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 Abstract. In this paper using probabilistic methods for constructing linear positive 
operators and the Newton interpolation formula on representing a linear interpolatory positive 
operators by means of the factorial moments of the related probability distribution and the 
finite differences. By means of such representations we deduce explicit formulas for the 
ordinary moments of the corresponding discrete probability distributions. 
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1.Consider a sequence of two-dimensional random vectors  
Yn={(Yn1, Yn2)} and let Fn (y1, y2; x1, x2) be  the probability distribution of (Yn1, Yn2), 
where (y1, y2) is any point of the Euclidean space R2 and (x1, x2) is a real two-
dimensional parameter varying in a parameter space Ω2, which is a subset of R2. 
 We suppose that (x1, x2) represents the mean value of this distribution i.e. 
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2
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 If f = f(y1,y2) is a real-valued function defined and bounded on R2 such that the 
mean value of the random variable f(Yn1,Yn2) exists for n = 1,2,…, there fore this 
mean value can be expressed by the improper Stieltjes integral of (y1,y2) with respect 
to Fn (y1,y2; x1,x2). 

(1) E [f (Yn1, Yn2)] = Pn (f ; x1,x2) = ∫
2
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If we suppose that the radom vector (Yn1,Yn2) is of discrete type, one  may 
observe that its distribution function :  

Fn (y1, y2; x1, x2) = P [Yn1 ≤ y1, Yn2 ≤ y2; x1, x2]  
is a step function so that P[Yn1=y1, Yn2=y2; x1, x2] is zero at every point of R2 except at 
a finite or a countable infinite such point (jump point) is taken with a positive 
probability (jump): 
 pn (ak1, ak2) = pn (ak1, ak2; x1, x2) = P [Yn1 = ak1, Yn2 = ak2; x1,x2]  
satisfying the condition  1),;,( 2121 =∑ xxaap

k
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The corresponding distribution function is: 
  Fn (y1, y2; x1, x2) = ∑
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where the summation is extended now over all points (ak1, ak2) such that  
ak1 ≤ y1, ak2 ≤ y2. 
 Consequently, in this discrete case we are able to write down the following 
expression for the operator (1) 

(2) Pn  ( f ; x1, x2 ) = ∑
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It is easy to see that the operator Pn (f; x1, x2) defined by (1), or in particular by 
(2) is a positive linear operator. 

 
2.We shall now make use of an important method for constructing concrete 

operators of this useful for computing the moments of the related probability 
distributions. 
  Consider a sequence of two-dimensional random vectors {(Xk1, Xk2) = Xk} 
and let us assume that the components Yn1, Yn2 of the random vector Yn represent the 
arithmetic means of the first n components Xk1, Xk2 
 (k = 1,2,…,n) that is: 

(3) Ynr = 
n
1

[X1r +X2r +…+ Xnr]  (r = 1,2). 

i) Let us suppose first that the components Yn1 , Yn2 have the binomial 
distribution. Now referring to (2) we obtain the operator of Bernstein 
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ii) If we consider that X1i, X2i, …, Xni (i=1,2) has a Poisson distribution with 
the parameters xi (i=1,2) therefore Yni have a Poisson distribution with the parameters 
nxi (i=1,2) and we obtain the operator 
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which represents an extension to 2 variables of an operator studied early by Favard [3] 
and Szasz [15]. 
 iii) If we presuppose that X1i, X2i, …, Xni (i=1,2) has a geometric distribution 
then Yni have a Pascal distribution and we obtain the operator  

(6)      
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 iv) It should be observed that if we replace xi by 
ix+1

1
, (i=1,2) in formula 

(6), then we arrive   the operator (7) 
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which has been considered first by Baskakov [1]. 
 v) If the random variables  X1i, X2i, …, Xni (i=1,2) are not independent and 
identically distributed we obtain the operator of Stancu 
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3.Now we consider of an interpolation polynomial of Newton-Bierman type 

for two variables [8] 
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partial difference of order (i1, i2) of the function f, with the steps 
n
1  

and the starting point (0,0). 
 With the aid of the changes of variables ntk=yk (k=1,2) we obtain 
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 This polynomial satisfies the interpolating properties  







=








n
k

n
k

f
n
k

n
k

fN 2121 ,,;  for k1 = 0, 1, …, n , k2 = 0, 1, …, n-k1. 

 By using the formula (9) we can find for the mean value of the random 
variable  
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Fn(y1, y2; x1, x2), the following representation 
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in terms of the factorial moments 
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 If the random vector Yn is of discrete type then  
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 4. i) With the aid of formula (11) we can give the following representation of 
the operators of Bernstein type (4) in terms of finite differences  
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which enables us to find the factorial moments 
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 ii) The operator Pn(f;x1, x2) defined by (5) in terms of finite differences have 
the following representation 
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if we assume that xi depends on n such a way for n → ∞ we have nxi → zi >0 , (i=1,2) 
and we obtain the factorial moments 
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 iii) The operators of Stancu defined by (8) in terms of finite differences have 
the following representation (16) 
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and we obtain the factorial moments 
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In this case the operator defined by (12) permits us to find the express of the ordinary 
moments  
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 Analogous the operator defined by (14) enables us to find 
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