
Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 309

NEURAL WORKBENCH: AN OBJECT–ORIENTED
NEURAL NETWORK SIMULATOR

by

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis,
Manos Roumeliotis

Abstract: The aim of this paper is the presentation of a neural network simulator, the “Neural
Workbench ”.The structure of this simulator is based on the principles of Object –Oriented
Design. This facilitates the implementation of complicated neural network structures that can
be used to address a variety of problems and applications. In addition to the description of the
simulator structure, specific task screen-shots of the running application are presented, and
typical network paradigms and examples are studied.

Keywords: Neural Networks, Object-Oriented Programming, Simulators, Software
Engineering

1. INTRODUCTION

The development of neural network simulators has received great attention in

the last few years. Many such systems are commercial applications, but a few of them
are available in the research community free of charge. The design of such programs
follows many programming approaches and dominant among them are the Procedural
Design and the Object –Oriented Design. The common feature of these design types is
the modeling of a large number of network characteristics, such as the description of
processing elements, the network topology and dynamics, and the weight adaptation
rules. A comparison between the most well known freely obtainable neural network
simulators can be found in (Dengel and Lutzy, 1993). The main problem associated
with most of the above network simulators is their strong dependency to a specific
problem. This fact means that, in general, each network model is dedicated to a
specific task, and if a new requirement becomes necessary, many things have to be
redefined and many procedures have to be reimplemented (Gegout, et al., 1994). In
other words, the existing simulators are not flexible and they are characterized by the
absence of design properties such as efficiency, extendibility, and maintainability
(Giles, et al., 1996). The remarks above justify the claim that a neural network
simulator has to be designed in such a way that becomes independent of any specific
problem. In order to simulate a network with this characteristic, the use of object –
oriented approach is recommended. The reason for this choice is the fact that this
approach is characterized by the most important properties of procedural programming
such as the reusability of code, and furthermore provides the user with a lot of other
characteristics such as information hiding, polymorphism and inheritance (Riel,

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 310

1996).This last feature allows the construction of a neural network tree, with an
abstract network type as root, and specialized types of networks as leafs (Shikuta,
1995).

2. REVIEW OF PREVIOUS WORK

The design and implementation of neural network simulators gave rise to a

large variety of such programs; each one has its own features and addresses a specific
class of problems. The most important of these simulators are the PlaNet Simulator
from the University of Colorado at Boulder, USA (Miyata, 1989), the Rochester
Connectionist Simulator (RCS) from the University of Rochester, UK (Goddard et al.,
1989), the Pygmalion Simulator from the Computer Science Department of the
University College at London, UK (Hewetson, 1990), and the Stuttgart Neural
Network Simulator (SNNS) from the University of Stuttgart, Germany (Zell et al.,
1995).Besides these applications, there are many other simulators available as
commercial or free programs, such as the NSK (Neural Simulator Kernel) (Gegout, et
al., 1994), the PDP++ (Dawson, et al., 2003), and the SPRLIB/ANNLIB (Statistical
Pattern Recognition and Artificial Neural Network Library) (Hoekstra, et al.,
1998).This last one has a low – level programming interface in C that supports the
easy construction and simulation of pattern classifiers, as well as the simulation of an
extensive list of network models and learning rules. In the following subsections, we
present a brief description of the most significant, according to our experience, neural
network simulation tools, among those mentioned above.

 2.1 PlaNet Neural Network Simulator

The PlaNet System (at the time of this writing in version 5.6), is a tool for

constructing, running and examining neural network structures. PlaNet has previously
been known as SunNet. The most significant aspect of PlaNet is that it allows the user
to deal with a network at a fairly high level of conceptualization, and yet provides the
flexibility of constructing networks of almost arbitrary structures and size, and to
“run” the network in many different ways. The user defines the network by specifying
layers of units and connections between layers. In the next step, the user can program
the network by defining procedures that specify the way it should be activated. The
network specification language of PlaNet is general enough to allow many different
types of networks to be constructed. It also includes high level routines for various
neural networks tasks, based on the backpropagation learning algorithm. Another
important aspect of PlaNet is that it allows the examination of the neural network state
through graphical display of various network characteristics, such as activation
patterns or weight matrices in the connections. We can use this to plot the learning

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 311

curve (error or other network states as a function of learning cycles) in a graph. PlaNet
is an environment with which the user can interact by giving commands that read in
network specifications and input/target patterns, run and train the network using user-
defined procedures, or display the state of the network in various ways. The
modification of the network parameters that affect the nature of the network or affect
the interface of PlaNet can be effected through an Options mechanism.

2.2 Rochester Connectionist Simulator (RCS)

RCS is a flexible and powerful tool for simulating networks of highly

interconnected information processing units. This is a unix application, written in C,
and its current version is 4.2. In the RCS application, a connectionist network consists
of simple computational elements which communicate by sending their level of
activation via links to other elements. The units have a small number of states, and
compute simple functions of their inputs. Associated with each link is a weight,
indicating the significance of activation arriving over that link. The behavior of the
network is determined by the pattern of connections, the weights associated with the
links, and the unit functions. The Rochester Connectionist Simulator supports
construction and simulation of a wide variety of networks, the most significant ones
being the backpropagation networks. It is characterized by the existence of a graphical
user interface (GUI) that allows the construction and training setup of neural network
structures in an easy and convenient way. Finally, the simulator kernel can be
embedded in other programs or used as a separate procedure, a fact that makes
possible the integration of the neural network technology in a great variety of
applications.

2.3 The Pygmalion Neural Network Simulator

The aim of Pygmalion NNS is to provide an open programming environment

that can be easily extended and interface with other tools. For this reason the core of
the environment is the platform of X-Windows and the programming languages C and
C++. The basic architecture of this application consists of five major parts:
• an X –graphics interface, for controlling the execution and monitoring of a

neural network application simulation.
• an algorithm library that allows the implementation of common neural

networks such as the backpropagation network, the Hopfield net, the Kohonen
Self –Organizing Map (SOM), and Boltzman machines.

• the high level languages N and nC that are based on C++and are used to
define a neural network architecture, by describing the network topology and
its dynamics.

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 312

• an intermediate language, nc-Code, that serves as a low–level, machine–
independent network specification language for representing the partially or
fully trained neural net- works.

• various compilers for the target UNIX-based workstations and parallel
transputer-based machines.
The Pygmalion environment has been implemented as a part of an ESPRIT-II

project in order to facilitate the implementation of key real-world applications, such as
image and speech processing.

2.4 SNNS (Stuttgart Neural Network Simulator)

The SNNS application is a software simulator for neural networks on Unix

workstations - a Windows version is also available - and its current version is 4.2.The
goal of the SNNS project is to create an efficient and flexible simulation environment
for research and applications of neural networks. The SNNS simulator consists of two
main components, namely, a simulator kernel written in C, and a graphical user
interface under X11Rx.The simulator kernel manipulates the internal data structures of
the neural networks and performs all operations of learning and recall. It can also be
used without the other modules comprising the system, as a C program embedded in
custom applications. SNNS is extensible with user –defined activation functions,
output functions, and learning procedures. Those can be written as simple C programs
and linked to the simulator kernel. SNNS supports many network architectures and
learning procedures, such as the backpropagation, the counter –propagation, the
QuickProp, ART1 and ART2, among others. Additional network architectures such as
the Dynamic LVQ, the Self Organizing Maps (SOM) and the Time Delay Neural
Networks (TDNN)are also available. The graphical user interface X –GUI is built on
top of the kernel and gives a 2D and 3D graphical representation of the neural
networks. It controls the kernel during the simulation run. In addition, the 2D user
interface has an integrated network editor which can be used for direct creation,
manipulation and visualization of neural networks in various ways.

3. INTRODUCTION TO NEURAL WORKBENCH

The main reason for the implementation of the Neural Workbench,

abbreviated to NW in most places from now on, is the support of neural network
facilities not provided by the existing neural network simulators. Such facilities are the
concatenation of “small” networks in order to create a large one (the import facility, as
well as the inversion of the neural network at hand in order to create its mirror version.
Furthermore, NW supports some other specialized functions, such as the recording of
the absolute minimum training set error during the backpropagation training.
Generally speaking, the implementation of a custom neural network simulator is faced

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 313

with arbitrary variations regarding network design and training methodology. The
programmer knows its structure, and can modify it to cover any new requirements. On
the other hand, the disadvantage of using an existing application is the limitation of
the user to those capabilities that are provided by the application. Even when the
source code of the simulator is available—a fact that is especially true for the majority
of Unix-based simulators used in the academic community—the modification and the
enhancement of this code is a non –trivial task. For this reason, scientists and
practitioners in the neural network field more often than not write their own
simulators. The most important characteristic of NW is the dynamical structure of the
implemented neural networks. These networks can be constructed easily, using the
mouse to add layers, neurons and synapses, as well as to define their properties. The
flexibility that characterizes the network structure is based on the fact that this
structure is implemented as a multi-layered linked list, i.e. a group of nested linked
lists, each node of which contains a whole list structure. More specifically, the kernel
of the current implementation of NW is based on a template class, named TList
(Adams, et al., 1995), that implements the single linked list. Using this class, the
construction of a single linked list of objects of type T is possible. The most important
part of the definition of this class is showed in Listing 1.

template <class T >class TList {
private :
 struct Node {
 Node *Next;
 T*DataVal;
 }*First, *Last;
 int NodeNumber;
public :
 Insert (T*Item, int Position);
 Delete (int Position);
 Search (T *Item)const;
}//TList

Listing 1
TList class definition

Based on the TList class template described above, we can define all other

classes that the neural network simulator contains. These classes model all the
simulator parts, such as the single neuron processing element, the layer of neurons, the
whole neural network, as well as the synapse between neurons, the bias unit, and the
training set class. A short description of all these classes is given below, followed by
the presentation of the main dialogs that allow the interaction between the user and the
neural network simulator.

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 314

3.1 The TNeuron class

The most important part of the TNeuron class definition is shown in Listing 2.

For each neuron we store its basic parameters, i.e. the threshold, the output value and
the type of activation function it uses. Other parameters that are not shown here are
associated with the various training algorithms in which a neuron participates. Further-
more, since a neuron belongs to a specific layer and it is connected with other neurons
through synapses; two single linked lists are maintained for each neuron. The first list,
named OutLinks, stores the synapses to which the neuron under consideration is the
source neuron, while the second list, named InLinks, stores the synapses to which the
neuron under consideration is the target neuron:

class TNeuron {
private:
 int NeuronId;
 int LayerId;
 double Threshold;
 double Output;
 int Type;
 int FunctionType;
public :
 TList <TSynapse >InLinks;
 TList <TSynapse >OutLinks;
};//TNeuron

Listing 2
TNeuron class definition

Besides the basic parameters that are shown in Listing 2, there are many other

parameters that are defined and maintained for each neuron processing element. These
parameters are mainly associated with the various algorithms that can be used for the
neural network training —the learning rate, the sigmoidal slope and the momentum
for the back propagation algorithm, to name a few. An interesting property of NW is
that each neuron can be assigned its own parameter values, allowing thus the
assignment of different behavior per network neurons; even through they belong to the
same layer. We can use this as an elementary modeling technique for the concept of
diversification.

As a last interesting feature of the applications associated with the network
neurons, the use of functional link neurons is considered. These neurons belong
exclusively to the input network layer; they are not fed with training set samples as the
normal neurons do, but their output is a function of the output of the remaining input

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 315

layer neurons. More specifically, if x is the output of some input neuron, then the
output of a functional link neuron, can have the forms sin(kΒx), cos(kΒx), xsin(kΒx)
or xcos(kΒx), where the parameter k assumes integer values. For a detailed description
of functional link neurons see (Pao, 1989).

3.2 The TLayer class

Each neural network layer is defined as a linked list of TNeuron objects. A

sort section of the TLayer class definition is shown in Listing 3. This class provides
the most important operations associated with each layer such as the insertion,
deletion, and search for neurons. These functions are based on the corresponding
functions of the. TList template -Insert, Delete and Search; this holds for every class
based on that template.

class TLayer {
private :
 int LayerId;
public :
 TList <TNeuron >Neurons;
 InsertNeuron (TNeuron *N);
 DeleteNeuron (int Pos);
 CopyNeuron (int old, int new);
 MoveNeuron (int old, int new);
 FindNeuron (int Pos);
};//TLayer

Listing 3
TLayer class definition

The neural network layers as they are represented by the TLayer objects are

characterized by their own icons in the running NW application. If the user displays
the layer property sheet, by double clicking on the icon of some layer, the properties
that are set via this dialog are applied to the group of neurons belonging to that layer.

 3.3 The TNetwork class

A neural network is defined as a linked list of TLayer objects. Listing 4 shows

a part of the TNetwork class definition. Since each neural network is a linked list of
TLayers, and each one of them is a linked list of TNeurons, it is possible to insert,
delete, copy and move layers, as well as neurons between these layers. Synapses can
also be created between these neurons, regardless of their positions in the network
structure, a fact that makes possible the creation of feedforward as well as of recurrent
networks. There are also two additional classes that are used in the TNetwork class

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 316

definition: the TBias class that simulates the bias unit, and the TSet class that
describes a training set. There is a single linked list of such TSet objects, meaning that
more than one training sets can be attached and used during training of each neural
network. The TNetwork class is the most complicated class of Neural Workbench,
since it includes all the properties that can be assigned to each TNetwork object.
Besides the attributes and the functions shown in Listing 4, there are many other
members of that class. Due to the aims of this short exposition those can not be
presented analytically here. The most important of them are appropriate functions that
are used in order to save and load the network to and from a hard disk file, and the
procedures Import and Inverse that allow the concatenation of small networks to a
larger one and construction of the mirror network.

class TNetwork {
 int NetworkId;
public :
 TBias *biasUnit;
 TList <TSet >setList;
 TList <TLayer >Layers;
 AddLayer (TLayer *L, int Pos);
 DeleteLayer (int Pos);
 CopyLayer (int old, int new);
 MoveLayer (int old, int new);
 AddNeuron (TNeuron *N,
 int LPos, int NPos);
 DeleteNeuron (int LPos, int NPos);
 AddSynapse (TNeuron *Source,
 TNeuron *Target);
 DeleteSynapse (TNeuron *Source,
 TNeuron *Target);
 AddTrainingSet (TSet *S);
 InsertBias ();
 RemoveBias ();
 ...
};//TNetwork

Listing 4
TNetwork class definition

class TSynapse {
private :
 double Input;
 double Weight;

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 317

public :
 TNeuron *Source;
 TNeuron *Target;
};//TSynapse

Listing 5
TSynapse class definition

3.4 The TSynapse class

The TSynapse class simulates the behavior of a synapse between two neurons.

Each synapse is characterized by an input and a weight value for that input, and in
order to be described completely, one has to determine the source as well as the target
neuron for that synapse. A part of the definition of the TSynapse class is shown in
Listing 5. Each synapse can be enabled or disabled during simulation, and its weight
can be fixed, varied, or conditionally fixed. In the last case, the synapse weight is
fixed when a predefined condition is satisfied during simulation.

3.5 The TBias class

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 318

The TBias class simulates the behavior of the bias unit which is connected to a
single neuron in order to provide for it a variable threshold. Since the bias is actually a
special type of neuron, it is de- rived from the TNeuron class through inheritance. So,
the definition of the TBias class, not shown in Listing format here, has the form

class TBias :public TNeuron {..... }

4. THE TRAINING SET STRUCTURE

The TList class template is also used for the representation of the training set.

Each training set is defined as a linked list of TVectorPair objects. The TVectorPair
object is composed from two other linked lists, one for input values and one for the
corresponding output values. In the current implementation these atomic values can be
of integer or double data type and they are represented as objects of another class
called TPatternValue. This dynamic structure of the training set, allows the insertion
and deletion of training patterns, as well as the variation of the number of inputs and
outputs for each pattern. Figure (1) shows the class diagram of the neural simulator
structure, in Booch notation (Booch, 1994).

5. USING SIMULATOR COMPONENTS

In order to access the components of the neural networks created through

Neural Workbench, the overloaded operator [·] of the class TList is used;

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 319

this returns a specific node of the list. So, in order to get the i th layer of a
TNetwork object

 tNet 6Layers [i]
is used. The j th neuron of that layer is returned by

 tNet 6Layers [i] 6Neurons [j].

In order to retrieve the weight of the k th input synapse of that neuron, we
write tNet 6Layers [i] 6Neurons [j] 6\

 InLinks [k] 6GetWeight(),
and so on.

6. CREATING AND MANIPULATING NEURAL NETWORKS

 The creation and manipulation of neural networks with NW can be performed

using the key- board and the mouse. The program runs under the graphical
environment of Win32 platforms (a linux port is under development), and the con-
struction of networks can be done via a network editor which has been designed for
that purpose. A typical neural network structure implemented via NW is shown in
fig.(2). The neural network shown there is a feedforward one, meaning that the net
synapses are directed from the input layer to the output layer. However, in general, the
program allows the association of two neurons that can be located anywhere in the
network structure. Figure (3) shows various connection types between neurons in a
neural network.

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 320

 These types include the connection of a neuron to itself (self-connected
neurons) and the connections of consecutive neurons that belong to the same layer in
both forward and backward directions. This last connection type allows the
construction of Hopfield –type neural networks. Regarding the connections between
two layers, these can be full connections –in the sense that all the neurons of the
source layer are connected to all neurons of the target layer –or one-to-one, if the two
layers are characterized by the same number of neurons. Finally, a bias unit can be
connected to each neuron that provides it with a variable threshold. The neurons that
are connected to the bias unit contain the letter B in the bitmap that represents them in
those figures. The assignment of properties to each network element can be performed
using a property sheet that can be displayed by left –clicking on them. There are
different types of such sheets that can be used to configure the various network
elements such as the layers, the neurons and the synapses of the network. If a property
value is determined for a layer, then this value is assigned to all the neurons that
belong to that layer. Neural Workbench, however, allows the assignment of different
values to the neurons of the same layer, using the neuron property sheet; a part of it is
shown in figures (4) and (5). Using the property page of the figure (4), the user can
determine the threshold value and the function type of the selected neurons, while the
property page of figure (5) allows the determination of important neuron properties
such as the learning rate, the sigmoidal slope and the momentum, as well as the
activation (or deactivation) of the log procedure, that allows the recording of various
neuron parameters during the training operation. Neural Workbench contains similar
property dialogs that allow the configuration of the network layers details as well as
the synapses of the current neural network structure.

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 321

 7. TRAINING SET MANIPULATION

 Neural Workbench provides an advanced interface for the creation and
manipulation of training set structures. As it has been already mentioned above, the
current neural network can be associated with more than one training set at the same
time. These sets must be compatible with the network structure; each one of them can
be used during the training phase. The software component which is responsible for
the interaction between the user and the training sets of the network is shown in
fig.(6). From this figure, it is clear that the user can modify the contents of the training
set by inserting and deleting data values, as well as its structure, by varying the
number of inputs and the corresponding desired outputs of the current training set.

 8. NEURAL NETWORK TRAINING AND RECALL

 The current NW version supports the most commonly used learning
algorithms, namely the back – propagation algorithm and the Kohonen self –
organizing maps (SOM). These algorithms have been implemented as separate
threads, a fact that makes possible the interaction between the user and the neural
network, during training. Due to page limitations, in the next paragraphs the back
propagation interface is going to be described in short. The main window of the back
propagation algorithm is shown in figure 7. This window includes the graph of the
global error as a function of the iteration cycle and it also displays the current
minimum and maximum values of that error. An interesting feature of this dialog is

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 322

the scaling of the error graph, if the new error value does not belong to the interval
defined by the current minimum and maximum error values. In this case the whole
curve is rescaled in order to fit to the plot area of the back propagation window. The
operation of the back propagation algorithm is controlled by means of many child
windows with the most important of them to be the control panel dialog, the training
parameters dialog, and the back propagation results dialog. The control panel is used
to start, suspend, continue, and abort the neural network simulation. The training
parameters window allows the variation of the back propagation parameters such that
the learning rate, the sigmoidal slope, and the momentum.

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 323

 Since the algorithm is running in a multi-thread environment the variation of
these parameters at run time and the study of the consequences of this variation is
possible. Finally, the back propagation results dialog displays for each simulation
cycle, the values of important parameters such as the current cycle and pattern, the
current global error value and the tolerance value that indicates the level of simulation
accuracy that has to be reached by the neural network after the training operation.
Another important dialog that controls the operation of the back propagation algorithm
is the Options property sheet that allows the configuration of the back propagation
parameters -the corresponding property page is shown in figure 9 -and the creation of
the log data files. The parameter values that are set via this dialog, are associated with
the learning rate, the sigmoidal slope and the momentum, as well as the number of
iterations, the tolerance and the learning mode (pattern shuffling or not). Regarding
the creation of the log files, the user has the ability to determine the parameters that
have to be logged during training. These parameters include the neuron delta values,
the synapse weight values, the neuron output values, and the current global error
(which is the default option). Except from the parameter value to be recorded, the user
can also specify the frequency of this recording, which can take place every pattern,
every N training cycles, or only once, after the end of the training operation.

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 324

 After the termination of the training operation, the trained neural network can
be used for the recall process. In this process, the user supplies to the network input
data values that may belong to the training set or not, and the network tries to es timate
the correct output based on the knowledge obtained during training. In Neural
Workbench, the recall operation is performed via the dialog shown in figure 10.

 9. CONCLUSIONS AND FUTURE WORK

 Neural Workbench is a multi-threaded neural network simulator that allows
the construction and training of neural network structures. The architecture of this
application follows the principles of the object-oriented design, and therefore, its
implementation is based on the powerful characteristics of this approach such as the
polymorphism and class inheritance. According to this architecture, a neural network
is defined as a single linked list of TLayer objects (representing the network layers)
each one of them contains a single linked list of TNeuron objects (representing the
processing element known as neuron). Each network neuron can be either a source or
a target neuron for a synapse (which is represented by a TSynapse object), and for this
reason it includes two linked lists of synapses: a list of synapses to which the current
neuron is the source neuron, and another list of synapses, to which the current neuron
is the target neuron. From this description it is clear that each synapse is stored twice
in the neural network structure: one time to the synapse list of the source neuron, and
another time to the synapse list of the target neuron. This double storage of each

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 325

synapse leads to the following disadvantages: (a) the programming of the neural
network is more complicated since every time that the characteristics of a synapse are
modified, the characteristics of its conjugate synapse have to be modified, too and (b)
the neural network data file demands mope space in the memory and in the secondary
storage, since the synapse information is stored twice. However these disadvantages
are considered unimportant, since today, computers are characterized by very fast
processors and very large (and cheap) storage devices. On the other hand, this design
allows the creation of synapses between any processing elements of the neural
network, regardless of its position inside the network structure. The neural network
simulator described in previous sections, has been used in various problems and it
worked fine in the case of backpropagation, counterpropagation and Kohonen training
(Freeman and Skapura, 1991). One of its most important applications was the
implementation and training of neural models for chaotic maps, such as the logistic
equation. Besides the characteristics described in the previous sections, the simulator o
fers much more features, such as the use of variable learning rate and the plotting of
many network features vs. time. Future work on this project includes the re-
programming of the simulator from the beginning in order to support more features
such as the creation of more than one neural network at the same time that can be
connected together and work in parallel -the current version of the application allows
the usage of only one network. The design of the whole simulator is going to be
modified, too, in such a way that each network type will be produced by an abstract
network class, through inheritance. The result of this approach is a hierarchical neural
network tree, with an abstract net class as root, and specialized network types as nodes
and leafs. Finally, the graphical user interface is going to be enhanced by
implementing useful functions that will allow the interaction between the user and the
application in a more convenient way.

References

[1].Joel Adams, Sanford Leestma, Larry Nyho . (1995).C++, An Introduction to

Computing , First Edition, Prentice-Hall Inc, ISBN 0-02- 369402-5.
[2].Grady Booch (1994).Object-oriented Analysis and Design with Applications ,

Second Edntion, The Benjamin/Cummings Publishing Com- pany Inc, ISBN
0-8053-5340-2.

[3].Chadley K.Dawson, Randall C.O ’Reilly, James McClelland (2003).The
PDP++Software Users Manual , Carnegie Mellon University.

[4].Andreas Dengel and Ottmar Lutzy (1993).A Comparison of Neural Net Simulators
, IEEE Expert, Volume 8, Number 4, pp.43-51.

[5].J.Freeman, D.Skapura (1991).Neural Net- works, Algorithms, Applications and
Program- ming Techniques , Addison Wesley Publishing Company.

[6].Cedric Gegout, Bernard Girau, Fabrice Rossi (1994).NSK, an Object-Oriented
Simulator Kernel for Arbitrary Feedforward Neural Net- works in Proceedings

Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator

 326

of IEEE International Conference on Tools with Arti .cial Intelligence, New
Orleans, pp.93-104.

[7].C.Lee Giles, Steve Lawrence and Ah Chung Tsoi (1996).Correctness, E .ciency,
Extendability and Maintainability in Neural Networks Simu- lation ,
International Conference on Neural Net- works, ICNN 96, Washington DC,
IEEE press, pp.474-479.

[8].Nigel H. Goddard, KentonJ.Lynne, TobyMintz, Liudvikas Bukys
(1989).Rochester Connection- ist Simulator , The University of Rochester,
Computer Science Department, Rochester, New York, Technical Report 1989.

[9].Mike Hewetson (1990).Pygmalion Neural Net- work Programming
Environment:Reference Manual , ESPRIT Project 2059.

[10].A.Hoekstra, M.A.Kraaijveld, D.de Ridder, W.F.Schmidt, A.Ypma (1998).The
Complete SPRLIB &ANNLIB Version 3.1 User ’s Guide and Reference
Mannual , Delft University of Technology, Faculty of Applied Physics,
Pattern Recognition Group.

[11].Yoshiro Miyata (1989).A User Guide to PlaNet Version 5.6 , University of
Colorado, Boulder, Computer Science Department.

[12].Pao Y (1989).Adaptive Pattern Recognition and Neural Networks , Addison
Wesley Publishing Company.

[13].Arthur Riel (1996).Object-Oriented Design Heuristics , Addison-Wesley
Publishing Com- pany Inc, ISBN 0-201-63385-X.

[14].Erich Schikuta (1995).A Software Engineering Approach to Neural Network
Speci .cation , in Proc.of 3 rd Annual SSN Symposium on Neural
Networks:Arti .cial Intelligence and Industrial Applications, pp.381-384,
Nijmegen, Nether- lands, Springer-Verlag, Berlin.

[15].Andreas Zell et al (1995).SNNS Version 4.2 User Manual , University of
Stuttgart, Institute for Parallel and Distributed High Performance Systems
(IPVR), Applied Computer Science, Stuttgart.

Authors:

Athanasios Margaris, corresponding author, email: amarg@uom.gr
Efthymios Kotsialos, email :ekots@uom.gr
Athanasios Styliadis, email : styl@it.teithe.gr Technological Institute of Thessaloniki,
Sindos GR 541 01, Hellas
Manos Roumeliotis, email: manos@uom.gr University of Macedonia Department of
Applied Informatics Thessaloniki GR 540 06, Hellas 3

