real Hilbert space then
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[ Yr 1) (x ® %) ||\ = T(n, (), x)

17cn o]l = Y0 o]l
where || Y, k) || 1= sup || Y, B)(T) || jand 1 is the identity operator on H.

ren 7)1

and

2.4 Periodic solutions of stochastic discrete-time systems

If N e N, N >1 we say that the sequence 4, € L(H) (respectively b, € R) is N-
periodic if 4,.5 = A4, (respectively b .5 = b,), n > 0.

We need the following hypothesis:

H, : The sequences 4,,, B, € L(H) and b, = E | & | 2 are N—periodic, where A4,
B, and &, are the coefficients of the system (2). We have the following proposition:

Proposition 5 If H; holds and T(nk), Y(nk) are the operators introduced in the
previous subsection then

a) T(n + N, k + N) = T(n,k) and T(nN, 0) = T(N,0)", n >k >0,

b) Y(n + N, k + N) = Y(n,k) and Y(nN, 0) = T(N,0)", n >k >0,

&) E || xpw (k + Nx)||? = E||x., ()| for all n>k>o0.

Proof. Since the operators U, ,Q, introduced by (4), respectively (7) are N — periodic,
the statements a) and b) follows from the definitions of 7(n,k) and Y(n,k).
From the relation (6) we obtain

E ||xye5 k+N, )||7 = | ¥ 04N, k+N) c®x) |1
and c) is a consequence of b). =
Remark 6 Assume H; holds. From the definition of 7(n, k) (respectively Y(n,k) ) we
deduce that if 0 <r;, r <N ansl atp tf}en N N
T(aN + r;, BN + 1)) = T (N, r2) T(N,0)“" T(r,, 0)
and
Y (N +r, BN+ ry) =Y (r, 0) Y(N,0)"" Y(N, ).
3. Uniform exponential stability
Definition 7 We say that the system (2) is uniformly exponentially stable if there exist
p>1,a € (0,1) and ny € N such that we have
E|| X (kx| < pa*| x||? )

foralln >k>npandx € H.
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Definition 8 The system (2) is exponentially stable if there exist #> 1, a € (0,1) and
ny € N such that we have

E|| X (n,0)x||* < pa"E|| X (& 0)x]|? (10)
foralln >k>npand x € H.

From Theorems 2, 9 and the above definitions we obtain the following results.

Theorem 9 The following statements are equivalent:

a) the system (2) is uniformly exponentially stable;

b) there exist f> 1, a € (0,1) and ny € N such that || Y k) || ; < pa"* for all n
> k > no.,

¢) there exist > 1, a € (0,1) and ny € N such that || T(n k) || <pBd"* for all n >
k>ny.

Theorem 10 The system (2) is exponentially stable if and only if there exist §> 1, a
€ (0,1) and ny € N such that
< (n, ) x, x> <Ppa" " <T(k,0) (D) x, >
foralln >k >nypand xe H.

Remark 11 If the system (2) is uniformly exponentially stable, then it is exponentially
stable.

The converse is not generally true.
Counter - example. Let us consider the system (2), where B, = 0, Ape L(H) is such
as Ker Ay #{0}, P, is the projection on Ker Ay and A4, = 2P, for alln > 1.

Then for all n>k>0 or n>1>k we get X(n,0)x=0 and (10) holds. If we put

ﬁ:2max{1,||A0||} and a:% then for all n=ke{0l} or n=1,k=0 we get (10).
Consequently (2) is exponentially stable.

For all n>k>1 we have X(n,k)x=4, ..4,x=2"" Pyx.

We assume, by contradiction that (2) is uniformly exponentially stable. Then
there exist f>1,ae (0,1) such that ||X(n,k)x||2 < ﬂa”’k ||x||2 forall n>k>0,xe H. Thus,

for all n>k>LreH we get [2* Raf’ < pa"* o and B’ < ol . As

n—k — o, we deduce P, =0, and we deny the hypothesis. Hence (2) is not uniformly
exponentially stable.

The following theorem gives necessary and sufficient conditions for the uniform
exponential stability of the system (2), which satisfies the hypothesis H; and
establishes the equivalence between the exponential stability and the uniform
exponential stability.
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Theorem 12 The following assertions are equivalent:
a) the system (2) is uniformly exponentially stable<

b) lim E”X (nJ\Nf ,0}“2 =0 uniformly for x e H,|x|=1;

c) p(T(n]\N/ ,0))< 1;
dy p(r(av,0)<1;
e) the system (2) is exponentially stable.
We denote by p(4) the spectral radius of 4.

Proof. The implication a)=>b) is a consequence of the Definition 7. We will prove

b) = a). From Theorem 2 we have E“X (nﬁ ,O)v”z = <T(n]\7 ,OXI )x, x>.

Since lim E”X (nﬁ ,OM‘Z =0 uniformly for xe H,|x|=1 we deduce that for all

n—>0

£>0 there exists n(¢)eN such that E”X (n]\Nf ,O)x”2 <g for all n>n(¢) and
X eH,"x" =1.

Therefore <T (n]\~/ ,OXI )x,x> <¢ forall n>n(g) and xe H,

x|| =1 or equivalently
“T(nﬁ ,OXI )ﬂ <¢ forall n=n(e).

Let g:%. From Lemma 3 and the last considerations we deduce that there
exists n(%) € N such as HT(n(%)]\Nf ,Ol‘ <1. We denote N= n(%)]\Nf .

If mnkeN,n>k, then there exist «,y,5,neN,5,75< N  such as
n=a1§7+r1,k=y]§f+r2.

If o #y we use the Remark 6 and we have T(n,k)=T(N,r,)T(N,0)*7 ' T(r,0).
Then

T, )] < HT(N, r )” ”T(N,O)”a_y_l IT,0)

If we denote M = max ||T (n,k)" and a (é)i , we obtain

0<k<n<N
fon-n
[Tl <M?a"* 2 % <am?a"*.
If a=y we have |T(n,k)| < La""‘ <2Ma"*. Now, we take f=4M?*>2M
a2
(as M >1) and we deduce that |T(n,k)|<ga"" for all n>k>0. The conclusion

follows from Theorem 9.
,»a) = ¢)”. From T.2.38 of [2] we have
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p(T(N,0)) = lim 2/|T(N,0)" = lim z/ T(nN,O)H

If n, is as in the Definition 7 then HT(n]V,O)”:”T(n]\NI+nOZV,n0]\N/)“£,Ba”N,

(Theorem 9). Thus
lim 1/ T(nﬁ,O)“ <1im% ga" <a” <1,
n—o0 n—9o

and the conclusion follows.

.c) = b)” Let p(T(N.0)) = lim #|T(N,0)"| =s <1 and let >0 be such that
s+e=a<l.
Then, there exist k, € N such that for all n>k,we have ”T(]\NI,O)”

<a" and

“T(nZV,O)HSa” (by Proposition 5). Thus r}i_r)r;”T(n]\N/,O)“:O or equivalently

lim“T (nN,0)(I )” =0. Using again Theorem 9 we get the conclusion. Since ,,b) = a)”

Nn—>o0!
we get ,.c) < a)”.
,»¢) < d)” From Proposition 5 and Theorem 4 we have

HT(JV,O)"

~fruo-lrofo], -jror

p(T(N,0)) = lim #|T(N,0)" | = lim 1

we obtain the conclusion.

Now, we prove the equivalence between the uniform exponential stability and
the exponential stability.

The implication “a) = d)” is true (see Remark 11).

We only have to prove ,,d) = a)”. From Theorem 10 we see that there exist
B>1ae(0]) and n, € N such that we have (7(n,0)(/)x,x) < fa" " (T(k.0)(I)x,x) for all

n>k>ny, and xe H .

.
Since

Y(N,0)"

| =P (N.0).

By Lemma 3 we get |T'(n,0)

| < fa"* ||T(k,0)|| forall n>k>n, and

frosal< % lrof

for all n>n,. Then it is clear that lim #/ T(n]V,O)“ <a" <1 and d) = c¢). Since c) =

Hn—»00

a), we obtain the conclusion. The proof is complete.
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4. Theuniform exponential stability and the Lyapunov equations

On the space H we consider the Lyapunov equation

R’l = QH(BI+1) +I
(11

where Q, is the linear bounded operator given by (7).

Theorem 13 Assume H; holds. The system (2) is uniformly exponentially stable if
and only if there exist the positive operators Fy, R ...P; , such that P, satisfies the
equation (11) for n=0,..,N -2 and

PN—I :Qﬁ_l(PO)+I' (12)

Proof. Let us prove the implication ,,=”. We consider the linear operator

P, = z 0,..0, (D+1= ZT(k,n)(I ) which is well-defined as the series Z"T(k,n)”
k=n+1 k=n k=n
converges in R (by the hypotensis). We will prove that P, is N - periodic.
Indeed

P = i T(k,n+ N)I) = iT(q +N,n+N)(I)
k

q=n

=n+N
and by Proposition 5 we get P = ZT(q,n)(I )= P, . Since
q=n

0, (Pu)+1= " 0,0, 0 (D+Q,(N+1= 0,0, (D+1=P,

k=n+2 fe=n+1
we deduce that P is a solution of (11). Thus P satisfy the equation (11) for
n=0,.,N-2 and Pi =05 (R)+1. As T(n,k)(K)c K we see that P, >1>0. the
proof of this implication is complete.

“<”Let P,n= 0,1,...,ﬁ —1 be positive operators such that (11) holds for
n=01..,N-2 and (12) fulfill. For all n e N there exist unique a,; e N0<r < N
such as n=aN +r, and we define the sequence P, = B, . Then P, =0Q,(P,,)+1 forall
neN.Thus P, =T(n+1,n)(P,,;)+I and

E(P, X (n,k)x, X (n,k)x) = E(T(n+1,n)(P,,) )X (n,k)x, X (n,k)x) + E||X(n,k)x||2 for all

n 2 k . From Theorem 2 we obtain
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E(P, X (n,k)x, X (n,k)x) = (T(n,k)T (n+1,n)(P,,)x,x)+ E| X (n, k)x||2
=(T(n+1Lk)(P,, )%, x) + E| X (n, k)|
= E(P, X (n+Lk)x, X (n+1,k)x) + E[X (n, k).

From the hypothesis we deduce that there exist y,I" >0 such that for all # € N

A <P, <TI (13)
So

E(P, X (n,k)x, X (n,k)x) >

E(P, X (n+1,k)x, X (n+1,k)x)+L E(P, X (n,k)x, X (n,k)x).
We have

(1-DE(P, X (n,k)x, X (n,k)x) > E(P,, X (n+1,k)x, X (n+1,k)x)
and, by induction,
(=D (Pox,x) = E(P, X (n+1Lk)x, X (n+1,k)x).
From (13) it follows yE|X(n+ 1,k)x||2 <r-Lym* ||x||2 . If we take

B= % >1,a =1-1 and n, =0 we obtain the conclusion. The proof is complete. m

Proposition 14 If the system (2) is uniformly exponentially stable then the equation

(11) has a unique N- periodic and positive solution.

Proof. Let R,,neN be another N -periodic and positive (R, >0) solution of (11).
We have P,-R,=0,(P,,y—R,. ),neN and, by induction,
P,—R,=T(n+k,n)(P,; —R,.;) If >0 issuchthat P,,R, <T7 forall ne N we get

||Pn -R, || < ||T(n +k,n)|| ||(Pn T )|| < 2F||T (n +k,n)||. From the hypotheses and from

the Theorem 9 we have I}im||T(n+k,n)||=O for all neN. As k—> o we obtain
—0

P, =R, forall neN. The proof is complete.

References

[1].G.Da.Prato, J.Zabczyc, Stochastic Equations in Infinite Dimensions, University

Press Cambridge, 1992

[2].R.Douglas, Banach algebra techniques in operator theory, Academic Press, New
York and London, 1972.

217



Viorica Mariela Ungureanu-Exponential stability of stochastic discrete-time, periodic
systems in Hilbert spaces

[3].1.Gelfand, H.Vilenkin, Functii generalizate — Aplicatii ale analizei armonice,
Editura Stiintifica si Enciclopedica, (Romanian trans.), Bucuresti, 1985.
[4].T.Morozan, Periodic solutions of stochastic discrete — time systems, Rev.
Roumaine Math. Pures Appl., 32 (1987), 4, pag. 351-363.

[5].V. Ungureanu, Uniform exponential stability for linear discrete time systems with
stochastic perturbations, submitted (and favorably evaluated) to Bollettino U.M.I,
seria B.

[6].J.Zabczyk, Stochastic control of discrete — time systems, Control Theory and
Topics in Funct. Analysis, [AEA, Vienna, (1976).

Author:

Viorica Mariela Ungureanu — “Constantin Brancusi” University of Targu — Jiu,
Bulevardul Republicii, Nr. 1, 210152 Targu — Jiu, Gorj, Romania, e-mail:
vio@utgjiu.ro

218



