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 Abstract:In this article, a problem of limit for differential equations of second order is 
studied. In the conditions imposed the problem (1) has a unique solution, solution obtained by 
using the method of successive approximations.The problem (1) could be written as an integral 
equation and for the computation of the integrals we applied more quadrature formulae among 
which the trapeze formula, too.When comparing the numerical results displayed in the tables, 
we infer that the trapaye formula gives a more exact approximation. 
  

In this paper we give a method for calculating the solution of the following 
problems 
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derived from the Euler-Maclauren formula and a Fadeeva’s numerical derivation 
formula. 

The solution y of the boundary value problem (1) satisfies the identity: 
 

(2) ∫+=
b

a
dssysfsxGyHxy ))(,(),()()(  

where 

 (3) 
ab

axBxbAxH
−

−+−
=

)()()(  

and G is the Green’s function: 
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 The Picard’s iterations are: 
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where H and G are defined in (3) and (4) and do not change with each iterations. 
 When calculating an iteration of the Picard method we use the following 
formula: 
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where 
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and M is the upper limit of )(xf VI  in the interval [ ]ba, . This formula is derived from 

the )(0 6h   numerical quadrature formula: 
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which was applied on each subinterval [ ]1, +ii xx  where 
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 Using the “ϕ” function method by D.V. Ionescu [1], we found the numerical 
quadrature formula (8). 
 We have 
Theorem 1. The rest of (8) is: 
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and ϕ-function is negative on the interval [ ]ba, . 
 Also we use the nimerical derivation formula 
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where 
.4,3,2,1;1 == ++ ixx hii  

This formula is a particualry case of Fadeeva’s numerical derivation formula which 
was studied by D.V. Ionescu [2]. 



We consider the following problem to illustrate the new method: 
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The exact solution is : 
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We use this new method for solving this problem and the other one based on the 
trapesoid rule[3]. 
We found the following results: 

                                        m  
 00  D    0.636458              1  
 5             0.219707    D-01 
10            0.219707    D-03 
15            0.219707    D-05 
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Rate of convergence with 
20
1

=h  and using the trapezoid rule 

                                        m  
 00  D    0.212636              1  
 5             0.282373    D-01 
10            0.707769    D 00 
14            0.351635    D 05 
15            0.148760    D 14 
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Rate of convergence with 
20
1

=h  and using the )(0 6h numerical quadrature formula. 

The next table shows the accuracy of the limizing solution vor various integration 
methods: 
 

 14   D    0.1487         4-D   1.3519             
20
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13  D    0.7338          5-D   4.6395             
20
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