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Abstract: The aim of this paper is the presentation of a neural network simulator,  the “Neural 
Workbench ”.The structure of this simulator is based on the principles of Object –Oriented 
Design. This facilitates the implementation of complicated neural network structures that can 
be used to address a variety of problems and applications. In addition to the description of the 
simulator structure, specific task screen-shots of the running application are presented, and 
typical network paradigms and examples are studied.  
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1. INTRODUCTION  
 
The development of neural network simulators has received great attention in 

the last few years. Many such systems are commercial applications, but a few of them 
are available in the research community free of charge. The design of such programs 
follows many programming approaches and dominant among them are the Procedural 
Design and the Object –Oriented Design. The common feature of these design types is 
the modeling of a large number of network characteristics, such as the description of 
processing elements, the network topology and dynamics, and the weight adaptation 
rules. A comparison between the most well known freely obtainable neural network 
simulators can be found in (Dengel and Lutzy, 1993). The main problem associated 
with most of the above network simulators is their strong dependency to a specific 
problem. This fact means that, in general, each network model is dedicated to a 
specific task, and if a new requirement becomes necessary, many things have to be 
redefined and many procedures have to be reimplemented (Gegout, et al., 1994). In 
other words, the existing simulators are not flexible and they are characterized by the 
absence of design properties such as efficiency, extendibility, and maintainability 
(Giles, et al., 1996). The remarks above justify the claim that a neural network 
simulator has to be designed in such a way that becomes independent of any specific 
problem. In order to simulate a network with this characteristic, the use of object –
oriented approach is recommended. The reason for this choice is the fact that this 
approach is characterized by the most important properties of procedural programming 
such as the reusability of code, and furthermore provides the user with a lot of other 
characteristics such as information hiding, polymorphism and inheritance (Riel, 
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1996).This last feature allows the construction of a neural network tree, with an 
abstract network type as root, and specialized types of networks as leafs (Shikuta,  
1995).  

 
 
2. REVIEW OF PREVIOUS WORK  
 
 
The design and implementation of neural network simulators gave rise to a 

large variety of such programs; each one has its own features and addresses a specific 
class of problems. The most important of these simulators are the PlaNet Simulator 
from the University of Colorado at Boulder,  USA (Miyata, 1989), the Rochester 
Connectionist Simulator (RCS) from the University of Rochester, UK (Goddard et al.,  
1989), the Pygmalion Simulator from the Computer Science Department of the 
University College at London, UK (Hewetson, 1990), and the Stuttgart Neural 
Network Simulator (SNNS) from the University of Stuttgart,  Germany (Zell et al., 
1995).Besides these applications, there are many other simulators available as 
commercial or free programs, such as the NSK (Neural Simulator Kernel) (Gegout, et 
al.,  1994), the PDP++ (Dawson, et al., 2003), and the SPRLIB/ANNLIB (Statistical 
Pattern Recognition and Artificial Neural Network Library) (Hoekstra, et al., 
1998).This last one has a low – level programming interface in C that supports the 
easy construction and simulation of pattern classifiers, as well as the simulation of an 
extensive list of network models and learning rules. In the following subsections, we 
present a brief description of the most significant, according to our experience, neural 
network simulation tools, among those mentioned above. 

 
 2.1 PlaNet Neural Network Simulator  
 
The PlaNet System (at the time of this writing in version 5.6), is a tool for 

constructing, running and examining neural network structures. PlaNet has previously 
been known as SunNet. The most significant aspect of PlaNet is that it allows the user 
to deal with a network at a fairly high level of conceptualization, and yet provides the 
flexibility of constructing networks of almost arbitrary structures and size, and to 
“run” the network in many different ways. The user defines the network by specifying 
layers of units and connections between layers. In the next step, the user can program 
the network by defining procedures that specify the way it should be activated. The 
network specification language of PlaNet is general enough to allow many different 
types of networks to be constructed. It also includes high level routines for various 
neural networks tasks, based on the backpropagation learning algorithm. Another 
important aspect of PlaNet is that it allows the examination of the neural network state 
through graphical display of various network characteristics, such as activation 
patterns or weight matrices in the connections. We can use this to plot the learning 
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curve (error or other network states as a function of learning cycles) in a graph. PlaNet 
is an environment with which the user can interact by giving commands that read in 
network specifications and input/target patterns, run and train the network using user-
defined procedures, or display the state of the network in various ways. The 
modification of the network parameters that affect the nature of the network or affect 
the interface of PlaNet can be effected through an Options mechanism.  

 
2.2 Rochester Connectionist Simulator (RCS)  
 
RCS is a flexible and powerful tool for simulating networks of highly 

interconnected information processing units. This is a unix application, written in C, 
and its current version is 4.2. In the RCS application, a connectionist network consists 
of simple computational elements which communicate by sending their level of 
activation via links to other elements. The units have a small number of states, and 
compute simple functions of their inputs. Associated with each link is a weight, 
indicating the significance of activation arriving over that link. The behavior of the 
network is determined by the pattern of connections, the weights associated with the 
links, and the unit functions. The Rochester Connectionist Simulator supports 
construction and simulation of a wide variety of networks, the most significant ones 
being the backpropagation networks. It is characterized by the existence of a graphical 
user interface (GUI) that allows the construction and training setup of neural network 
structures in an easy and convenient way. Finally, the simulator kernel can be 
embedded in other programs or used as a separate procedure, a fact that makes 
possible the integration of the neural network technology in a great variety of 
applications.  

 
2.3 The Pygmalion Neural Network Simulator  
 
The aim of Pygmalion NNS is to provide an open programming environment 

that can be easily extended and interface with other tools. For this reason the core of 
the environment is the platform of X-Windows and the programming languages C and 
C++. The basic architecture of this application consists of five major parts:  
• an X –graphics interface, for controlling the execution and monitoring of a 

neural network application simulation.  
• an algorithm library that allows the implementation of common neural 

networks such as the backpropagation network, the Hopfield net, the Kohonen 
Self –Organizing Map (SOM), and Boltzman machines.  

• the high level languages N and nC that are based on C++and are used to 
define a neural network architecture, by describing the network topology and 
its dynamics.  
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• an intermediate language, nc-Code, that serves as a low–level, machine–
independent network  specification language for representing the partially or 
fully trained neural net- works.  

• various compilers for the target UNIX-based workstations and parallel 
transputer-based machines.  
The Pygmalion environment has been implemented as a part of an ESPRIT-II 

project in order to facilitate the implementation of key real-world applications, such as 
image and speech processing.  

 
 
2.4 SNNS (Stuttgart Neural Network Simulator)  
 
The SNNS application is a software simulator for neural networks on Unix 

workstations - a Windows version is also available - and its current version is 4.2.The 
goal of the SNNS project is to create an efficient and flexible simulation environment 
for research and applications of neural networks. The SNNS simulator consists of two 
main components, namely, a simulator kernel written in C, and a graphical user 
interface under X11Rx.The simulator kernel manipulates the internal data structures of 
the neural networks and performs all operations of learning and recall. It can also be 
used without the other modules comprising the system, as a C program embedded in 
custom applications. SNNS is extensible with user –defined activation functions, 
output functions, and learning procedures. Those can be written as simple C programs 
and linked to the simulator kernel. SNNS supports many network architectures and 
learning procedures, such as the backpropagation, the counter –propagation, the 
QuickProp, ART1 and ART2, among others. Additional network architectures such as 
the Dynamic LVQ, the Self Organizing Maps (SOM) and the Time Delay Neural 
Networks (TDNN)are also available. The graphical user interface X –GUI is built on 
top of the kernel and gives a 2D and 3D graphical representation of the neural 
networks. It controls the kernel during the simulation run. In addition, the 2D user 
interface has an integrated network editor which can be used for direct creation, 
manipulation and visualization of neural networks in various ways. 

 
3. INTRODUCTION TO NEURAL WORKBENCH  
 
The main reason for the implementation of the Neural Workbench, 

abbreviated to NW in most places from now on, is the support of neural network 
facilities not provided by the existing neural network simulators. Such facilities are the 
concatenation of “small” networks in order to create a large one (the import facility, as 
well as the inversion of the neural network at hand in order to create its mirror version. 
Furthermore, NW supports some other specialized functions, such as the recording of 
the absolute minimum training set error during the backpropagation training. 
Generally speaking, the implementation of a custom neural network simulator is faced 
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with arbitrary variations regarding network design and training methodology. The 
programmer knows its structure, and can modify it to cover any new requirements. On 
the other hand, the disadvantage of using an existing application is the limitation of 
the user to those capabilities that are provided by the application. Even when the 
source code of the simulator is available—a fact that is especially true for the majority 
of Unix-based simulators used in the academic community—the modification and the 
enhancement of this code is a non –trivial task. For this reason, scientists and 
practitioners in the neural network field more often than not write their own 
simulators. The most important characteristic of NW is the dynamical structure of the 
implemented neural networks. These networks can be constructed easily, using the 
mouse to add layers, neurons and synapses, as well as to define their properties. The 
flexibility that characterizes the network structure is based on the fact that this 
structure is implemented as a multi-layered linked list, i.e. a group of nested linked 
lists, each node of which contains a whole list structure. More specifically, the kernel 
of the current implementation of NW is based on a template class, named TList 
(Adams, et al., 1995), that implements the single linked list. Using this class, the 
construction of a single linked list of objects of type T is possible. The most important 
part of the definition of this class is showed in Listing 1. 

 
template <class T >class TList { 
private :  
 struct Node { 
  Node *Next;  
  T*DataVal;  
 }*First, *Last; 
 int NodeNumber;  
public :  
 Insert (T*Item, int Position);  
 Delete (int Position);  
 Search (T *Item)const;  
}//TList  
 
Listing 1  
TList class definition   
 
Based on the TList class template described above, we can define all other 

classes that the neural network simulator contains. These classes model all the 
simulator parts, such as the single neuron processing element, the layer of neurons, the 
whole neural network, as well as the synapse between neurons, the bias unit, and the 
training set class. A short description of all these classes is given below, followed by 
the presentation of the main dialogs that allow the interaction between the user and the 
neural network simulator.  
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3.1 The TNeuron class  
 
The most important part of the TNeuron class definition is shown in Listing 2. 

For each neuron we store its basic parameters, i.e. the threshold, the output value and 
the type of activation function it uses. Other parameters that are not shown here are 
associated with the various training algorithms in which a neuron participates. Further- 
more, since a neuron belongs to a specific layer and it is connected with other neurons 
through synapses; two single linked lists are maintained for each neuron. The first list, 
named OutLinks, stores the synapses to which the neuron under consideration is the 
source neuron, while the second list, named InLinks, stores the synapses to which the 
neuron under consideration is the target neuron:  

 
class TNeuron { 
private:  
 int NeuronId; 
 int LayerId;  
 double Threshold;  
 double Output;  
 int Type;  
 int FunctionType;  
public :  
 TList <TSynapse >InLinks;  
 TList <TSynapse >OutLinks;  
};//TNeuron  
 
Listing 2  
TNeuron class definition   
 
Besides the basic parameters that are shown in Listing 2, there are many other 

parameters that are defined and maintained for each neuron processing element. These 
parameters are mainly associated with the various algorithms that can be used for the 
neural network training —the learning rate, the sigmoidal slope and the momentum 
for the back propagation algorithm, to name a few. An interesting property of NW is 
that each neuron can be assigned its own parameter values, allowing thus the 
assignment of different behavior per network neurons; even through they belong to the 
same layer. We can use this as an elementary modeling technique for the concept of 
diversification. 

As a last interesting feature of the applications associated with the network 
neurons, the use of functional link neurons is considered. These neurons belong 
exclusively to the input network layer; they are not fed with training set samples as the 
normal neurons do, but their output is a function of the output of the remaining input 



Athanasios Margaris, Efthymios Kotsialos, Athanasios Styliadis, Manos Roumeliotis-
Neural Workbench: an object-oriented neural network simulator  

 

 315

layer neurons. More  specifically, if x is the output of some input neuron, then the 
output of a functional link neuron, can have the forms sin(kΒx), cos(kΒx),  xsin(kΒx) 
or xcos(kΒx), where the parameter k assumes integer values. For a detailed description 
of functional link neurons see (Pao, 1989).  

 
3.2 The TLayer class  
 
Each neural network layer is defined as a linked list of TNeuron objects. A 

sort section of the TLayer class definition is shown in Listing 3. This class provides 
the most important operations associated with each layer such as the insertion, 
deletion, and search for neurons. These functions are based on the corresponding 
functions of the. TList template -Insert, Delete and Search; this holds for every class 
based on that template.  

class TLayer { 
private :  
 int LayerId;  
public :  
 TList <TNeuron >Neurons;  
 InsertNeuron (TNeuron *N);  
 DeleteNeuron (int Pos);  
 CopyNeuron (int old, int new);  
 MoveNeuron (int old, int new);  
 FindNeuron (int Pos);  
};//TLayer  
 
Listing 3  
TLayer class definition   
 
The neural network layers as they are represented by the TLayer objects are 

characterized by their own icons in the running NW application. If the user displays 
the layer property sheet, by double clicking on the icon of some layer, the properties 
that are set via this dialog are applied to the group of neurons belonging to that layer. 

 
 3.3 The TNetwork class 
 
A neural network is defined as a linked list of TLayer objects. Listing 4 shows 

a part of the TNetwork class definition. Since each neural network is a linked list of 
TLayers, and each one of them is a linked list of TNeurons, it is possible to insert, 
delete, copy and move layers, as well as neurons between these layers. Synapses can 
also be created between these neurons, regardless of their positions in the network 
structure, a fact that makes possible the creation of feedforward as well as of recurrent 
networks. There are also two additional classes that are used in the TNetwork class 
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definition: the TBias class that simulates the bias unit, and the TSet class that 
describes a training set. There is a single linked list of such TSet objects, meaning that 
more than one training sets can be attached and used during training of each neural 
network. The TNetwork class is the most complicated class of Neural Workbench, 
since it includes all the properties that can be assigned to each TNetwork object. 
Besides the attributes and the functions shown in Listing 4, there are many other 
members of that class. Due to the aims of this short exposition those can not be 
presented analytically here. The most important of them are appropriate functions that 
are used in order to save and load the network to and from a hard disk file, and the 
procedures Import and Inverse that allow the concatenation of small networks to a 
larger one and construction of the mirror network.  

 
class TNetwork { 
 int NetworkId;  
public :  
 TBias *biasUnit;  
 TList <TSet >setList;  
 TList <TLayer >Layers;  
 AddLayer (TLayer *L, int Pos);  
 DeleteLayer (int Pos);  
 CopyLayer (int old, int new);  
 MoveLayer (int old, int new);  
 AddNeuron (TNeuron *N,   
    int LPos, int NPos);  
 DeleteNeuron (int LPos, int NPos); 
 AddSynapse (TNeuron *Source,   
    TNeuron *Target); 
 DeleteSynapse (TNeuron *Source, 
     TNeuron *Target);  
 AddTrainingSet (TSet *S);  
 InsertBias ();  
 RemoveBias ();  
 ...  
};//TNetwork  
 
Listing 4  
TNetwork class definition   
 
class TSynapse { 
private :  
 double Input;  
 double Weight;  
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public :  
 TNeuron *Source;  
 TNeuron *Target;  
};//TSynapse 
 
Listing 5  
TSynapse class definition 
 
 
3.4 The TSynapse class  
 
The TSynapse class simulates the behavior of a synapse between two neurons. 

Each synapse is characterized by an input and a weight value for that input, and in 
order to be described completely, one has to determine the source as well as the target 
neuron for that synapse. A part of the definition of the TSynapse class is shown in 
Listing 5. Each synapse can be enabled or disabled during simulation, and its weight 
can be fixed, varied, or conditionally fixed. In the last case, the synapse weight is 
fixed when a predefined condition is satisfied during simulation.  

 

 
 
3.5 The TBias class  
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The TBias class simulates the behavior of the bias unit which is connected to a 
single neuron in order to provide for it a variable threshold. Since the bias is actually a 
special type of neuron, it is de- rived from the TNeuron class through inheritance. So, 
the definition of the TBias class, not shown in Listing format here, has the form  

class TBias :public TNeuron {..... }  
 
4. THE TRAINING SET STRUCTURE  
 
The TList class template is also used for the representation of the training set. 

Each training set is defined as a linked list of TVectorPair objects. The TVectorPair 
object is composed from two other linked lists, one for input values and one for the 
corresponding output values. In the current implementation these atomic values can be 
of integer or double data type and they are represented as objects of another class 
called TPatternValue. This dynamic structure of the training set, allows the insertion 
and deletion of training patterns, as well as the variation of the number of inputs and 
outputs for each pattern. Figure (1) shows the class diagram of the neural simulator 
structure, in Booch notation (Booch,  1994).  

 
5. USING SIMULATOR COMPONENTS  
 
In order to access the components of the neural networks created through 

Neural Workbench, the overloaded operator [·] of the class TList is used;  
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this returns a  specific node of the list. So, in order to get the i th layer of a 
TNetwork object 

  tNet 6Layers [i ]  
is used. The j th neuron of that layer is returned by  

  tNet 6Layers [i ] 6Neurons [j ].  

In order to retrieve the weight of the k th input synapse of that neuron, we 
write   tNet 6Layers [i ] 6Neurons [j ] 6\  

  InLinks [k ] 6GetWeight(),   
and so on.  
 
6. CREATING AND MANIPULATING NEURAL NETWORKS 
 
 The creation and manipulation of neural networks with NW can be performed 

using the key- board and the mouse. The program runs under the graphical 
environment of Win32 platforms (a linux port is under development), and the con- 
struction of networks can be done via a network editor which has been designed for 
that purpose. A typical neural network structure implemented via NW is shown in 
fig.(2). The neural network shown there is a feedforward one, meaning that the net 
synapses are directed from the input layer to the output layer. However, in general, the 
program allows the association of two neurons that can be located anywhere in the 
network structure. Figure (3) shows various connection types between neurons in a 
neural network.  
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 These types include the connection of a neuron to itself (self-connected 
neurons) and the connections of consecutive neurons that belong to the same layer in 
both forward and backward directions. This last connection type allows the 
construction of Hopfield –type neural networks. Regarding the connections between 
two layers, these can be full connections –in the sense that all the neurons of the 
source layer are connected to all neurons of the target layer –or one-to-one, if the two 
layers are characterized by the same number of neurons. Finally, a bias unit can be 
connected to each neuron that provides it with a variable threshold. The neurons that 
are connected to the bias unit contain the letter B in the bitmap that represents them in 
those figures. The assignment of properties to each network element can be performed 
using a property sheet that can be displayed by left –clicking on them. There are 
different types of such sheets that can be used to configure the various network 
elements such as the layers, the neurons and the synapses of the network. If a property 
value is determined for a layer, then this value is assigned to all the neurons that 
belong to that layer. Neural Workbench, however, allows the assignment of different 
values to the neurons of the same layer, using the neuron property sheet; a part of it is 
shown in figures (4) and (5). Using the property page of the figure (4), the user can 
determine the threshold value and the function type of the selected neurons, while the 
property page of figure (5) allows the determination of important neuron properties 
such as the learning rate, the sigmoidal slope and the momentum, as well as the 
activation (or deactivation) of the log procedure, that allows the recording of various 
neuron parameters during the training operation. Neural Workbench contains similar 
property dialogs that allow the configuration of the network layers details as well as 
the synapses of the current neural network structure.  
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 7. TRAINING SET MANIPULATION  
  
 Neural Workbench provides an advanced interface for the creation and 
manipulation of training set structures. As it has been already mentioned above, the 
current neural network can be associated with more than one training set at the same 
time. These sets must be compatible with the network structure; each one of them can 
be used during the training phase. The software component which is responsible for 
the interaction between the user and the training sets of the network is shown in 
fig.(6). From this figure, it is clear that the user can modify the contents of the training 
set by inserting and deleting data values, as well as its structure, by varying the 
number of inputs and the corresponding desired outputs of the current training set. 
 
 8. NEURAL NETWORK TRAINING AND RECALL 
 
 The current NW version supports the most commonly used learning 
algorithms, namely the back – propagation algorithm and the Kohonen self – 
organizing maps (SOM). These algorithms have been implemented as separate 
threads, a fact that makes possible the interaction between the user and the neural 
network, during training. Due to page limitations, in the next paragraphs the back 
propagation interface is going to be described in short. The main window of the back 
propagation algorithm is shown in figure 7. This window includes the graph of the 
global error as a function of the iteration cycle and it also displays the current 
minimum and maximum values of that error. An interesting feature of this dialog is 
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the scaling of the error graph, if the new error value does not belong to the interval 
defined by the current minimum and maximum error values. In this case the whole 
curve is rescaled in order to fit to the plot area of the back propagation window. The 
operation of the back propagation algorithm is controlled by means of many child 
windows with the most important of them to be the control panel dialog, the training 
parameters dialog, and the back propagation results dialog. The control panel is used 
to start, suspend, continue, and abort the neural network simulation. The training 
parameters window allows the variation of the back propagation parameters such that 
the learning rate, the sigmoidal slope, and the momentum. 
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 Since the algorithm is running in a multi-thread environment the variation of 
these parameters at run time and the study of the consequences of this variation is 
possible. Finally, the back propagation results dialog displays for each simulation 
cycle,  the values of important parameters such as the current cycle and pattern, the 
current global error value and the tolerance value that indicates the level of simulation 
accuracy that has to be reached by the neural network after the training operation. 
Another important dialog that controls the operation of the back propagation algorithm 
is the Options property sheet that allows the configuration of the back propagation 
parameters -the corresponding property page is shown in figure 9 -and the creation of 
the log data files. The parameter values that are set via this dialog, are associated with 
the learning rate, the sigmoidal slope and the momentum, as well as the number of 
iterations, the tolerance and the learning mode (pattern shuffling or not). Regarding 
the creation of the log files, the user has the ability to determine the parameters that 
have to be logged during training. These parameters include the neuron delta values, 
the synapse weight values, the neuron output values, and the current global error 
(which is the default option). Except from the parameter value to be recorded, the user 
can also specify the frequency of this recording, which can take place every pattern, 
every N training cycles, or only once, after the end of the training operation. 
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 After the termination of the training operation, the trained neural network can 
be used for the recall process. In this process, the user supplies to the network input 
data values that may belong to the training set or not, and the network tries to es timate 
the correct output based on the knowledge obtained during training. In Neural 
Workbench, the recall operation is performed via the dialog shown in figure 10. 
 
  9. CONCLUSIONS AND FUTURE WORK  
 
 Neural Workbench is a multi-threaded neural network simulator that allows 
the construction and training of neural network structures. The architecture of this 
application follows the principles of the object-oriented design, and therefore, its 
implementation is based on the powerful characteristics of this approach such as the 
polymorphism and class inheritance. According to this architecture, a neural network 
is defined as a single linked list of TLayer objects (representing the network layers) 
each one of them contains a single linked list of TNeuron objects (representing the 
processing element known as neuron). Each network neuron can be either a source or 
a target neuron for a synapse (which is represented by a TSynapse object), and for this 
reason it includes two linked lists of synapses: a list of synapses to which the current 
neuron is the source neuron, and another list of synapses, to which the current neuron 
is the target neuron. From this description it is clear that each synapse is stored twice 
in the neural network structure: one time to the synapse list of the source neuron, and 
another time to the synapse list of the target neuron. This double storage of each 
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synapse leads to the following disadvantages: (a) the programming of the neural 
network is more complicated since every time that the characteristics of a synapse are 
modified, the characteristics of its conjugate synapse have to be modified, too and (b) 
the neural network data file demands mope space in the memory and in the secondary 
storage, since the synapse information is stored twice. However these disadvantages 
are considered unimportant, since today, computers are characterized by very fast 
processors and very large (and cheap) storage devices. On the other hand, this design 
allows the creation of synapses between any processing elements of the neural 
network, regardless of its position inside the network structure. The neural network 
simulator described in previous sections, has been used in various problems and it 
worked fine in the case of backpropagation, counterpropagation and Kohonen training 
(Freeman and Skapura, 1991). One of its most important applications was the 
implementation and training of neural models for chaotic maps, such as the logistic 
equation. Besides the characteristics described in the previous sections, the simulator o 
fers much more features, such as the use of variable learning rate and the plotting of 
many network features vs. time. Future work on this project includes the re- 
programming of the simulator from the beginning in order to support more features 
such as the creation of more than one neural network at the same time that can be 
connected together and work in parallel -the current version of the application allows 
the usage of only one network. The design of the whole simulator is going to be 
modified, too, in such a way that each network type will be produced by an abstract 
network class, through inheritance. The result of this approach is a hierarchical neural 
network tree, with an abstract net class as root, and specialized network types as nodes 
and leafs. Finally, the graphical user interface is going to be enhanced by 
implementing useful functions that will allow the interaction between the user and the 
application in a more convenient way. 
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