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ROBOT MOTION USING DELAUNAY TRIANGULATION 
 

by  
Ioana-Maria Ileană  

 
Abstract. Robot motion is nowadays studied from a lot of different perspectives. This paper is 
based on the assumption of a fully known environment, allowing the supervisor to plan the 
robot trajectory before the actual motion. The auxiliary structure we mainly use is the 
Delaunay triangulation. We analyze the implementation details, as well as the limits of the 
geometrical model we use. 
Keywords: robot motion, geometrical model, Delaunay triangulation. 
 
1. Initial environment data; geometrical model 
 
 One of the most basic tasks in robotics is navigation through an obstacle-
constrained space. Leaving aside the real-time adjusting models, we place our 
investigation under the hypothesis of a fully known map, which can be processed by 
the robot user to build useful guiding structures – namely, the Delaunay triangulation 
and its dual, the Voronoi diagram. 
 In order to quickly obtain an operational model, we choose the simplest 
geometrical frame: two-dimensional environment, obstacles as two-dimensional 
points, circular shape (radius 1, knowing that any other radius value can be reduced to 
the unit, using a global scaling factor) for the mobile robot. 
     
2. Algorithms; sketched proofs 
 
    We remind briefly the definition of the main two structures used in this paper. 
Given a set S of two-dimensional points, we define the Voronoi diagrams as a set of 
partially or totally closed polygonal cells, each cell corresponding to one and only one 
point in S, and constructed as follows: for every point q, its cell is the reunion of all 
points that are closer to q than to any other point in S.  
 The Delaunay triangulation is Voronoi diagrams’ dual graph: every two points 
having adjacent Voronoi cells will be connected by a Delaunay edge. It is shown that 
this way we obtain a correct triangulation of the points in S; although we define 
Delaunay triangulation starting from Voronoi cells, the actual building process works 
‘in reverse’: it is much easier to implement and update the Delaunay structures. 
 We assume the reader is familiar with the basic theoretical results as well as 
the generic algorithms concerning Delaunay triangulation. Knowing that obtaining this 
structure was not the main purpose of our study, we have chosen to code the 
triangulation using the incremental algorithm, which provides a satisfactory 
complexity (n^2 whereas n log n is proved to be the best complexity level) and seems 
most appealing due to its simplicity. 
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 We reformulate our problem as follows: we shall further study the motion of a 
mobile point (the robot center) inside an environment blocked by circular obstacles. 
Moreover, we model a polygonal rectangular box by placing close obstacles on the 
borders (the alternatives will be considered in the last section). 
. We build the Delaunay triangulation and the Voronoi diagrams of the set of 
obstacles (viewed as points). A graphical overview is shown in the figure below: 
 

 
Fig. 1. Initial environment: circular obstacles, Delaunay triangulation, 

Voronoi diagrams 
  

We shall further prove that using data providing a valid start and end point, 
any valid trajectory (we refer to a trajectory as valid if it does not cut any circular 
obstacles) of the robot center can be ‘transformed’ into a trajectory based only on 
Voronoi edges. 

Indeed, we can decompose the trajectory into segments so that every segment 
belongs to one and only one Voronoi diagram. Given a segment, its validity means it 
is placed at a distance d >=1 (obstacle radius) from the point p to which the cell 
corresponds. We proceed to simply replace the segment with the sequence of the cell 
bord starting with the ‘entering’ point of the segment and ending with its ‘exit’ point 
(where the orientation is induced by the trajectory). We’re sure to stay valid: the 
‘border’ points are (due to the Voronoi diagrams definition) placed on a distance to the 
cell center greater or equal that any ‘interior’ point (the segment points as well). 
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This simple remark gives us the amount of operational directives needed to 
build a trajectory: step 1, we find a path from the initial point to a Voronoi vertex p1, 
step 2, we proceed similarly to obtain a path from the end point to a Voronoi vertex 
p2, step 3, we find a path between p1 and p2 using Voronoi edges. The initial 
observation guaranties us that whenever a valid path exists, a path constructed as 
mentioned exists. 
The implementation of the first two steps goes as follows: we find the closest obstacle 
p of the analyzed point (start or end point); we trigonometrically turn around this 
obstacle using Voronoi vertexes, until we find vertexes v(j) and v(j+1) so that the 
analyzed point is placed inside the triangle p v(j) v(j+1). We examine the validity of 
the edge v(j) v(j+1) and we choose between v(j) and v(j+1). 

The validity of a Voronoi edge shall be also used to filter the original Voronoi 
graph and allow or not the edge to be placed on our trajectory.  We establish this 
validity by analyzing if the edge is or not cut by a circular obstacle. In fact, the 
Voronoi properties make it possible to examine only the two extremities of the edge to 
mark it valid or non-valid. 
 The final path between p1 and p2 is calculated as an usual shortest path, in the 
valid edges’ graph. 
 
3. Graphical results  
 

We give a graphical perspective on the results obtained in the figures below. 
We show the initial obstacle structure, the Delaunay triangulation and Voronoi 
diagrams. We also show the three steps in building a valid trajectory. 

 

 
 

Fig 2. Step 1 in building a trajectory. The starting point is marked with a small 
full disk. 
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Fig. 3. First example: partial trajectory 

 
 

 
Fig. 4. First example: complete trajectory 
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Fig. 5. Second example, partial trajectory 

 

 
Fig. 6. Second example, complete trajectory 
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4. Problems, questions, limits 
 
    When trying to build the triangulation, we had to deal with degenerated 
situations. The incremental algorithm is based on a first triangulation of the convex 
closure, problem for which there is a well known algorithm (Tsai’s algorithm) that 
does not make coherent decisions when facing a degenerated situation. We therefore 
improved Tsai’s algorithm, and also coded a probabilistic approach which is known to 
be very quick and convenient in practice. 
    A major choice in the final problem modeling was the border modeling: we 
have reminded briefly this point, and we re-insist upon in this section. 
 The first choice had in sight a convex polygonal box, to which we would have 
had to intersect the Voronoi edges of the open cells. This procedure came up to be 
very complex in practice, therefore we restrained our model to ‘conveniently placed’ 
obstacles. The placement of these obstacles is in itself an interesting problem, in a 
certain way asking for ‘reverse’ calculus (finding points starting with a partial edge 
set). As we have already mentioned, we have conducted our experiment placing ‘very 
close’ obstacles on borders (at a distance smaller then the obstacle diameter), thus 
arriving to a perhaps unnecessary complexity. 
 There are algorithms for building the Delaunay triangulation of a set of more 
complex-shaped objects. We think our study has very well functioned as a first 
approach, but also consider further developments that will allow us to overcome the 
limits of this very simple and basic model. 
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