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ORDER OF CONVEXITY OF INTEGRAL TRANSFORMS AND
DUALITY

S. VERMA, S. GUPTA, S. SINGH

ABSTRACT. Recently, Ali et al. [2] defined the class Wg(c,y) consisting of
functions f which satisfy

Re'® ((1 —a+ 27)f(2) + (a—=29)f(2) +vzf"(2) — ﬂ) >0,

z
forall z € E={z:|z| <1} and for o,y > 0 and 8 < 1, ¢ € R (the set of reals).
For f € Ws(«, ), they discussed the convexity of the integral transform

f(tz)
t

1
VA(f)(2) = / NOLAGEN

where A is a non-negative real-valued integrable function satisfying the condition
1

/ A(t)dt = 1. The aim of present paper is to find conditions on A(¢) such that
0

VA(f) is convex of order ¢ (0 < ¢ < 1/2) whenever f € Wg(a, ). As applications,

we study various choices of A(t), related to classical integral transforms.

2000 Mathematics Subject Classification: 30C45, 30C80.

Keywords: Starlike function, Convex function, Hadamard product, Duality.

1. INTRODUCTION

Let A denote the class of analytic functions f defined in the open unit disc E = {z :

|2| < 1} with the normalization f(0) = f/(0)—1=0. Let Ag = {g: g(2) = f(2)/z, f € A}.
Let S be the subclass of A consisting of univalent functions in E. A function f € S

is said to be starlike or convex, if f maps F conformally onto the domains, respec-
tively, starlike with respect to the origin and convex. The generalization of these

two classes are given by the following analytic characterizations :

2f'(2)
f(2)
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K(ﬂ):{feA:%<1+zf,I;(Z§)>>6, O§ﬁ<1}.

For 5 = 0, we usually set S*(0) = S* and K(0) = K.

For two functions f(z) = z + agz? + a3z +--- and g(2) = 2 + bo2? + b3z> 4 - - -
in A, their Hadamard product (or convolution) is the function f * g defined by

(fxg)(z) =2+ Z anbnz".
n=2

For f € A, Fournier and Ruscheweyh [8] introduced the operator

1 z
FE =E = [ a0t (1)

where X is a non-negative real-valued integrable function satisfying the condition
1

A(t)dt = 1. This operator contains some of the well-known operators such as

Libera, Bernardi and Komatu as its special cases. This operator has been studied
by a number of authors for various choices of A(¢) (for example see [1], [4], [6],
[8]). Fournier and Ruscheweyh [8] applied the duality theory ([10, 11]) to prove the
starlikeness of the linear integral transform V) (f) when f varies in the class

P(8) = {f € A: 36 €RIR (f'() - B) >0, 2 € E}.

In 1995, Ali and Singh [3] discussed the convexity properties of the integral
transform (1) for functions f in the class P(8). In 2002, Choi et al. [7] investigated
convexity properties of the integral transform (1) for functions f in the class

f(2)

P, (8) = {f € A:3¢ € RjRe™ ((1 LN O 5) 50, z ¢ E} |

It is evident that the class P, (/) is closely related to the class R (3) defined by
R (B) = {f € A:3p € RIRe™ (f(2) +v2f"(2) — B) > 0, z € E} :
Clearly, f € R+(5) if and only if zf" belongs to P (f).

In a very recent paper, R. M. Ali et al. [2] discussed the convexity of the integral
transform (1) for the functions f in a more general class Wg(a,y) given by

f(z)

{fEA:EIgéERRReM’ <(1—a+2’y)z+(a—2fy)f’(z)+’yzf”(z)—6> > 0, zEE}.

(2)
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Note that Wg(1,0) = P(B), Ws(e,0) = Po(5) and Wg(1 + 2v,7) = R+ (f).

In the present paper, we shall mainly tackle the problem of finding a sharp
estimate of the parameter [ that ensures V)\(f) to be convex of order § for f €
Wg(a,y). To prove our result, we shall need the duality theory for convolutions,

so we include here some basic concepts and results from this theory. For a subset
B C Ay, we define

B*={geAy: (f*g)(2) #0,z€ E, for all f € B.}

The set B* is called the dual of B. Further, the second dual of B is defined as
B** = (B*)*. We state below a fundamental result.

Theorem 1. Let

1+ 2z
1+yz

B={6+(1—5)< )zrw\=y|=1}, BER, F#L

Then, we have
1. B* ={g € Ao : 3¢ € Rsuch thatR{e'*(g(z) — B)} > 0, z € E}.

2. If I'1 and Ty are two continuous linear functionals on B with 0¢T'y, then for
every g € B** we can find v € B such that

The basic reference to this theory is the book by Ruscheweyh [10] (see also [11]).

2. PRELIMINARIES

We follow the notations used in [1]. Let p > 0 and v > 0 satisfy
pw+v=a—~v and pv=-r. (3)

When v = 0, then p is chosen to be 0, in which case, v = a > 0. When a = 1 + 27,
(3) yields uy+v=1+y=14pv,or (u—1)(1—v)=0.

(i) For v > 0, then choosing u =1 gives v = .
(ii) For v =0, then y =0 and v = a = 1.
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Whenever the particular case a = 14 2y will be considered, the values of u and
v for v > 0 will be taken as y = 1 and v = y respectively, while y =0and v =1 =«
in the case when v = 0.

Next we introduce two auxiliary functions. Let

B (mv+1)(np+1) ,
R @
and
> n+1 n
Vuwl2) = B Z (nv+1 nM—FI)Z

=1
dsdt
pu— 5
/ / 1— tVskz)? (5)

Here ¢;,1, denotes the convolution inverse of ¢, , such that ¢“7,,*¢;71V =z/(1-2).
If v =0, then p =0, v = «, and it is clear that

n+1 ! dt
) =1 Jo Y
Yo,z +Zna+1 /0 (1 —t22)?

If v > 0, then v > 0, 4 > 0, and making the change of variables u = t¥, v = s*

results in
1/1/ 1 1/,u 1
—— —dud
w“’ /ux/ / (1 —uvz) uav.

Thus the function 1, ,, can be written as

wl/v=1y1/p—1 ]
do() = | o Jo i dudv, >0 o
7 Jo T2, =0, a>0.

Let ¢ be the solution of the initial value problem

1t1/1/ lfo (1=0)—(1+0)st l/u—lds7 v >0

d [, 1—8)(1tst)3 ° ’
— t/y t = H )( +St) 7
dt( Q()> {imtl/al v=0, a>0, ()

satisfying ¢(0) = 1.
Solving the differential equation (7), we have

— (1 +9)swt Gl/n=1,,1/v—1
/ / = 5 ¥ swt)? dsdw. (8)
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In particular,

L P A=8) —(+8)st 40 _
qa(t)—oé/0 A= 0)(1 + 1) s ds, v=0, a>0.

Further let

A (t) = /t1 )\(aj)daz v >0,

zl/v ’
and
I _ tl Ay (z)x/v =1V kdy 4 >0,
p(t) = _ _ _

Aa(t)a v =0, (,UJ—O,V—OZ>O).

For the function II,, , (), we define
1,1/ 1-8)— (146

R fy #1071, (1) | Ry(t2) — GRSt dt v >0,

R [o 10 Mo a(t) | B(t2) - Groit | dt, v =0,

M, (hs) =

where hs(z) is defined as

2 (1+ %2512
=22

hs(z) = | = 1.

3. MAIN RESULTS

Theorem 2. Let p >0, v > 0 satisfy (3). Define f <1 by

B 1
G = [ e

(10)

(11)

(12)

(13)

(14)

where q(t) is the solution of the initial-value problem (7). Further for A,(t) and
II,,(t) defined by (10) and (11) respectively, assume that tYYA () — 0, and
YV, (t) — 0 as t — 0F. Then for § € [0,1/2], Va(Ws(a,v)) € K(8) if and
only if My, ,(hs) > 0, where My, , (hs) and hs are defined by equations (12) and

(13) respectively.

Proof. As the case v = 0 (u = 0, v = «) corresponds to the Theorem 2.3 in [5], so

we will prove the result only when v > 0.
Let
H 1 f(z) _ / "
(2) = (1 —a+2y)== + (a = 29)f(2) + 72f(2).
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Since g+ v = a — vy and puv =+, therefore

2 = @ty g0y @) )
= - ) @) ),

Writing f(z) = z+ > o7 5 anz", we obtain from (4)

H(2) =14+ 3 anar(nv+ Dnp+ 1)2" = f/(2) * du(2),

n=1

and (5) gives that
f(z) = H(2) * Yuw(2). (15)

Now, for f € Ws(a, ), we have
i /6
x {e -5 3 } > 0.

Thus, in the view of the Theorem 1, we may confine ourselves to functions f €
Wg(a, ) for which

H(z)%ﬂl—ﬂ)(iii), 2| = |y| = 1.

Thus (15) gives

F(z) = ((1 _pite, B) o (2),

14+ yz
and therefore 12) 1 1
z # + xw
z :Z/o <(1_ﬁ)1+yw +B> o+ 9(z) 1o

Here ¢ := 1), ,.
A well-known result from the theory of convolutions [9, Pg 94] (also see [11])
states that

1
FeK(@©) < ;(zF’*h(;)(z) #0, z€ E,
where hg is as defined in (13). Hence F' € K (¢) if and only if

1 Py 1 5
02 toanE@antse) =1 | [ a0l e - [ 20wl

*h's(2)

z 1—tz z
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Using (16), we have

0 # /1 D g [/ (1 mﬁww)dw e )] Ws(2)

s [ (o mes)ad v
= [ [1/@;3 2 ) | v

~ 1-p [/le )ha(tz)dtJr(l_/Bﬁ)] = iﬁdw*w(z)

= a=n [ a0 (2 [ W) ars 2] )

This holds if and only if [11, p. 23]

=

=

=

wa= [ [ a0 (2 [ wstewan)as 2] o 21

=)
wia= [ [ a0 (2 [ wstewan)ae 2 - ot 20
3?-/01/\@) <1/ h(;(tw)dw> dt+’?1 12)2]*1/;(2)20,
R /01/\ < B s(tw)dw — qt)>dt] (using (14)),
%/01)\ t) (Ws(tz ] Z/Ow Ydw > 0,

1 00
LA st2) —a0) ] 3 Sy 2 i (9)

1
m/o At <Z WH WH) C Wy(tz) — ())dtzo,

/ </ / d:;dgu (t)> dt > 0,
§R/0 </0 /0 B s(tzn”¢M)dnd¢ — q(t )) dt >0,

which can also be written as

5}1‘:/ </ / —h(g tzuv)utY oV dudu, — q(t)> dt > 0.
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Writing w = tu, we get

AO T Vo1, 1/p—1 1/v
R i/ R s(wzv)w v/ P dudw — pvt V() | dt > 0.
0 0 Jo

An integration by parts with respect to ¢ and (7) gives

! ! Y1—6—(1+0)st
§R/ A (t [/ B s(tzv) /Yol /=1 gy —tl/”l/ P lds] dt > 0.
o M| Pratte) o (=81 + st

Again writing w = vt and 1 = st above inequality reduces to

t F1—-86—(1+6n
§R/ (L)t v/t [/ h's(wz wl/"_ldw—/ Vrld ] dt > 0,
o Telw?) o G-’

which after integration by parts with respect to t yields

1
Ju—1 |31 Z_1—5—(1+6)t
éR/O I, (t)t'/" 1[h5(t) (1—5)(1+t)3]dt20'

Thus F' € K(9) if and only if My, , (hs) > 0.

Finally, to prove the sharpness, let f € Wg(c,~) be of the form for which

(1—a+29fD 0o 1) = B4 (1 - )

Using a series expansion we obtain that

o0
— 21_ n+1.
Nz =2+ Z (nv+1) nu—f—l)z

n:l

Thus

1 z
F&) =) = [ NOTAG

00
21_ n+1
i Z (nv+1) n,u—l—l)z ’

n:l
where 7, = fo t)t"dt. From (7), it is a simple exercise to write ¢(¢) in a series
expansion as
(o9}
(n+1)(n+1-9)
=1 t". 17
att) +1—5Z nz/—|—1 )(np+1) (17
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Now, by (14) and (17), we have

e R (I
e 137;“:1:27221; %l dt
Therefore L i (n+1)(n+1-0)m (18)
i) R 93 nu+1(nﬂ+1)

Finally, we see that

o0

(n+1)7,
Fl(z)=1+2(1 "
(2) + Z (nv+1 n,u—i—l)z
n= 1
Therefore -~
(n+1)%7,
(zF'(2)) =1+2(1-8 2"
; (nv+1)(nu+1)
For z = —1, we have
o0
+1)%7,
F'Y(=1) = 142(1-58 (n
(zF7)(=1) + nzz:l nl/—l-l n,u—l—l)
_ a8 i "n4+1)(n+1-208)m, i D™5(n + 1)1,
— ny—l—l(nu—i—l) = (nv+1)(npu+1)
o0
(=D)"(n+ 1), :
= 1-(1-8)+6201-8)> o T 7{) (Using(18))
n=1
= 5(1+20 "(nt D
N n:l nv—}—l Y(np+1)

= §F'(-1).

Thus (2F'(z))'/F'(z) at z = —1 equals §. This implies that the result is sharp for
the order of convexity.
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4. CONSEQUENCES OF THEOREM 2

To obtain a sufficient condition for the convexity of order § of the integral transform
(1) by a much easier method, we present the following theorem.

Theorem 3. Let A,(t), II,,(t) be integrable on [0,1] and positive on (0,1). Also,
suppose that tY/VA,(t) — 0, and tY/10,,,(t) — 0 as t — 0F. Assume further that
w>1 and

(—tn'u,y(t) + (1 - 7) 1, (t))

0700 o is decreasing on (0,1). (19)

For § € [0,1/2], if B satisfies (14), then Vx(f) € K(6) for f € Wg(a, 7).

Proof. For v > 0, integration by parts with respect to t yields

/ 0 (ROs(02)) — 2 G )

)(1
Ly d (Lhs(tz) (1 —5(1+1))
/0 L )dt <SCE z 1—6)(141t)2 >dt

T
- /olt“( L8 *( u)H“” )( hégz)‘<1l—;)(<11i)>2>dt'

Also for > 1, the function t/#~1 is decreasing on (0,1). Thus, the condition
(19) along with Theorem 1 from [8] yields

Vi , 1—86—(1+6)t
/Otu I, (t) (%(hg(tz))— (1_5)(1+t)3>dt>0

Thus, an application of Theorem 2 evidently leads to the desired result.

Below, we obtain the conditions to ensure convexity of V)(f). As defined in (11)
and (10), for v > 0,

L) = [ Av@)e" Vi, and A1) = [ 20
wlt) = [ Aufa)e vy and Aufe) = [ e

In order to apply Theorem 3, we have to prove that the function

(t%_%/\y(t) + (1 — i) ij(t)) . p(t)
B L I (e (i
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is decreasing in (0,1). Since k(t) > 0 and
)

) p(t 2t +6(1+ 1))
k(t) — p(t) 1—t2
20+ 5(1+1) [ (1 —2)p'(t) C2(t+6(141))

_ + p(t) [q(t)] (say).

(1=#)p(t) [2(t+6(1+1)) - (I=)p(t)

Thus to prove that £'(t) < 0, it is enough to prove that ¢(t) < 0. Since ¢(1) =0, so
it remains to show that ¢(¢) is increasing over (0,1). Now

(1+1)
2(t +6(1+1))2

So, ¢'(t) > 0 for t € (0,1) is equivalent to the inequality r(¢) > 0, where
r(t) =1 —-t)t+6(1+)p"(t)— (1 —t—06(1+1)(1+25)p'(t)

q(t) = (=)t +61+0)p"(t) — (1=t —=56(1+1)(1+28)p ()] .

By using the idea similar to the one used to prove Theorem 3.1 in [6], we can write

RS TEN 240
r(t) = —A()t [(V ; 1)X(t)+Z(t)+ Y0 X(t)]Jr
11 11y [t
(22wt 2] (2 1) 4 [ o

where,

Alt) = Mo,

X)) = A-=t)(t+d1+1)),

Z(t) = —t(1—t—6(1+1))(1+20). (20)
Clearly, A(t) > 0 and X(t)

>0 for all t € (0,1).
Thus, 7(t) is non-negative if

(b s 5o (111 0] ()0
(21)

Since v > 1, we can rewrite the condition (21) as follows :

@, 11 <X(t>+Z(f)> and112§<X(t)+Z(t))~

O X(#) p X(#)

In view of the fact that X (¢) + Z(¢) and X (¢) are non-negative on (0,1), the above
inequality further reduces to
N () 11 11

<24+ ———and ———-2<0. 22
)\(t)_+ﬂ I/any,u - (22)
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For y1 > 1, condition (3) implies v > p > 1. Thus, condition (22) implies that r(¢)

is non-negative if
tN(t) 1 1
<24+ -—-- > u > 1. 23
o S2tLT vz (23)

These conditions leads to the following theorem.

Theorem 4. Assume that both A, (t), 11, ,(t) are integrable on [0,1] and positive on
(0,1). Let \(t) be a non-negative real-valued integrable function on [0,1] and satisfy
the condition

tN (t) 1 1
N0 §2+;—;7 v>p >l
Let f € Wa(a,7) and B < 1 with
—1/2 !
= | A

where q(t) is defined by (8). Then F(z) = Vi(f)(z) € K(0) for § € [0,1/2]. The

conclusion does not hold for smaller values of 5.
On the other hand, when v =0 (u =0, v = a > 0), so we get the following result.

Theorem 5. Let A(t) be a non-negative real-valued integrable function on [0,1].
Assume that both Ay (t), g (t) are integrable on [0,1] and positive on (0,1). Let
A1) =0 and X satisfies the condition

1
tA'(t) — EX(t) >0, a>1.

Let f € Wa(a,7) and B < 1 with

B 1
= | 0w

where qq(t) is defined by 9 with 6 € [0,1/2]. Then F(z) = Vx(f)(z) € K(d). The

conclusion does not hold for smaller values of 5.

Proof. As in Theorem 2, for v = 0 and f € Ws(«, ), we have V)(f)(z) € K(0) if

i / 1—6—(140)t
/0 to g o (1) (&e(h s(tz)) — (EREE ) dt > 0,

which is equivalent to

/01 fi (tli (t) + <1 - ;) Aa(t)) (yeh(st(zz) B (11__5((1111))9 dt > 0.
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Since ta ! is decreasing on (0,1) for @ > 1, thus to apply Theorem 1 in [8], it is
enough to show that

CTEA (1 D) AL k(t)

p(t) = (1+)(1—¢)l+2 T A1

is decreasing on (0,1). Here, logarithmic differentiation implies that

Pt 20t +8(1+1) [ (1- K@)
p(t) (1 —1)k(t) [2(t+5(1+1))

Since p(t) > 0 for a > 1, thus to prove that p'(¢) < 0 on (0,1) it remains to show
that

+ k(t)

(1—£2)k'(t)
t) =k(t —_—
rt) =k + a0
Since r(1) = 0, so r(t) < 0 if r(t) is increasing on (0,1). Thus, r/(¢) is non-negative
if

<0.

to (1+1) y 1 :
T eALD) {X(t)t)\ (t) + Kl a) X(¢) +Z(t)] A (t)} >0,
where X (t) and Z(t) are as defined in (20). Further simplification yields that
EN(8) + (W _ ;) N(t) > 0.

Since, X (t) and X (t) + Z(t) are non-negative in (0,1), thus r/(t) > 0 is equivalent
to
1
tA"(t) — =N(t) >0, a>1,
a

which completes the proof.

Remark 1. Observe that results in [2] can be obtained from our results by setting
0 =0.

5. APPLICATIONS

In this section, we apply Theorem 4 and Theorem 5 to obtain certain results regard-
ing convexity of well-known integral operators. The proofs of the following results
run on the same lines as given in [2] and hence omitted.

Consider A to be defined as

M) = (14 o)te, c> 1.
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Then the integral transform

1
Fu(2) = Vi(f)(2) = (1+c)/0 £ f(t2)dt, e o1, (24)

is the well-known Bernardi integral operator. The classical Alexander and Libera
transforms are special cases of (24) with ¢ = 0 and ¢ = 1 respectively. For this
special case of X, the following result holds.

Theorem 6. Letc > —1 and 0 <y < a <14 2v. Let B < 1 satisfy
B-1/2 _ /1
/= 1+¢) | teq(t)dt,
o5 = o | e

where q is given by

/ / — (1 +d)swt S/ 1= g e
T 17(5 )(1 + swt)3 ’

Then for 6 € [0,1/2], we have V\(Wg(a,vy)) C K(8) provided c satisfies the condi-
tion:

1 1
c<24+———, v>u>1.
J

The value of B is sharp.

Writing o = 14 27, v > 0 and u = 1 in Theorem 6 gives the following criteria
of convexity:

Corollary 7. Let —1 <¢<3—1/y and v > 1. Let § < 1 satisfy
B—1/2 _
1-p

/ / 1 + 5)811)1581/“ 1 1/V_1d8dw'
(1- (5 1+ swt)3

Then for ¢ € [0, 1/2], we have V\(Ra(v)) C K(6). The value of B is sharp.
Further, letting v = 1 and ¢ = 0 in Corollary 7, we have

1
-1 +c)/0 t°q(t)dt,

where q s given by

Corollary 8. Let 5 < 1 satisfy

B—-1/2 1 2
=5 1_5<(512 log 2

1
If f € Ra(1), then Alezander transform Fy(z) = A[f](z) = / f(iz)dt is convex of
0
order 6 where 6 € [0,1/2]. The value of B is sharp.
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Remark 2. 1. For § =0,

1—2log?2

=—-0.629....
2 —2log?2

Bo =
Then, for f satisfying
Re'? (f’(z) +z2f"(2) — 5) >0,z€F,

Alexander transform A[f] is convex. It has been shown in [8] that By is the

best possible bound here.

2. We note that for 6 = 1/2, By, = 0.590.... Then, for f satisfying
Re'? (f/(z) +z2f"(2) — B) >0,z€F,

Alexander transform A[f] is convex of order 1/2.

While, the case ¢ = 0 in Theorem 6 yields yet another interesting result, which

we state as a theorem.

Theorem 9. Let 0 <y < a <14 2v. If F € A satisfies

R (F'(2) + azF"(2) + ’yzQF”’(z)) > 3, z€E,
and B < 1 satisfies )
—1/2

where q is given by

/ / 1+5)Swt 1/# 1 1/V_1d8dw
" 1—5 (14 swt)? ’

then for § € [0,1/2], F belongs to K (). The value of 8 is sharp.

To state our next theorem, we define

A(t) = (a+1)(b+ 1) sy
(a+ 1)%t%log(1/t), b=a,

where b > —1 and a > —1.
Then,

VA(f)(2) = Gy(a,b;2) = { (
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Theorem 10. Letb > —1,a> -1 and 0 <y < a <14 2v. Let B < 1 satisfy

-1 2
/ / At
where q is given by

/ / — (1 +9)swt S/ 1 =1 gedu
T 1—5 )(1 + swt)? '

and X(t) is defined by (25). If f € Wa(«, ), then the convolution operator G f(a, b; z)
belongs to K(8) with § € [0,1/2] if
a<a+i-L Ve
poov

The value of B is sharp.

Substituting @« = 14+ 27v, v > 0 and g = 1 in Theorem 6, gives the following
result :

Corollary 11. Letb> —1, -1 <a <3 —1/y and v > 1. Let § < 1 salisfy
B—1/2 /1
E 12— | ABq)dt,
= Mo

where q 1s given by

/ / — (1 +d)swt S/ 1/ =1 g e
T 1—5 )(1 + swt)3 ’

and A(t) is defined by (25). If f € Rg(7), then the convolution operator G ¢(a,b; z)
belongs to K (0) with 6 € [0,1/2]. The value of B is sharp.

While for v = 0, with an application of Theorem 5, we get the following result:
Theorem 12. Letb > —1,a> —1 and a > 1. Let 5 < 1 satisfy

ﬁ‘”2=—/3@%mw,
0

1-p

where qq, s given by

1 (1=06) = (1+0)st gl/a—1
A ds

©O =35 A=t

and A(t) is defined by (25). If f € Pg(c), then the convolution operator G¢(a,b; z)
belongs to K (0) with § € [0,1/2] if one of the following conditions holds :

(i) -1 <a<0and a=>b, or

(1)) -1 <a<0and -1 <a<b<1l+1/a.

The value of B is sharp.
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Now, we define

(1+a)P
I'(p)

In this case, V) reduces to the Komatu operator [9]
V, z) = log | — t¢ tz)dt, a > —1, p>0.

For p = 1 Komatu operator gives the Bernardi integral operator. For this A, the
following result holds.

A(t) = t* (log(1/t))P', a>—1, p>0.

Theorem 13. Leta>p—2> -1 and 0 <y < a<1+2v. Let 8 <1 satisfy

g-1/2 _
1-8

- / Oty
0

where q is given by

1t a—=6)—(1+6)swt
t = — /M—l 1/1/—1 .
att) W/O /0 =00 tswt ° v dsdw

If f € Ws(a,7), then the function

B(a: 2) * f() = (1;(;;)1, /01 <log (1))17_1 191 f (1)t

belongs to K(6) with § € [0,1/2] if

1 1
a<2+ - — =, v>u> 1
oo

The value of B is sharp.

REFERENCES
[1] R. M. Ali, A. O. Badghaish, V. Ravichandran and A. Swaminathan, Starlikeness
of integral transforms and duality, J. Math. Anal. Appl. 385 (2012), 808-822.

[2] R. M. Ali, M. M. Nargesi and V. Ravichandran, Convezity of integral transforms
and duality, Complex Var. Elliptic Equ. (2012), 1-22.

[3] R. M. Ali and V. Singh, Convexity and starlikeness of functions defined by a
class of integral operators, Complex Variables Theory Appl. 26, 4 (1995), 299-309.

295



S. Verma, S. Gupta, S. Singh — Order of convexity ...

[4] R. Balasubramanian, S. Ponnusamy and D. J. Prabhakaran, Duality techniques
for certain integral transforms to be starlike, J. Math. Anal. Appl. 293 (2004), 355-
373.

[5] R. Balasubramanian, S. Ponnusamy and D. J. Prabhakaran, Convezity of inte-
gral transforms and function spaces, Integral Transforms Spec. Funct. 18, 1-2 (2007),
1-14.

[6] R. Balasubramanian, S. Ponnusamy and D. J. Prabhakaran, On extremal prob-
lems related to integral transforms of a class of analytic functions, J. Math. Anal.
Appl. 336, 1 (2007), 542-555.

[7] J. H. Choi, Y.C. Kim and M. Saigo, Geometric properties of convolution opera-
tors defined by Gaussian hypergeometric functions, Integral Transforms Spec. Funct.
13, 2 (2002), 117-130.

[8] R. Fournier and S. Ruscheweyh, On two extremal problems related to univalent
functions, Rocky Mountain J. Math. 24, 2 (1994), 529-538.

[9] Y. Komatu, On analytic prolongation of a family of operators, Mathematica
(Cluj) 32, 55(2) (1990), 141-145.

[10] S. Ruscheweyh, Convolutions in Geometric Function Theory (Montreal: Les
Presses de ' Universite de Montreal).

[11] S. Ruscheweyh, Duality for Hadamard products with applications to extremal
problems for functions regular in unit disc, Trans. Amer. Math. Soc. 210 (1975),
63-74.

Sarika Verma, Sushma Gupta and Sukhjit Singh
Department of Mathematics,

Sant Longowal Institute of Engineering and Technology,
Longowal-148106, (Punjab) India

email: sarika.16984@Qgmail.com

296



