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Abstract. In this paper, we introduce an algorithm to construct all topologies
and algebras on finite sets. For a non-empty set X we first provide a Booleian algebra
of integers isomorphic to the power set of P (X). Then the problem of finding all
topologies (algebras) in X can be discussed explicitly in the Boolean algebra. This
upward movement indicates us to obtain an algorithm to generate all topologies
(algebras) in X.
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1. Introduction and preliminaries

There are many kind of different algorithms to find the number of the topologies
on finite sets [3, 5, 7]. Sharp [6] showed that the number of topologies and quasi-
orders on finite sets are the same. Moreover, a method for constructing one-point
expansions of a topology on a finite set is discussed in [1]. However, there is no
explicit construction of topologies on a finite set. The main goal of this article is to
introduce an algorithm to characterize all topologies on finite sets. Some applications
of these processes in the theory of computation can be found in [2, 8]

Let us start with a brief review of some basic facts from the set theory and
topology. A topology τ on a set X 6= ∅ is a subset of P (X), the power set of X, that
contains ∅ and X, and is closed under unions and finite intersections. The elements
of τ are called open sets and the pair (X, τ) is called a topological space. Clearly,
the number of topologies on X is exactly the number of sublattices (P (X),⊆). A
topological space (X, τ) is said to be T0-space if for every distinct x, y ∈ X there
exists an open set U containing exactly one of them.

We first construct a Boolean algebra isomorphic to the power set of P (X) to
generate the set of all topologies on a finite set X. Finding topologies on X can be
read as looking for some special subsets of the Boolean algebra. As we have seen,
this leads to obtain an algorithm to establish all topologies and algebras on X.
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Definition 1. Let B be a nonempty set with a pair of operations ⊕ and �. The
triple (B,⊕,�) is called a Boolean algebra if for all a, b, c ∈ B:

1. a� b = b� a, a⊕ b = b⊕ a.

2. a� (b� c) = (a� b)� c, a⊕ (b⊕ c) = (a⊕ b)⊕ c.

3. a� (b⊕ c) = (a� b)⊕ (a� c), a⊕ (b� c) = (a⊕ b)� (a⊕ c).

4. There exist 1B and 0B such that

a⊕ 0B = aB, a� 1B = a.

5. For every a ∈ B there exist á ∈ B such that

a⊕ á = 1B, a� á = 0B.

The following examples have a key roll in this note.

Example 1. 1. Let B = {0, 1}. Define the operations ⊕ and � as follows:

⊕ 0 1 � 0 1

0 0 1 0 0 0
1 1 1 1 0 1

Then the triple (B,⊕,�) is a Boolean algebra.

2. For each non-empty set X the triple (P (X),∪,∩) is a Boolean algebra with
1P (X) = X and 0P (X) = ∅.

According to binary representation of numbers each j ∈M := {0, 1, 2, . . . , 2n−1}
can be represented as

∑n−1
l=0 λl2

l where λl ∈ {0, 1}. In this case, we denote j as
(λn−1 · · ·λ0)2. For two elements j =

∑n−1
l=0 λl2

l and k =
∑n−1

l=0 γl2
l define

j ⊕ k =

n−1∑
l=0

(λl ⊕ γl)2l, j � k =

n−1∑
l=0

(λl � γl)2l.

It is easy to see that (M,⊕,�) is a Boolean algebra with 1M = 2n − 1 and 0M = 0.
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2. Main Results

Throughout this paper we assume that n ∈ N is a fix natural number and X =
{x0, x1, . . . , xn−1} is a finite set with n distinct elements. Although the elements of
a set are not ordered but we will consider the elements of X only by this form.

Theorem 1. Let X = {x0, x1, . . . , xn−1} and M := {0, 1, 2, . . . , 2n − 1}. Then
(P (X),∪,∩) and (M,⊕,�) are Boolean algebra isomorphic.

Proof. Define ϕ : P (X)→M by

ϕ(A) =
n−1∑
l=0

χA(xl)2
l.

It is easy to see that ϕ is a bijective map, ϕ(∅) = 0 and ϕ(X) = 2n − 1. Moreover,
for A,B ⊆ X we have

ϕ(A ∪B) =
n−1∑
l=0

χ(A∪B)(xl)2
l

=
n−1∑
l=0

χA(xl)2
l ⊕

n−1∑
l=0

χB(xl)2
l

= ϕ(A)⊕ ϕ(A),

and

ϕ(A ∩B) =

n−1∑
l=0

χ(A∩B)(xl)2
l

=
n−1∑
l=0

χA(xl)2
l �

n−1∑
l=0

χB(xl)2
l

= ϕ(A)� ϕ(A).

Let P (X) be the power set of X. To apply this theorem for P (X) instead of X
we need to consider an order on P (X). In fact, we rewrite the power set of X as
P (X) = {A0, A1, . . . , A2n−1} where Aj = ϕ−1(j) and denote the obtained Boolean
algebra isomorphic by Φ. Thus,

Φ : P (P (X))→ N, Φ(A) =

2n−1∑
i=0

χA(Ai)2
i, (1)
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where N := {0, 1, 2, . . . , 22n − 1}. In particular, Φ(∅) = 0 and Φ(P (X)) = 22
n − 1.

Some properties of Φ are given in the following proposition.

Proposition 1. Let X = {x0, x1, . . . , xn−1}, A ∈ P (P (X)) and 0 ≤ j ≤ 2n − 1.

1. Φ({ϕ−1(j)}) = 2j

2. ϕ−1(j) ∈ A if and only if 2j � Φ(A) = 2j.

It is well-known that each topology τ on X must contain the empty set and X
itself. This fact can be expressed as follows:

1� Φ(τ) = 1, 22
n−1 � Φ(τ) = 22

n−1.

The natural question is how to find Φ(τ) for a topology τ . Let us now give an
example. Choose t = 22

n−1 + 1 and take τ = Φ−1(t). Consider (λ2n−1 · · ·λ0)2 as
the binary representation of t, then λj = 0 for all 0 < j < 2n − 2. So τ = {∅, X} is
the non-discrete topology on X. Indeed, ϕ−1(j) /∈ τ for such j by Proposition 1. A
similar argument shows that τ = Φ−1(22

n − 1) is the discrete topology.
The following theorem describes all topologies on X.

Theorem 2. Suppose X = {x0, x1, . . . , xn−1} and Φ : P (P (X)) → N is given by
(1).

1. Φ(τ) > 22
n−1 is an odd number for each topology τ on X.

2. τ ⊆ P (X) is a topology on X if and only if 22
n−1 < Φ(τ) < 22

n
is an odd

number and for each 0 < i < j < 2n−1 with 2i�Φ(τ) = 2i and 2j�Φ(τ) = 2j

we have
2i�j � Φ(τ) = 2i�j , 2i⊕j � Φ(τ) = 2i⊕j . (2)

Proof. Let τ be a topology on X. Then

1� Φ(τ) = Φ({∅} ∩ τ) = Φ({∅}) = 1,

Now the definition of � shows that the last number of Φ(τ), in the binary represen-
tation, must be 1. Therefore, Φ(τ) is an odd number. Moreover, by Proposition 1
we obtain 22

n−1�Φ(τ) = 22
n−1. By attention to the binary representation we have

Φ(τ) > 22
n−1.

To prove (2), let 22
n−1 < t < 2n is odd and τ = Φ−1(t). Apply Proposition 1 we

obtain

1 = Φ({∅}) = Φ({∅} ∩ τ) = 1� Φ(τ)

22
n−1 = Φ({ϕ−1(2n − 1)}) = Φ({X} ∩ τ) = 22

n−1 � Φ(τ).
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Consequently {∅, X} ⊆ τ . Suppose that A,B ⊆ X are non-trivial, by Theorem 1
there exist 0 < i < j < 2n − 1 such that ϕ(A) = i, ϕ(B) = j. By Proposition 1 if
A,B ∈ τ , then

2i � Φ(τ) = 2i, 2j � Φ(τ) = 2j .

Combining (2) with the fact that A∩B = ϕ−1(i� j) and A∪B = ϕ−1(i⊕ j) easily
follows that A ∪ B and A ∩ B belong to τ . This shows that τ is a topology on X.
The converse of (2) follows immediately.

Recall that a collection F of subsets of a finite set X is called an algebra (σ-
algebra) if it contains ∅ and X, and is closed under unions and complements. Obvi-
ously, every algebra is a topology. By Theorem 2 we can find a characterization of
all algebras on X as follows.

Corollary 3. Suppose X = {x0, x1, . . . , xn−1} and τ is a topology on X. The family
τ is an algebra on X if and only if

2i � Φ(τ) = 2i ⇐⇒ 22
n−1−i � Φ(τ) = 22

n−1−i, (0 < i < 2n − 1).

3. Algorithm

Our algorithm to construct all topologies on a finite set X is a based on the bi-
nary representation of numbers. We first establish an one-to-one correspondence
between P (X) and M = {0, 1, . . . , 2n−1}. More precisely, if X = {x0, x1, . . . , xn−1}
and A = {xn1 , xn2 , . . . , xnm} is a subset of X, then the associated integer is j =
(λnm−1λnm−2 · · ·λ0)2 where

λl =

{
1 l ∈ {n1, n2, . . . , nm},
0 otherwise.

Similarly, we can extend this correspondence to P (P (X)) andN = {0, 1, . . . , 22n−
1}. The problem of finding all topologies (algebras) in X can be discussed explic-
itly in the Boolean algebra (N,⊕,�). It is enough to examine only odd numbers
22

n−1 < t < 22
n

such that

2i�j � t = 2i�j , 2i⊕j � t = 2i⊕j ,

when 0 < i < j < 2n − 1 with 2i � t = 2i and 2j � t = 2j , see Theorem 2. These
two facts give us an algorithm for computing all topologies X (Algorithm 1). Table
1 presents all topologies on a three-member set. We observe that there are only five
algebras out of those 29 topologies.
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input : n; cardinal of X
output: List of all 22

n−1 + 1 ≤ t ≤ 22
n − 1 such that τ := Φ−1(t) is a topology on X

1 begin
2 a←− 22

n−1 + 1

3 b←− 22
n − 1

4 for t from a by 2 to b do
5 for λ ∈ {0, 1, . . . , 2n − 2} do
6 for µ ∈ {λ+ 1, . . . , 22 − 2} do
7 if 2λ � t 6= 0 ∧ 2µ � t 6= 0 then
8 if 2λ⊕µ � t = 0 ∨ 2λ�µ � t = 0 then
9 go to 15

10 end

11 end

12 end

13 end
14 print τ is a topology on X
15 continue

16 end

17 end
Algorithm 1: Finding all topologies on X.

Corollary 3 help us to obtain all algebras on finite set X = {x0, x1, x2, x3}, see Table
2. Moreover, the number of algebras in some finite sets are shown in Table 3.

Before we end this section, let us remark some problems for interested readers:

• How many topologies with m elements are there on an n-element set?

• Let X be a set with n elements, and let m ∈ N such that 3
42n < m < 2n. Is

there a topology on X with m elements?
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All topologies and algebras on three-member set

Odd number

22
3−1 < t < 22

3
Topology Φ−1(t) Is also an algebra?

129 {∅, X} X
131 {∅, X, {x0}} -
133 {∅, X, {x1}} -
137 {∅, X, {x0, x1}} -
139 {∅, X, {x0}, {x0, x1}} -
141 {∅, X, {x1}}, {x0, x1}} -
143 {∅, X, {x0}, {x1}}, {x0, x1}} -
145 {∅, X, {x2}} -
153 {∅, X, {x0, x1}, {x2}} X
161 {∅, X, {x0, x2}} -
163 {∅, X, {x0}, {x0, x2}} -
165 {∅, X, {x1}, {x0, x2}} X
171 {∅, X, {x0}, {x0, x1}, {x0, x2}} -
175 {∅, X, {x0}, {x1}, {x0, x1}, {x0, x2}} -
177 {∅, X, {x2}, {x0, x2}} -
179 {∅, X, {x0}, {x2}, {x0, x2}} -
187 {∅, X, {x0}, {x0, x1}, {x2}, {x0, x2}} -
193 {∅, X, {x1, x2}} -
195 {∅, X, {x0}, {x1, x2}} X
197 {∅, X, {x1}, {x1, x2}} -
205 {∅, X, {x1}, {x0, x1}, {x1, x2}} -
207 {∅, X, {x0}, {x1}, {x0, x1}, {x1, x2}} -
209 {∅, X, {x2}, {x1, x2}} -
213 {∅, X, {x1}, {x2}, {x1, x2}} -
221 {∅, X, {x1}, {x0, x1}, {x2}, {x0, x2}} -
241 {∅, X, {x2}, {x0, x2}, {x1, x2}} -
243 {∅, X, {x0}, {x2}, {x0, x2}, {x1, x2}} -
245 {∅, X, {x1}, {x2}, {x0, x2}, {x1, x2}} -
255 P (X) X

Table 1: All topologies and algebras on finite set X = {x0, x1, x2}.
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All algebras on four-member set

Odd number

22
3−1 < t < 22

3
Algebra Φ−1(t)

32769 {∅, X}
33153 {∅, {x0, x1, x2}, {x3}, X}
33345 {∅, {x1, x2}, {x0, x3}, X}
33825 {∅, {x0, x2}, {x1, x3}, X}
34833 {∅, {x2}, {x0, x1, x3}, X}
36873 {∅, {x0, x1}, {x2, x3}, X}
39321 {∅, {x0, x1}, {x2}, {x0, x1, x2}, {x3}, {x0, x1, x3}, {x2, x3}, X}
40965 {∅, {x1}, {x0, x2, x3}, X}
42405 {∅, {x1}, {x0, x2}, {x0, x1, x2}, {x3}, {x1, x3}, {x0, x2, x3}, X}
43605 {∅, {x1}, {x2}, {x1, x2}, {x0, x3}, {x0, x1, x3}, {x0, x2, x3}, X}
49155 {∅, {x0}, {x1, x2, x3}, X}
50115 {∅, {x0}, {x1, x2}, {x0, x1, x2}, {x3}, {x0, x3}, {x1, x2, x3}, X}
52275 {∅, {x0}, {x2}, {x0, x2}, {x1, x3}, {x0, x1, x3}, {x1, x2, x3}, X}
61455 {∅, {x0}, {x1}, {x0, x1}, {x2, x3}, {x0, x2, x3}, {x1, x2, x3}, X}
65535 P (X)

Table 2: All algebras on finite set X = {x0, x1, x2, x3}.

All algebras on four-member set

The number of elements of X The number of algebras on X

1 1
2 2
3 5
4 15
5 52

Table 3: The number of algebras on finite sets.
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