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THE PLANE ROTATION OPERATOR AS 
A MATRIX FUNCTION 

 
by 

Emil Olteanu 
 
 
Abstract. Formalism in mathematics can offer many simplifications, but it is an instrument 
which should be carefully treated as it can easily create confusions. Formalism is an instrument 
which, together with a programming language that allows abstractions (for instance the C 
language) can create a very strong programming instrument. One example is realizing the 
matrix functions in C language using pointers. 
 The present material refers to an example of matrix functions, the exponential matrix 
function, used as a plane rotation operator.  
 
 A matrix function is a function of the form: ( )XFY = , where X and Y are 
quadratic matrices of order n. The relation can also be written as follows: 
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 In the case of the plane rotations we shall use matrices of order 2 and for 
rotations in a three-dimension space we use matrices of order 3. 
 In order to associate a matrix with a linear transformation of a n-dimensional 
vectorial space V, we must choose a basis x1, x2, ..., xn. From the equations: 
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we obtain the matrix which represents the transformation :  
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 If A is the transformation obtained through the rotation of the plane around 
the origin O with an angle ϕ  and if x1 and x2 are two vectors from the basis 
orthogonal and of length 1, then the representatives of these vectors applied in the 
origin apply to the representatives of images A(x1) and A(x2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 

 
 A(x1) and A(x2) verify the following equations:  
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 The operator A is represented by the matrix A : 
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 The operator A-1 is the rotation of angleϕ  in the opposite direction, that is of 
angle ϕ− . 
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we verified the relation UAA =× −1

, the unity vector. 
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by an angle α  towards which we apply the plane rotation operator ( ) XFY ×= α , 
where:  
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 The product of two angle rotations α  and β is equivalent to an angle rotation 

βα + . This is mathematically expressed as follows: ( ) ( ) ( )βαβα +=× FFF . The 
function that verifies this functional equation is the exponential function. This leads us 
to the conclusion that the rotation operator can be expressed as an exponential. In 
order to find the exponential function corresponding to this operator we search for a 
differential equation to verify and then we look for its solutions. 
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 We obtained the equation: ( ) ( )αα FIF ×=' . This equation can also be 
written ( ) ( )αα FIF ×=' . Generally speaking ABBA ×≠× , but in this case the 
multiplication is commutative. From the equation: 
 

( ) ( ) ⇒×= IFF αα'  
 

( ) ( ) ⇒=×− IFF αα '1  
 

( ) ( ) ⇒=× ∫∫ − αααα dIdFF '1  

 
( ) ( ) ⇒=× ∫∫ − ααα dIdFF 1  

 
( )( ) ⇒+= CIF ααln  

 
( ) CIeF += αα  

 
for ( ) ⇒=⇒= CeF 00α  

 
( ) ( )0FeeeF ICI ×=×= ααα  

 
 The formula can also be written: 
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 We calculate 
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 Therefore C = O, meaning Ci = 0, for i ∈  {1, 2, 3, 4}. Thus: 
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 This formula can also be written in another manner: 
 

( ) ( ) ααα IeIU =×+× sincos , 
 
which is another way of writing Euler’s formula in the field of matrix functions. 
 
 We notice that the following relation is true:  
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