
Ioana Maria Ileană- Robot motion using Delaunay triangulation

 303

ROBOT MOTION USING DELAUNAY TRIANGULATION

by
Ioana-Maria Ileană

Abstract. Robot motion is nowadays studied from a lot of different perspectives. This paper is
based on the assumption of a fully known environment, allowing the supervisor to plan the
robot trajectory before the actual motion. The auxiliary structure we mainly use is the
Delaunay triangulation. We analyze the implementation details, as well as the limits of the
geometrical model we use.
Keywords: robot motion, geometrical model, Delaunay triangulation.

1. Initial environment data; geometrical model

 One of the most basic tasks in robotics is navigation through an obstacle-
constrained space. Leaving aside the real-time adjusting models, we place our
investigation under the hypothesis of a fully known map, which can be processed by
the robot user to build useful guiding structures – namely, the Delaunay triangulation
and its dual, the Voronoi diagram.
 In order to quickly obtain an operational model, we choose the simplest
geometrical frame: two-dimensional environment, obstacles as two-dimensional
points, circular shape (radius 1, knowing that any other radius value can be reduced to
the unit, using a global scaling factor) for the mobile robot.

2. Algorithms; sketched proofs

 We remind briefly the definition of the main two structures used in this paper.
Given a set S of two-dimensional points, we define the Voronoi diagrams as a set of
partially or totally closed polygonal cells, each cell corresponding to one and only one
point in S, and constructed as follows: for every point q, its cell is the reunion of all
points that are closer to q than to any other point in S.
 The Delaunay triangulation is Voronoi diagrams’ dual graph: every two points
having adjacent Voronoi cells will be connected by a Delaunay edge. It is shown that
this way we obtain a correct triangulation of the points in S; although we define
Delaunay triangulation starting from Voronoi cells, the actual building process works
‘in reverse’: it is much easier to implement and update the Delaunay structures.
 We assume the reader is familiar with the basic theoretical results as well as
the generic algorithms concerning Delaunay triangulation. Knowing that obtaining this
structure was not the main purpose of our study, we have chosen to code the
triangulation using the incremental algorithm, which provides a satisfactory
complexity (n^2 whereas n log n is proved to be the best complexity level) and seems
most appealing due to its simplicity.

Ioana Maria Ileană- Robot motion using Delaunay triangulation

 304

 We reformulate our problem as follows: we shall further study the motion of a
mobile point (the robot center) inside an environment blocked by circular obstacles.
Moreover, we model a polygonal rectangular box by placing close obstacles on the
borders (the alternatives will be considered in the last section).
. We build the Delaunay triangulation and the Voronoi diagrams of the set of
obstacles (viewed as points). A graphical overview is shown in the figure below:

Fig. 1. Initial environment: circular obstacles, Delaunay triangulation,

Voronoi diagrams

We shall further prove that using data providing a valid start and end point,
any valid trajectory (we refer to a trajectory as valid if it does not cut any circular
obstacles) of the robot center can be ‘transformed’ into a trajectory based only on
Voronoi edges.

Indeed, we can decompose the trajectory into segments so that every segment
belongs to one and only one Voronoi diagram. Given a segment, its validity means it
is placed at a distance d >=1 (obstacle radius) from the point p to which the cell
corresponds. We proceed to simply replace the segment with the sequence of the cell
bord starting with the ‘entering’ point of the segment and ending with its ‘exit’ point
(where the orientation is induced by the trajectory). We’re sure to stay valid: the
‘border’ points are (due to the Voronoi diagrams definition) placed on a distance to the
cell center greater or equal that any ‘interior’ point (the segment points as well).

Ioana Maria Ileană- Robot motion using Delaunay triangulation

 305

This simple remark gives us the amount of operational directives needed to
build a trajectory: step 1, we find a path from the initial point to a Voronoi vertex p1,
step 2, we proceed similarly to obtain a path from the end point to a Voronoi vertex
p2, step 3, we find a path between p1 and p2 using Voronoi edges. The initial
observation guaranties us that whenever a valid path exists, a path constructed as
mentioned exists.
The implementation of the first two steps goes as follows: we find the closest obstacle
p of the analyzed point (start or end point); we trigonometrically turn around this
obstacle using Voronoi vertexes, until we find vertexes v(j) and v(j+1) so that the
analyzed point is placed inside the triangle p v(j) v(j+1). We examine the validity of
the edge v(j) v(j+1) and we choose between v(j) and v(j+1).

The validity of a Voronoi edge shall be also used to filter the original Voronoi
graph and allow or not the edge to be placed on our trajectory. We establish this
validity by analyzing if the edge is or not cut by a circular obstacle. In fact, the
Voronoi properties make it possible to examine only the two extremities of the edge to
mark it valid or non-valid.
 The final path between p1 and p2 is calculated as an usual shortest path, in the
valid edges’ graph.

3. Graphical results

We give a graphical perspective on the results obtained in the figures below.
We show the initial obstacle structure, the Delaunay triangulation and Voronoi
diagrams. We also show the three steps in building a valid trajectory.

Fig 2. Step 1 in building a trajectory. The starting point is marked with a small
full disk.

Ioana Maria Ileană- Robot motion using Delaunay triangulation

 306

Fig. 3. First example: partial trajectory

Fig. 4. First example: complete trajectory

Ioana Maria Ileană- Robot motion using Delaunay triangulation

 307

Fig. 5. Second example, partial trajectory

Fig. 6. Second example, complete trajectory

Ioana Maria Ileană- Robot motion using Delaunay triangulation

 308

4. Problems, questions, limits

 When trying to build the triangulation, we had to deal with degenerated
situations. The incremental algorithm is based on a first triangulation of the convex
closure, problem for which there is a well known algorithm (Tsai’s algorithm) that
does not make coherent decisions when facing a degenerated situation. We therefore
improved Tsai’s algorithm, and also coded a probabilistic approach which is known to
be very quick and convenient in practice.
 A major choice in the final problem modeling was the border modeling: we
have reminded briefly this point, and we re-insist upon in this section.
 The first choice had in sight a convex polygonal box, to which we would have
had to intersect the Voronoi edges of the open cells. This procedure came up to be
very complex in practice, therefore we restrained our model to ‘conveniently placed’
obstacles. The placement of these obstacles is in itself an interesting problem, in a
certain way asking for ‘reverse’ calculus (finding points starting with a partial edge
set). As we have already mentioned, we have conducted our experiment placing ‘very
close’ obstacles on borders (at a distance smaller then the obstacle diameter), thus
arriving to a perhaps unnecessary complexity.
 There are algorithms for building the Delaunay triangulation of a set of more
complex-shaped objects. We think our study has very well functioned as a first
approach, but also consider further developments that will allow us to overcome the
limits of this very simple and basic model.

References

[1].Olivier Devillers- Geometrie et synthese des images, Ecole Polytechnique, 2003

Author:

Ileană Ioana-Maria, Ecole Polytechnique, Paris, France, ileana@poly.polytechnique.fr

