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VARIABLE-STEP 4-STAGE HERMITE–BIRKHOFF SOLVER OF
ORDER 9 AND 10 FOR STIFF ODES

T. Nguyen-Ba, T. Giordano, R. Vaillancourt

Abstract. Variable-step (VS) 4-stage k-step Hermite–Birkhoff (HB) methods
of order p = (k + 2), p = 9, 10, denoted by HB(p), are constructed as a combina-
tion of linear k-step methods of order (p − 2) and a diagonally implicit one-step
4-stage Runge–Kutta method of order 3 (DIRK3) for solving stiff ordinary differen-
tial equations. Forcing a Taylor expansion of the numerical solution to agree with
an expansion of the true solution leads to multistep and Runge–Kutta type order
conditions which are reorganized into linear confluent Vandermonde-type systems.
This approach allows us to develop L(α)-stable methods of order up to 10. Fast
algorithms are developed for solving these systems in O(p2) operations to obtain
HB interpolation polynomials in terms of generalized Lagrange basis functions. The
stepsizes of these methods are controlled by a local error estimator. HB(p) of order
p = 9 and 10 compare favorably with existing Cash modified extended backward
differentiation formulae of order 7 and 8, MEBDF(7-8), in solving problems often
used to test higher order stiff ODE solvers on the basis of number of steps and error
at the endpoint of the integration interval.
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1. Introduction

In this paper, we shall be concerned with solving stiff systems of first-order ordinary
differential equations of the form

y′ = f(t, y), y(t0) = y0, where ′ =
d

dt
and y ∈ Rn. (1)
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There is a variety of variable step (VS) methods designed to solve nonstiff and
stiff systems of first-order differential equations (ODEs). Gear advocated a quasi-
constant step size implementation in DIFSUB [13]. This software works with a
constant step size until a change of step size is necessary or clearly advantageous.
Then a continuous extension is used to get approximations to the solution at pre-
vious points in an equally spaced mesh. This was largely because constant mesh
spacing is very helpful when solving stiff problems. Another possibility is fixed lead-
ing coefficient, which is seen in Petzold’s popular code DASSL [22]. Finally, the
actual mesh can be chosen by the code as done in MATLAB’s ode113. This is the
equivalent of a PECE Adams formula in contrast with the Adams–Moulton formu-
las of DIFSUB and DASSL. In this paper, a fully variable step size implementation
is used with actual mesh. A brief survey of methods for the numerical integration
of (1) reveals that many of the advances in the class of general linear multistep
methods for stiff ODEs, methods like extended backward differentiation formula
(EBDF), modified extended backward differentiation formula (MEBDF), adaptive
extended backward differentiation formula (AEBDF) and hybrid backward differ-
entiation formula (HBDF) [5, 6, 7, 8, 15, 9], are based on backward differentiation
formula (BDF). These methods are A-stable or A(α)-stable. The first modification
introduced by Cash [5] was the EBDF in which one superfuture point has been
applied.

In this paper, methods with four off-step points are presented. A linear k-
step method of order p− 2 and a diagonally implicit one-step 4-stage Runge–Kutta
method of order 3 (DIRK3) are cast into a k-step 4-stage Hermite–Birkhoff method
of order p = k + 2, named HB(p), p = 9, 10, because it uses Hermite–Birkhoff
interpolation polynomials, for solving stiff ordinary differential equations (ODE)
(1). Here, the DIRK3 is defined in Section 2 with p = 3 and step number k = 1.
This method is similar to the diagonally implicit one-step Runge–Kutta methods
(DIRK) found in [1] except that, following the approach of Cash [5], the abscissae
ci are allowed to be 0 ≤ ci ≤ 2, i = 2, 3, 4. The methods which we shall derive will
be observed to require more work per step, but to have higher orders of accuracy
and better stability characteristics, than existing methods.

Forcing a Taylor expansion of the numerical solution of HB(p) methods to agree
with an expansion of the true solution leads to multistep and Runge–Kutta type
order conditions which are reorganized into linear Vandermonde-type systems. The
solutions of these systems are obtained as generalized Lagrange basis functions by
new fast algorithms.

It was found experimentally that, generally, increasing the number of backstep
points is efficient in increasing the accuracy of HB methods and the stability of HB
methods increases with the number of off-step points. The HB(p), considered here,
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are L(α)-stable methods of order up to 10.
It was also found that, with a given fixed number of off-step points, increased

speed is generally achieved by higher order HB methods.
HB(p), p = 9, 10 compare favorably with MEBDF(p), p = 7, 8, [5, 6] on prob-

lems often used to test higher order ODE solvers for stiff ODEs on the basis of the
number of steps and the error at the endpoint of the interval of integration. In Sec-
tion 2, we introduce new general VS HB(p) methods of order p. Order conditions
of general VS HB(p) are listed in Section 3. In Section 4, particular variable step
HB(p), p = 9, 10 are defined by fixing a set of parameters and are represented in
terms of Vandermonde-type systems. In Section 5, symbolic elementary matrices are
constructed as functions of the parameters of the methods in view of factoring the
coefficient matrices of Vandermonde-type systems. Fast solution of Vandermonde-
type systems for particular variable step HB(p) is constructed in Section 6. Section 7
considers the regions of absolute stability of constant step HB(p), p = 3, 4, . . . , 10.
Section 8 deals with the step control. In Section 9, we compare the numerical per-
formance of the methods considered in this paper. Appendix A lists the algorithms.
Appendix B lists the coefficients of DIRK3 and constant step HB(p) methods of
order p = 4, 5, . . . , 10.

2. General variable step HB(p) of order p

General 4-stage HB methods are constructed, as a subclass of general linear methods,
by the following four formulae to perform integration from tn to tn+1.

Let hn+1 denote the step size. The abscissa vector [c1, c2, . . . , c5]T defines the
off-step points tn + cjhn+1 with c1 = 0 and c5 = 1. Following the approach of Cash
[5], ci are allowed to be 0 ≤ ci ≤ 2, i = 2, 3, 4.

Let F1 = fn and Fj := f(tn + cjhn+1, Yj), j = 2, 3, 4, 5, denote the jth stage
derivative.

With the initial stage value, Y1 = yn, HB polynomials of degree k + i − 1 are
used as predictors Pi to obtain the stage values Yi to order p− 2,

Yi = hn+1aiif(tn + cihn+1, Yi) +

p−3∑
j=0

αijyn−j + hn+1

[ i−1∑
j=1

aijFj

]
, i = 2, 3, 4. (2)

An HB polynomial of degree k + 3 is used as implicit integration formula IF to
obtain yn+1 to order p,

yn+1 = hn+1b5f(tn + hn+1, yn+1) +

p−3∑
j=0

αjyn−j + hn+1

[ 4∑
j=2

bjFj

]
. (3)
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An HB polynomial of degree k+ 3 is used as implicit predictor P5 to control the
stepsize, hn+2, and obtain ỹn+1 to order p− 2,

ỹn+1 = hn+1a55f(tn + hn+1, yn+1) +

p−3∑
j=0

α5jyn−j + hn+1

[ 4∑
j=2

a5jFj

]
. (4)

Here, the forms (2)–(3) are used by the implicit algebraic equations system defin-
ing Yi, i = 2, 3, 4 and yn+1 to handle implicitness in the context of stiffness.

The distinct implicit algebraic equations systems (2)–(3) defining Yi, i = 2, 3, 4
and yn+1 are solved exactly sequentially.

The following terminology will be useful. An HB(p) method is said to be a
general variable-step HB method if its backstep, off-step points and the coefficients

a22 = a33 = a44 = b5, a32, (5)

in (2)–(3) are variable parameters. Hence, the general variable-step HB method has
five degrees of freedom (c2, c3, c4, a22 = a33 = a44 = b5, a32). If the off-step points
and the coefficients in (5) are fixed, the method is said to be a particular variable-
step method. If the stepsize is constant, and hence the backsteps, off-steps and the
coefficients in (5) are fixed parameters, the method is said to be a constant-step
method.

3. Order conditions of general HB(p)

To derive the order conditions of 4-stage (p−2)-step HB(p), we shall use the following
expressions coming from the backsteps of the methods:

Bi(j) =

p−3∑
`=1

αi`
ηj`+1

j!
,

{
i = 2, 3, 4,

j = 1, 2, . . . , p,
(6)

and

ηj = − 1

hn+1
(tn − tn+1−j) = − 1

hn+1

j−2∑
i=0

hn−i, j = 2, 3, . . . , p− 2. (7)

In the sequel, ηj will be frequently used without explicit reference to (7).
Forcing an expansion of the numerical solution produced by formulae (2)–(3)

to agree with the Taylor expansion of the true solution, we obtain multistep- and
several RK-type order conditions that must be satisfied by 4-stage HB(p) methods.
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First, we need to satisfy the following set of multistep-type consistency condi-
tions:

k−1∑
j=0

αij = 1, i = 2, 3, 4, and

k−1∑
j=0

αj = 1. (8)

Second, to reduce a large number of RK-type order conditions (see [20]), we impose
the following simplifying assumptions:

i∑
j=2

aijc
k
j + k!Bi(k + 1) =

1

k + 1
ck+1
i ,

{
i = 2, 3, 4,

k = 0, 1, . . . , p− 3.
(9)

Thus, there remain only two sets of equations to be solved:

5∑
i=2

bic
k
i + k!B(k + 1) =

1

k + 1
, k = 0, 1, . . . , p− 1, (10)

4∑
i=2

bi

[ i∑
j=2

aij
cp−2
j

(p− 2)!
+Bi(p− 1)

]
+ b5

cp−1
5

(p− 1)!
+B(p) =

1

p!
, (11)

where the backstep parts, B(j), are defined by

B(j) =

p−3∑
`=1

α`
ηj`+1

j!
, j = 1, 2, . . . , p+ 1. (12)

These order conditions are simply RK order conditions with backstep parts Bi(·)
and B(·).

4. Vandermonde-type formulation of particular variable step HB(p)

The general HB(p) methods obtained in Section 3 contain free coefficients: ci,
i = 2, 3, 4, coefficients in (5), and depend on hn+1 and the previous nodes,
tn, tn−1, . . . , tn−(p−3), which determine η2, η3, . . . , ηp−2 in (7). For simplicity and
to obtain large regions of absolute stability, R, of particular variable-step HB(p)
methods, the coefficients listed in (14) and Table 1 were chosen and, following the
approach of Butcher and Chen [4], the following condition is imposed on the coeffi-
cients:

b4(a41a22a33 − a42a21a33 + a43a21a32 − a43a22a31)

+ b2(a44a21a33) + b3(a44a22a31 − a44a21a32) = 0. (13)
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Table 1: Coefficients of implicit predictors Pi, i = 2, 3, 4 and integration formula of
k-step Hermite–Birkhoff solver of order p = 9, 10.

k 7 8

coeffs\p 9 10

a32 -1.8268922342457146e-02 -1.2644364453523351e-02

b5 3.8669248231767694e-01 3.5644917896211648e-01

The remaining of this paper is concerned with particular VS HB(9) and HB(10)
with coefficients ci, i = 1, 2, . . . , 5 given by

c1 = 0, c2 = 1.2791616119701035, c3 = 0.38776891003998121,

c4 = 1.1997368881525279, c5 = 1.0, (14)

a32 and aii = b5, i = 2, 3, 4 given in Table 1.

4.1. Integration formula IF

The (p+ 1)-vector of reordered coefficients of the integration formula IF in (3),

u1 = [α0, α1, . . . , αp−3, b4, b3, b2]T ,

is the solution of the Vandermonde-type system of order conditions

M1u1 = r1, (15)

where

M1 =



1 1 1 · · · 1 0 0 0
0 η2 η3 · · · ηp−2 1 1 1

0
η22
2!

η23
2! · · · η2p−2

2! c4 c3 c2
...

...

0
ηp2
p!

ηp3
p! · · · ηpp−2

p!
cp−1
4

(p−1)!
cp−1
3

(p−1)!
cp−1
2

(p−1)!


, (16)

and r1 = r1(1 : p+ 1) has components

r1(1) = 1,

r1(i) =
1

(i− 1)!
− b5

ci−2
5

(i− 2)!
, i = 2, 3, . . . , p+ 1.
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The leading error term of IF is[
b5
cp5
p!

+

p−3∑
j=1

αj
ηp+1
j+1

(p+ 1)!
+

4∑
j=2

bj
cpj
p!
− 1

(p+ 1)!

]
hp+1
n+1y

p+1
n .

4.2. Predictor P2

The (p− 1)-vector of reordered coefficients of the predictor P2 in (2) with i = 2,

u2 = [α20, a21, α21, . . . , α2,p−3]T ,

is the solution of the Vandermonde-type system of order conditions

M2u2 = r2, (17)

where

M2 =



1 0 1 1 · · · 1
0 1 η2 η3 · · · ηp−2

0 0
η22
2!

η23
2! · · · η2p−2

2!
...

...

0 0
ηp−2
2

(p−2)!
ηp−2
3

(p−2)! · · ·
ηp−2
p−2

(p−2)!


, (18)

and r2 = r2(1 : p− 1) has components

r2(1) = 1,

r2(2) = c2 − a22,

r2(i) =
ci−1

2

(i− 1)!
− a22

ci−2
2

(i− 2)!
, i = 3, 4, . . . , p− 1.

A truncated Taylor expansion of the right-hand side of (2) with i = 2 about tn
gives

p+1∑
j=0

S2(j)hjn+1y
(j)
n
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with coefficients

S2(j) = a22
cj−1

2

(j − 1)!
+M2(j + 1, 1 : p− 1)u2

= a22
cj−1

2

(j − 1)!
+ r2(j + 1) =

cj2
j!
, j = 1, 2, . . . , p− 2,

S2(j) = a22S2(j − 1) +

p−3∑
i=1

α2i

ηji+1

j!
, j = p− 1, p, p+ 1.

We note that P2 is of order p− 2 since it satisfies the order conditions

S2(j) = cj2/j!, j = 0, 1, . . . , p− 2,

and its leading error term is[
S2(p− 1)− cp−1

2

(p− 1)!

]
hp−1
n+1y

(p−1)
n .

4.3. Predictor P3

We consider the (p+ 1)-vector of coefficients of the predictor P3 in (2) with i = 3,

ũ3 = [a33, α30, α31, . . . , α3,p−3, a31, a32]T .

By setting a33 = b5 and a32 equal to the values in Table 1, ũ3 reduces to the
(p− 1)-vector u3 which is the solution of the system of order conditions

M3u3 = r3, (19)

where M3 = M2 and r3 = r3(1 : p− 1) has components

r3(1) = 1,

r3(i) =
ci−1

3

(i− 1)!
− a33

ci−2
3

(i− 2)!
− a32

ci−2
2

(i− 2)!
, i = 2, 3, . . . , p− 1.

A truncated Taylor expansion of the right-hand side of (2), with i = 3, about tn
gives

p+1∑
j=0

S3(j)hjn+1y
(j)
n
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with coefficients

S3(j) = a33
cj−1

3

(j − 1)!
+ a32

cj−1
2

(j − 1)!
+M3(j + 1, 1 : p− 1)u3

= a33
cj−1

3

(j − 1)!
+ a32

cj−1
2

(j − 1)!
+ r3(j + 1) =

cj3
j!
, j = 1, 2, . . . , p− 2,

S3(j) = a33S3(j − 1) + a32S2(j − 1) +

p−3∑
i=1

α3i

ηji+1

j!
, j = p− 1, p, p+ 1.

4.4. Predictor P4

The (p+ 1)-vector of reordered coefficients of the predictor P4 in (2) with i = 4,

u4 = [α40, a41, α41, . . . , α4,p−3, a43, a42]T ,

is the solution of the Vandermonde-type system of order conditions

M4u4 = r4, (20)

where

M4 =



1 0 1 1 · · · 1 0 0
0 1 η2 η3 · · · ηp−2 1 1

0 0
η22
2!

η23
2!

· · · η2p−2

2!
c3 c2

0 0
η32
3!

η33
3!

· · · η3p−2

3!

c23
2!

c22
2!

...
...

0 0
η
p−1
2

(p−1)!

η
p−1
3

(p−1)!
· · ·

η
p−1
p−2

(p−1)!

c
p−2
3

(p−2)!

c
p−2
2

(p−2)!

0 a22a33b4 0 0 · · · 0 (a21a32b4 − a22a31b4) −a21a33b4


. (21)

The first (p− 1) components of r4 = r4(1 : p+ 1) are

r4(1) = 1,

r4(i) =
ci−1

4

(i− 1)!
− a44

ci−2
4

(i− 2)!
, i = 2, 3, . . . , p− 1,

the pth component is

r4(p) =
1

b4

[
1

p!
− b2S2(p− 1)− b3S3(p− 1)− b5

cp−1
5

(p− 1)!
−B(p)

]

− a44
cp−2

4

(p− 2)!
, (22)
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which corresponds to the order conditions (11), and the (p+ 1)th component is

r4(p+ 1) = −a44(a21a33b2 − a21a32b3 + a22a31b3), (23)

which corresponds to the condition (13).

4.5. Step control predictor P5

We consider the (p+ 2)-vector of the coefficients of predictor P5 in (4),

ũ5 = [a55, α50, α51, . . . , α5,p−3, a52, a53, a54]T .

By setting a55 = b5 + ω5, a54 = b4 + ω4 and a52 = b2 + ω2, ũ5 reduces to the
(p− 1)-vector u5 which is the solution of the system of order conditions

M5u5 = r5, (24)

where

M5 =



1 1 1 · · · 1 0
0 η2 η3 · · · ηp−2 1

0
η22
2!

η23
2! · · · η2p−2

2! c3

0
η32
3!

η33
3! · · · η3p−2

3!
c23
2!

...
...

0
ηp−2
2

(p−2)!
ηp−2
3

(p−2)! · · ·
ηp−2
p−2

(p−2)!
cp−3
3

(p−3)!


, (25)

and r5 = r5(1 : p− 1) has components

r5(1) = 1,

r5(i) =
1

(i− 1)!
− (b5 + ω5)

ci−2
5

(i− 2)!
− (b4 + ω4)

ci−2
4

(i− 2)!
− (b2 + ω2)

ci−2
2

(i− 2)!
,

i = 2, 3, . . . , p− 1.

For arbitrary nonzero ω4 and ω2, P5 yields ỹn+1 to order (p − 2). A good
experimental choice is ω5 = 0.025, ω4 = 0.025 and ω2 = −10−12.

The solutions u`, ` = 1, 2, . . . , 5, form generalized Lagrange basis functions for
representing the HB interpolation polynomials.
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5. Symbolic construction of elementary matrix functions

Consider the matrices

M ` ∈ Rm`×m` , ` = 1, 2, 4, 5, (26)

of the Vandermonde-type systems (15), (17), (20) and (24), where

m1 = p+ 1, m2 = p− 1, m4 = p+ 1, m5 = p− 1, (27)

and p is the order of the method.
The purpose of this section is to construct elementary lower and upper triangular

matrices as symbolic functions of the parameters of HB(p). These matrices are most
easily constructed by means of a symbolic software. These functions will be used in
Section 6 to factor

• M1 into a diagonal+last-three-column matrix, W 1
3 , which will be further di-

agonalized by a Gaussian elimination,

• M2 into the identity matrix,

• M4 into a diagonal+last-row+last-two-column matrix W 4
3 , which will be fur-

ther diagonalized by a Gaussian elimination,

• M5 into a diagonal+last-column matrix W 5
1 which will be further diagonalized

by a Gaussian elimination.

This decomposition will lead to a fast solution of the systemsM `u` = r`, ` = 1, 2, 4, 5
in O(p2) operations.

Since the Vandermonde-type matrices M ` can be decomposed into the product of
a diagonal matrix containing reciprocals of factorials and a confluent Vandermonde
matrix, the factorizations used in this paper hold following the approach of Björck
and Pereyra [3], Krogh [18], Galimberti and Pereyra [12] and Björck and Elfving
[2]. Pivoting is not needed in this decomposition because of the special structure of
Vandermonde-type matrices.

5.1. Symbolic construction of lower bidiagonal matrices for M `, ` =
1, 2, 4, 5

5.1.1. Symbolic construction of lower bidiagonal matrices for M `, ` = 1, 5

We first describe the zeroing process of a general vector x = [x1, x2, . . . , xm]T with
no zero elements. The lower bidiagonal matrix
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Lk =


Ik−1 0 0 · · · 0

0 1 0 0
0 −τk+1 1 0
...

...
. . .

. . .
...

0 0 0 −τm 1

 , (28)

defined by the multipliers

τi =
xi
xi−1

= −Lk(i, i− 1), i = k + 1, k + 2, . . . ,m, (29)

zeros the last (m−k) components, xk+1, xk+2, . . . , xm, of x. This zeroing process will
be applied recursively on M `, ` = 1, 5, as follows. For k = 2, 3, . . ., left multiplying
T `k = L`k−1L

`
k−2 · · ·L`3L`2M ` by L`k zeros the last (m` − k) components of the kth

column of T `k . Thus we obtain the upper triangular matrix

L1M1 = L1
m1−3 · · ·L1

3L
1
2M

1, (30)

L5M5 = L5
m5−1 · · ·L5

3L
5
2M

5, (31)

in (m1 − 4) and (m5 − 2) steps respectively.
We note that L` does not change the first two rows of M `.

Process 1. At the kth step, starting with k = 2,

• M `(k−1) = L`k−1L
`
k−2 · · ·L`2M ` is an upper triangular matrix in columns 1 to

k − 1.

• The multipliers in L`k are obtained from M `(k−1)(k+1 : m`, k) since M `(i, k) 6=
0 for i = k + 1, k + 2, . . . ,m`.

Algorithm 1 in Appendix A describes this process.
With ` = 1, the input is M = M1; m = m1. The output is Lk = L1

k, k =
2, 3, . . . ,m1 − 3.

With ` = 5, the input is M = M5; m = m5. The output is Lk = L5
k, k =

2, 3, . . . ,m5 − 1.

5.1.2. Symbolic construction of lower bidiagonal matrices for M2

The zeroing process by means of lower bidiagonal matrix (28) defined by the multi-
pliers (29) will be applied recursively on M2, as follows. For k = 3, 4, . . . ,m2−1, left
multiplying T 2

k = L2
k−1L

2
k−2 · · ·L2

4L
2
3M

2 by L2
k zeros the last (m2 − k) components

of the kth column of T 2
k . Thus we obtain the upper triangular matrix

L2M2 = L2
m2−1 · · ·L2

4L
2
3M

2, (32)
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in (m2 − 3) steps respectively.
We note that L2 does not change the first three rows of M2.

Process 2. At the kth step, starting with k = 3,

• M2(k−1) = L2
k−1L

2
k−2 · · ·L2

3M
2 is an upper triangular matrix in columns 1 to

k − 1.

• The multipliers in L2
k are obtained from M2(k−1)(k+1 : m2, k) since M2(i, k) 6=

0 for i = k + 1, k + 2, . . . ,m2.

Algorithm 1 in Appendix A describes this process.
The input is M = M2; m = m2. The output is Lk = L2

k, k = 3, 4, . . . ,m2 − 1.

5.1.3. Symbolic construction of lower bidiagonal matrices for M4

We first describe the zeroing process of a general vector x = [x1, x2, . . . , xm−1, 0]T

whose first (m− 1) components are non zero elements. The lower bidiagonal matrix

Lk =



Ik−1 0 0 · · · 0 0
0 1 0 0 0
0 −τk+1 1 0 0
...

...
. . .

. . .
...

...
0 0 0 −τm−1 1 0
0 0 0 0 0 1


, (33)

defined by the multipliers

τi =
xi
xi−1

= −Lk(i, i− 1), i = k + 1, k + 2, . . . ,m− 1, (34)

zeros the last (m − 1 − k) components, xk+1, xk+2, . . . , xm−1, of x. This zeroing
process will be applied recursively on M4 as follows. For k = 3, 4, . . . ,m4 − 2, left
multiplying T 4

k = L4
k−1 · · ·L4

4L
4
3M

4 by L4
k zeros the last (m4 − 1 − k) components

of the kth column of T 4
k . Thus we obtain the upper triangular matrix in row 1 to

m4 − 1 and in column 1 to m4 − 2,

L4M4 = L4
m4−2 · · ·L4

4L
4
3M

4, (35)

in (m4 − 4) steps.
We note that L4 does not change the first three rows and the last row of M4.

Process 3. At the kth step, starting with k = 3,

• M4(k−1) = L4
k−1L

4
k−2 · · ·L4

3M
4 is an upper triangular matrix in row 1 to m4−1

and in columns 1 to k − 1.
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• The multipliers in L4
k are obtained from M4(k−1)(k + 1 : m4 − 1, k) since

M4(i, k) 6= 0 for i = k + 1, k + 2, . . . ,m4 − 1.

Algorithm 1 in Appendix A describes this process.
The input is M = M4; m = m4. The output is Lk = L4

k, k = 3, 4, . . . ,m4 − 2.

5.2. Symbolic construction of elementary upper triangular matrices

5.2.1. Symbolic construction of upper bidiagonal matrices for M1

For matrix L1M1, we construct recursively upper bidiagonal matrices U1
1 , U

1
2 . . . , U

1
m1−4

such that right multiplying L1M1 by the upper triangular matrix U1 = U1
1U

1
2 · · ·U1

m1−4

transforms L1M1 into a matrix W 1
3 = L1M1U1 with nonzero diagonal elements,

W 1
3 (i, i) 6= 0, i = 1, 2, . . . ,m1, the last three nonzero columns W 1

3 (1 : m1, j) 6= 0,
j = m1−2,m1−1,m1, and zero elsewhere. We call such a matrix a “diagonal+last-
three-column matrix” matrix.

We describe the zeroing process of the upper bidiagonal matrix U1
k on the two-

row matrix (L1M1)(k : k + 1, 1 : m1):

(L1M1)(k : k + 1, 1 : m1)U1
1U

1
2 · · ·U1

k−1

=

[
yk1 · · · yk,k−1 1 · · · 1 yk,m1−2 yk,m1−1 yk,m1

yk+1,1 · · · yk+1,k−1 yk+1,k · · · yk+1,m1−3 yk+1,m1−2 yk+1,m1−1 yk+1,m1

]
.

(36)

The divisors

σi =
1

yk+1,i − yk+1,i−1
= U1

k (i, i), i = k + 1, k + 2, . . . ,m1 − 3, (37)

define the upper bidiagonal matrix

U1
k =



Ik−1 0 · · · 0 · · · 0 0 0 0
0 1 −σk+1 0 · · · 0 0 0 0
0 0 σk+1 −σk+2 · · · 0 0 0 0
...

...
. . .

. . .
...

0 0 0 · · · σm1−4 −σm1−3 0 0 0
0 0 0 · · · 0 σm1−3 0 0 0
0 0 0 · · · 0 0 1 0 0
0 0 0 · · · 0 0 0 1 0
0 0 0 · · · 0 0 0 0 1


. (38)

Right multiplying (36) by U1
k zeros the 1’s in position k + 1, k + 2, . . . ,m1 − 3 in

the first row and puts 1’s in position k + 1, k + 2, . . . ,m1 − 3 in the second row:

(L1M1)(k : k + 1, 1 : m1)U1
1U

1
2 · · ·U1

k−1U
1
k

=

[
yk1 · · · yk,k−1 1 0 · · · 0 yk,m1−2 yk,m1−1 yk,m1

yk+1,1 · · · yk+1,k−1 yk+1,k 1 · · · 1 yk+1,m1−2 yk+1,m1−1 yk+1,m1

]
. (39)
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Thus, U1 = U1
1U

1
2 · · ·U1

m1−4 transforms the upper triangular matrix L1M1 into the
diagonal+last-three-column matrix

W 1
3 = L1M1U1

1U
1
2 · · ·U1

m1−4 (40)

in (m1 − 4) steps.
Process 4. At the kth step, starting with k = 1,

• M1(k) = L1M1U1
1U

1
2 · · ·U1

k is a diagonal+last-three-column matrix in rows 1
to k.

• The divisors in U1
k are obtained fromM1(k−1)(k+1, k : m1−3) sinceM1(k−1)(k+

1, j)−M1(k−1)(k + 1, j − 1) 6= 0, j = k + 1, k + 2, . . . ,m1 − 3.

Algorithm 2 in Appendix A describes this process for M1. The input is M = M1;
m = m1. The output is Uk = U1

k , k = 1, 2, . . . ,m1 − 4.
The next two subsections, Subsection 5.2.2 and Subsection 5.2.3 describe the

construction of elementary upper triangular matrices U2
k , k = 1, 2, . . . ,m2 − 1 for

M2.

5.2.2. Construction of initializing upper tridiagonal matrix U2
1 for M2

For matrix L2M2, first, we construct the initializing upper tridiagonal matrix U2
1

such that right multiplying L2M2 by U2
1 transforms L2M2 into a matrix whose first

two rows are of the form:

(L2M2U2
1 )(1 : 2, 1 : m2) =

[
1 0 0 · · · 0 0
y21 1 1 · · · 1 1

]
. (41)

We describe the zeroing process of the upper tridiagonal matrix U2
1 on the first-

two-row matrix (L2M2)(1 : 2, 1 : m2):

(L2M2)(1 : 2, 1 : m2) =

[
1 0 1 · · · 1
y21 1 y23 · · · y2,m2

]
. (42)

The divisors

σ3 =
1

y2,3 − y2,1
= U2

1 (3, 3), σi =
1

y2,i − y2,i−1
= U2

1 (i, i), i = 4, 5, . . . ,m2, (43)

define the elementary upper tridiagonal matrix U2
1 of the form

U1
k =



1 0 −σ3 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 σ3 −σ4 0 · · · 0
0 0 0 σ4 −σ5 · · · 0
...

...
. . .

. . .
...

0 0 0 0 · · · σm2−1 −σm2

0 0 0 0 · · · 0 σm2


. (44)
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Right multiplying (42) by U2
1 zeros the 1’s in position 3, 4, . . . ,m2 in the first

row and puts 1’s in position 3, 4, . . . ,m2 in the second row: the resulting (L2M2)(1 :
2, 1 : m2)U2

1 is of the form (41).

5.2.3. Symbolic construction of upper bidiagonal matrices for M2

For matrix L2M2, we construct recursively upper bidiagonal matrices U2
2 , U

2
3 , . . . , U

2
m2−1

such that right multiplying L2M2 by the upper triangular matrix U2 = U2
1U

2
2 · · ·U2

m2−1

transforms L2M2 into the identity matrix I2 = L2M2U2.
We describe the zeroing process of the upper bidiagonal matrix U2

k on the two-
row matrix (L2M2)(k : k + 1, 1 : m2):

(L2M2)(k : k + 1, 1 : m2)U2
1U

2
2 · · ·U2

k−1

=

[
yk1 · · · yk,k−1 1 1 · · · 1
yk+1,1 · · · yk+1,k−1 yk+1,k yk+1,k+1 · · · yk+1,m2

]
. (45)

The divisors

σi =
1

yk+1,i − yk+1,i−1
= U2

k (i, i), i = k + 1, k + 2, . . . ,m2, (46)

define the upper bidiagonal matrix

U2
k =



Ik−1 0 · · · 0 · · · 0
0 1 −σk+1 0 · · · 0
0 0 σk+1 −σk+2 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · σm2−1 −σm2

0 0 0 · · · 0 σm2


. (47)

Right multiplying (45) by U2
k zeros the 1’s in position k + 1, k + 2, . . . ,m2 in the

first row and puts 1’s in position k + 1, k + 2, . . . ,m2 in the second row:

(L2M2)(k : k + 1, 1 : m2)U2
1U

2
2 · · ·U2

k−1U
2
k

=

[
yk1 · · · yk,k−1 1 0 · · · 0
yk+1,1 · · · yk+1,k−1 yk+1,k 1 · · · 1

]
. (48)

Thus, right multiplying L2M2 by the upper triangular matrix U2 = U2
1U

2
2 · · ·U2

m2−1

transforms the upper triangular matrix L2M2 into the identity matrix

I2 = L2M2U2
1U

2
2 · · ·U2

m2−1 (49)

in (m2 − 1) steps.
Process 5. At the kth step, starting with k = 1,
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• M2(k) = L2M2U2
1U

2
2 · · ·U2

k is the identity matrix in rows 1 to k.

• The divisors in U2
k are obtained from M2(k−1)(k+1, k : m2) since M2(k−1)(k+

1, j)−M2(k−1)(k + 1, j − 1) 6= 0, j = k + 1, k + 2, . . . ,m2.

Algorithm 3 in Appendix A describes this process for M2. The input is M = M2;
m = m2. The output is Uk = U2

k , k = 1, 2, . . . ,m2 − 1.
The next two subsections, Subsection 5.2.4 and Subsection 5.2.5 describe the

construction of elementary upper triangular matrices U4
k , k = 1, 2, . . . ,m4 − 3 for

M4.

5.2.4. Construction of initializing upper tridiagonal matrix U4
1 for M4

For matrix L4M4, first, we construct the initializing upper tridiagonal matrix U4
1

such that right multiplying L4M4 by U4
1 transforms L4M4 into a matrix whose first

two rows are of the form:

(L4M4U4
1 )(1 : 2, 1 : m4) =

[
1 0 0 · · · 0 0
y21 1 1 · · · 1 1

]
. (50)

We describe the zeroing process of the upper tridiagonal matrix U4
1 on the first-

two-row matrix (L4M4)(1 : 2, 1 : m4):

(L4M4)(1 : 2, 1 : m4) =

[
1 0 1 · · · 1 0 0
y21 1 y23 · · · y2,m4−2 1 1

]
. (51)

The divisors

σ3 =
1

y2,3 − y2,1
= U4

1 (3, 3), σi =
1

y2,i − y2,i−1
= U4

1 (i, i), i = 4, 5, . . . ,m4 − 2, (52)

define the elementary upper tridiagonal matrix U4
1 of the form

U1
k =



1 0 −σ3 0 0 · · · 0 0 0
0 1 0 0 0 · · · 0 0 0
0 0 σ3 −σ4 0 · · · 0 0 0
0 0 0 σ4 −σ5 · · · 0 0 0
...

...
. . .

. . .
...

0 0 0 0 · · · σm4−3 −σm4−2 0 0
0 0 0 0 · · · 0 σm4−2 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1


. (53)

Right multiplying (51) by U4
1 zeros the 1’s in position 3, 4, . . . ,m4 − 2 in the

first row and puts 1’s in position 3, 4, . . . ,m4 − 2 in the second row: the resulting
(L4M4)(1 : 2, 1 : m4)U4

1 is of the form (50).
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5.2.5. Symbolic construction of elementary upper bidiagonal matrices
for M4

For matrix L4M4, we construct recursively upper bidiagonal matrices U4
2 , U

4
3 , . . . , U

4
m4−3

such that right multiplying L4M4 by the upper triangular matrix U4 = U4
1U

4
2 · · ·U4

m4−3

transforms L4M4 into a matrix W 4
3 = L4M4U4 with nonzero diagonal elements,

W 4
3 (i, i) 6= 0, i = 1, 2, . . . ,m4, the last nonzero row W 4

3 (m4, j), j = 1, 2, . . . ,m4 − 1,
the last two nonzero columns W 4

3 (1 : m4, j) 6= 0, j = m4 − 1,m4, and zero else-
where. We call such a matrix a “diagonal+last-row+last-two-column” matrix. Here
the last nonzero row W 4

3 (m4, j), j = 1, 2, . . . ,m4 contains some nonzero entries and
zero elsewhere.

We describe the zeroing process of the upper bidiagonal matrix U4
k on the two-

row matrix (L4M4)(k : k + 1, 1 : m4):

(L4M4)(k : k + 1, 1 : m4)U4
1U

4
2 · · ·U4

k−1

=

[
yk1 · · · yk,k−1 1 · · · 1 yk,m4−1 yk,m4

yk+1,1 · · · yk+1,k−1 yk+1,k · · · yk+1,m4−2 yk+1,m4−1 yk+1,m4

]
. (54)

The divisors

σi =
1

yk+1,i − yk+1,i−1
= U4

k (i, i), i = k + 1, k + 2, . . . ,m4 − 2, (55)

define the upper bidiagonal matrix

U4
k =



Ik−1 0 · · · 0 · · · 0 0 0
0 1 −σk+1 0 · · · 0 0 0
0 0 σk+1 −σk+2 · · · 0 0 0
...

...
. . .

. . .
...

0 0 0 · · · σm4−3 −σm4−2 0 0
0 0 0 · · · 0 σm4−2 0 0
0 0 0 · · · 0 0 1 0
0 0 0 · · · 0 0 0 1


. (56)

Right multiplying (54) by U4
k zeros the 1’s in position k+ 1, k+ 2, . . . ,m4− 2 in

the first row and puts 1’s in position k + 1, k + 2, . . . ,m4 − 2 in the second row:

(L4M4)(k : k + 1, 1 : m4)U4
1U

4
2 · · ·U4

k−1U
4
k

=

[
yk1 · · · yk,k−1 1 0 · · · 0 yk,m4−1 yk,m4

yk+1,1 · · · yk+1,k−1 yk+1,k 1 · · · 1 yk+1,m4−1 yk+1,m4

]
. (57)

Thus, U4 = U4
1U

4
2 · · ·U4

m4−3 transforms the upper triangular matrix L4M4 into the
diagonal+last-row+last-two-column matrix

W 4
3 = L4M4U4

1U
4
2 · · ·U4

m4−3 (58)
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in (m4 − 3) steps.
Process 6. At the kth step, starting with k = 1,

• M4(k) = L4M4U4
1U

4
2 · · ·U4

k is a diagonal+last-row+last-two-column matrix in
rows 1 to k.

• The divisors in U4
k are obtained fromM4(k−1)(k+1, k : m4−2) sinceM4(k−1)(k+

1, j)−M4(k−1)(k + 1, j − 1) 6= 0, j = k + 1, k + 2, . . . ,m4 − 2.

Algorithm 3 in Appendix A describes this process for M4. The input is M = M4;
m = m4. The output is Uk = U4

k , k = 1, 2, . . . ,m4 − 3.

5.2.6. Symbolic construction of upper bidiagonal matrices for M5

For matrix L5M5, we construct recursively upper bidiagonal matrices U5
1 , U

5
2 . . . , U

5
m5−2

such that right multiplying L5M5 by the upper triangular matrix U5 = U5
1U

5
2 · · ·U5

m5−2

transforms L5M5 into a matrix W 5
1 = L5M5U5 with nonzero diagonal elements,

W 5
1 (i, i) 6= 0, i = 1, 2, . . . ,m5, nonzero W 5

1 (1 : m5,m5) 6= 0, in the last column, and
zero elsewhere. We call such a matrix a “diagonal+last-column” matrix. We de-
scribe the zeroing process of the upper bidiagonal matrix U5

k on the two-row matrix
(L5M5)(k : k + 1, 1 : m5):

(L5M5)(k : k + 1, 1 : m5)U5
1U

5
2 · · ·U5

k−1

=

[
yk1 · · · yk,k−1 1 1 · · · 1 1 yk,m5

yk+1,1 · · · yk+1,k−1 yk+1,k yk+1,k+1 · · · yk+1,m5−2 yk+1,m5−1 yk+1,m5

]
. (59)

The divisors

σi =
1

yk+1,i − yk+1,i−1
= U5

k (i, i), i = k + 1, k + 2, . . . ,m5 − 1, (60)

define the upper bidiagonal matrix

U5
k =



Ik−1 0 · · · 0 · · · 0 0 0
0 1 −σk+1 0 · · · 0 0 0
0 0 σk+1 −σk+2 · · · 0 0 0
...

...
. . .

. . .
...

...
0 0 0 · · · σm5−3 −σm5−2 0 0
0 0 0 · · · 0 σm5−2 −σm5−1 0
0 0 0 · · · 0 0 σm5−1 0
0 0 0 · · · 0 0 0 1


. (61)

Right-multiplying (59) by U5
k zeros the 1’s in position k + 1, k + 2, . . . ,m5 − 1 in

the first row and puts 1’s in position k + 1, k + 2, . . . ,m5 − 1 in the second row:

(L5M5)(k : k + 1, 1 : m5)U5
1U

5
2U

5
3 · · ·U5

k−1U
5
k

=

[
yk1 · · · yk,k−1 1 0 · · · 0 0 yk,m5

yk+1,1 · · · yk+1,k−1 yk+1,k 1 · · · 1 1 yk+1,m5

]
. (62)
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Thus, U5
1U

5
2 · · ·U5

m5−2 transforms the upper triangular matrix L5M5 into a diagonal+last-
column matrix

W 5
1 = (L5M5)U5

1U
5
2 · · ·U5

m5−2 (63)

in (m5 − 2) steps.
Process 7. At the kth step, starting with k = 1,

• M5(k) = (L5M5)U5
1U

5
2 · · ·U5

k is a diagonal+last-column matrix in rows 1 to k.

• The divisors in U5
k are obtained fromM5(k−1)(k+1, k : m5−1) sinceM5(k−1)(k+

1, j)−M5(k−1)(k + 1, j − 1) 6= 0, j = k + 1, k + 2, . . . ,m5 − 1.

Algorithm 2 in Appendix A describes this process. The input is M = M5; m = m5.
The output is Uk = U5

k , k = 1, 2, . . . ,m5 − 2.

6. Fast solution of Vandermonde-type systems for particular HB(p)

Symbolic elementary matrix functions L`k and U `k, ` = 1, 2, 4, 5, are constructed once
as functions of ηj , for j = 2, 3, . . . , p− 2 by Algorithms 1, 2 and 3 in Appendix A:

• Algorithms 1 and 2 to factor M1 into a diagonal+last-three-column matrix,
W 1

3 , which will be further diagonalized by a Gaussian elimination,

• Algorithms 1 and 3 to factor M2 into the identity matrix,

• Algorithms 1 and 3 to factor M4 into a diagonal+last-row+last-two-column
matrix, W 4

3 , which will be further diagonalized by a Gaussian elimination,

• Algorithms 1 and 2 to factor M5 into a diagonal+last-column matrix, W 5
1 ,

which will be further diagonalized by a Gaussian elimination.

These elementary matrix functions are used, first, to find the solution u`, ` = 1, 2, 4, 5
in elementary matrix functions form and, then, to construct fast Algorithms 4, 5, 6
and 7, in Appendix A, to solve systems (15), (17), (20) and (24) at each integration
step.

6.1. Solution of M1u1 = r1

We let m1 = p+ 1 as defined in (27).

(1) The elimination procedure of Subsection 5.1.1 is applied to M1 to construct
m1 ×m1 lower bidiagonal matrices L1

k, k = 2, 3, . . . ,m1 − 3, with multipliers

τi =
M1(2, k)

i− 1
= −L1

k(i, i− 1), i = k + 1, k + 2, . . . ,m1. (64)
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Left multiplying the coefficient matrix M1 by the lower triangular matrix
L1 = L1

m1−3 · · ·L1
3L

1
2 transforms M1 into the upper triangular matrix L1M1

in column 1 to m1 − 3 of the form (30).

(2) The elimination procedure of Subsection 5.2.1 is used to construct m1 ×m1

upper bidiagonal matrices U1
k , k = 1, 2, . . . ,m1 − 4, with multipliers

σi =
k

M1(2, i) −M1(2, i− k)
= U1

k (i, i), i = k + 1, k + 2, . . . ,m1 − 3. (65)

Right multiplying L1M1 by the upper triangular matrix U1 = U1
1U

1
2 · · ·U1

m1−4

transforms L1M1 into a diagonal+last-three-column matrix W 1
3 of the form

(40).

(3) A factored Gaussian elimination, L1
m1−1L

1
m1−2, will transform W 1

3 into a

diagonal+last-two-column matrix W 1
2 = L1

m1−1L
1
m1−2W

1
3 as follows. First,

W 1
3 (m1 − 2,m1 − 2) is set to 1 by the diagonal matrix L1

m1−2 whose entries
are zeros, except for,

L1
m1−2(i, i) = 1, i = 1, 2, . . . ,m1 − 3,

L1
m1−2(m1 − 2,m1 − 2) = 1/W 1

3 (m1 − 2,m1 − 2),

L1
m1−2(i, i) = 1, i = m1 − 1,m1.

Then the non-diagonal entries in the column m1 − 2 of L1
m1−2W

1
3 are zeroed

by the unit diagonal+column-(m1 − 2) matrix L1
m1−1 whose entries are zeros,

except for,

L1
m1−1(1 : m1 − 3,m1 − 2) = −W 1

3 (1 : m1 − 3,m1 − 2),

L1
m1−1(i, i) = 1, i = 1, 2, . . . ,m1,

L1
m1−1(i,m1 − 2) = −W 1

3 (i,m1 − 2), i = m1 − 1,m1.

(4) A factored Gaussian elimination, L1
m1+1L

1
m1

, will transformW 1
2 into a diagonal+last-

column matrix W 1
1 = L1

m1+1L
1
m1
W 1

2 as follows. First, W 1
2 (m1 − 1,m1 − 1) is

set to 1 by the diagonal matrix L1
m1

whose entries are zeros, except for,

L1
m1

(i, i) = 1, i = 1, 2, . . . ,m1 − 2,

L1
m1

(m1 − 1,m1 − 1) = 1/W 1
2 (m1 − 1,m1 − 1),

L1
m1

(m1,m1) = 1.

Then the non-diagonal entries in column m1− 1 of L1
m1
W 1

2 are zeroed by the

unit diagonal+column-(m1 − 1) matrix L1
m1+1 whose entries are zeros, except
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for,

L1
m1+1(1 : m1 − 2,m1 − 1) = −W 1

2 (1 : m1 − 2,m1 − 1),

L1
m1+1(i, i) = 1, i = 1, 2, . . . ,m1,

L1
m1+1(m1,m1 − 1) = −W 1

2 (m1,m1 − 1).

(5) A factored Gaussian elimination, L1
m1+3L

1
m1+2, will transform W 1

1 into the

identity matrix I1 = L1
m1+3L

1
m1+2W

1
1 as follows. First, W 1

1 (m1,m1) is set to

1 by the diagonal matrix L1
m1+2 whose entries are zeros, except for,

L1
m1+2(i, i) = 1, i = 1, 2, . . . ,m1 − 1,

L1
m1+2(m1,m1) = 1/W 1

1 (m1,m1).

Then the non-diagonal entries in the last column of L1
m1+2W

1
1 are zeroed by

the unit diagonal+last-column matrix L1
m1+3 whose entries are zeros, except

for,

L1
m1+3(i, i) = 1, i = 1, 2, . . . ,m1,

L1
m1+3(1 : m1 − 1,m1) = −W 1

1 (1 : m1 − 1,m1).

We now obtain the following procedure which transforms M1 into the identity
matrix

I1 = L1
m1+3L

1
m1+2 · · ·L1

2M
1U1

1U
1
2 · · ·U1

m1−4.

Thus we have the following factorization of M1 into the product of elementary
matrices:

M1 =
(
L1
m1+3L

1
m1+2 · · ·L1

2

)−1 (
U1

1U
1
2 · · ·U1

m1−4

)−1
,

and the solution is

u1 = U1
1U

1
2 · · ·U1

m1−4L
1
m1+3L

1
m1+2 · · ·L1

2 r
1, (66)

where fast computation goes from right to left.
Procedure (66) is implemented in Algorithm 4 in Appendix A in O(m2

1) oper-
ations. The input is M = M1; m = m1; r = r1; Lk = L1

k, k = 2, 3, . . . ,m1 + 3;
Uk = U1

k , k = 1, 2, . . . ,m1 − 4. The output is u = u1.
It is to be noted that, by using Algorithm 2, the new σi = k

M1(2,i)−M1(2,i−k)
=

U1
k (i, i) in (65) is found for integration formula IF instead of σi = 1

M1(2,i)−M1(2,i−k)
=

U1
k (i, i) of the usual Newton divided differences. Similar result is found for predictor

Pi, i = 2, 3, 4.
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6.2. Solution of M2u2 = r2

We let m2 = p− 1 as defined in (27).

(1) The elimination procedure of Subsection 5.1.2 is applied to M2 to construct
m2 ×m2 lower bidiagonal matrices L2

k, k = 3, 4, . . . ,m2 − 1, with multipliers

τi =
M2(2, k)

i− 1
= −L2

k(i, i− 1), i = k + 1, k + 2, . . . ,m2. (67)

The matrix L2 = L2
m2−1 · · ·L2

4L
2
3 transforms the coefficient matrix M2 into

the upper triangular matrix L2M2 of the form (32).

(2) The elimination procedure of Subsection 5.2.2 is used to construct a m2 ×m2

initializing upper tridiagonal matrice U2
1 with multipliers

σ3 =
1

M2(2, 3) −M2(2, 3 − 2)
= U2

1 (3, 3),

σi =
1

M2(2, i) −M2(2, i− 1)
= U2

1 (i, i), i = 4, 5, . . . ,m2. (68)

(3) Then, the elimination procedure of Subsection 5.2.3 is used to construct m2×
m2 upper bidiagonal matrices U2

k , k = 2, 3, . . . ,m2 − 1 with multipliers

σi =
k

M2(2, i) −M2(2, i− k)
= U2

k (i, i), i = k + 1, k + 2, . . . ,m2. (69)

We now obtain the following procedure which transforms M2 into the identity
matrix:

I2 = L2
m2−1L

2
m2−2 · · ·L2

3M
2U2

1U
2
2 · · ·U2

m2−1.

Thus we have the following factorization of M2 into the product of elementary
matrices:

M2 =
(
L2
m2−1L

2
m2−2 · · ·L2

3

)−1 (
U2

1U
2
2 · · ·U2

m2−1

)−1
,

and the solution is

u2 = U2
1U

2
2 · · ·U2

m2−1L
2
m2−1L

2
m2−2 · · ·L2

3 r
2, (70)

where fast computation goes from right to left.
Procedure (70) is implemented in Algorithm 5 in Appendix A in O(m2

2) oper-
ations. The input is M = M2; m = m2; r = r2; Lk = L2

k, k = 3, 4, . . . ,m2 − 1;
Uk = U2

k , k = 1, 2, . . . ,m2 − 1. The output is u = u2.
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6.3. Solution of M4u4 = r4

We let m4 = p+ 1 as defined in (27).

(1) The elimination procedure of Subsection 5.1.3 is applied to M4 to construct
m4 ×m4 lower bidiagonal matrices L4

k, k = 3, 4, . . . ,m4 − 2, with multipliers

τi =
M4(2, k)

i− 1
= −L4

k(i, i− 1), i = k + 1, k + 2, . . . ,m4 − 1. (71)

The matrix L4 = L4
m4−2 · · ·L4

4L
4
3 transforms the coefficient matrix M4 into

the upper triangular matrix L4M4 in columns 1 to m4 − 2 of the form (35).

(2) The elimination procedure of Subsection 5.2.4 is used to construct a m4 ×m4

initializing upper tridiagonal matrix U4
1 , with multipliers,

σ3 =
1

M4(2, 3)−M4(2, 3− 2)
= U4

1 (3, 3),

σi =
1

M4(2, i)−M4(2, i− 1)
= U4

1 (i, i), i = 4, 5, . . . ,m4 − 2. (72)

(3) Then, the elimination procedure of Subsection 5.2.5 is used to construct m4×
m4 elementary upper triangular matrices U4

k , k = 2, 3, . . . ,m4 − 3, with mul-
tipliers,

σi =
k

M4(2, i) −M4(2, i− k)
= U4

k (i, i), i = k + 1, k + 2, . . . ,m4 − 2. (73)

Right multiplying L4M4 by the upper triangular matrix U4
1U

4
2 · · ·U4

m4−3, will
transform L4M4 into a diagonal+last-row+last-two-column matrix W 4

3 of the
form (58).

(4) A m4 × m4 lower bidiagonal matrix L4
m4−1, constructed with zero entries,

except for,

L4
m4−1(i, i) = 1, i = 1, 2, . . . ,m4,

L4
m4−1(m4, j) = −(M4U4

1U
4
2 · · ·U4

m4−3)(m4, j), j = 2, 3, . . . ,m4 − 2, (74)

will transform W 4
3 into a matrix W 4

2 = L4
m4−1W

4
3 with nonzero diagonal

elements, W 4
2 (i, i) 6= 0, i = 1, 2, . . . ,m4, the last two nonzero columns W 4

2 (1 :
m4, j) 6= 0, j = m4 − 1,m4, and zero elsewhere. We call such a matrix a
“diagonal+last-two-column” matrix.
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(5) A factored Gaussian elimination, L4
m4+1L

4
m4

, will transformW 4
2 into a diagonal+last-

column matrix W 4
1 = L4

m4+1L
4
m4
W 4

2 as follows. First, W 4
2 (m4 − 1,m4 − 1) is

set to 1 by the diagonal matrix L4
m4

whose entries are zeros, except for,

L4
m4

(i, i) = 1, i = 1, 2, . . . ,m4 − 2,

L4
m4

(m4 − 1,m4 − 1) = 1/W 4
2 (m4 − 1,m4 − 1),

L4
m4

(m4,m4) = 1.

Then the non-diagonal entries in column m4− 1 of L4
m4
W 4

2 are zeroed by the

unit diagonal+column-(m4 − 1) matrix L4
m4+1 whose entries are zeros, except

for,

L4
m4+1(1 : m4 − 2,m4 − 1) = −W 4

2 (1 : m4 − 2,m4 − 1),

L4
m4+1(i, i) = 1, i = 1, 2, . . . ,m4,

L4
m4+1(m4,m4 − 1) = −W 4

2 (m4,m4 − 1).

(6) A factored Gaussian elimination, L4
m4+3L

4
m4+2, will transform W 4

1 into the

identity matrix I4 = L4
m4+3L

4
m4+2W

4
1 as follows. First, W 4

1 (m4,m4) is set to

1 by the diagonal matrix L4
m4+2 whose entries are zeros, except for,

L4
m4+2(i, i) = 1, i = 1, 2, . . . ,m4 − 1,

L4
m4+2(m4,m4) = 1/W 4

1 (m4,m4).

Then the non-diagonal entries in the last column of L4
m4+2W

4
1 are zeroed by

the unit diagonal+last-column matrix L4
m4+3 whose entries are zeros, except

for,

L4
m4+3(i, i) = 1, i = 1, 2, . . . ,m4,

L4
m4+3(1 : m4 − 1,m4) = −W 4

1 (1 : m4 − 1,m4).

We now obtain the following procedure which transforms M4 into the identity
matrix:

I4 = L4
m4+3L

4
m4+2 · · ·L4

3M
4U4

1U
4
2 · · ·U4

m4−3.

Thus we have the following factorization of M4 into the product of elementary
matrices:

M4 =
(
L4
m4+3L

4
m4+2 · · ·L4

3

)−1 (
U4

1U
4
2 · · ·U4

m4−3

)−1
,

and the solution is

u4 = U4
1U

4
2 · · ·U4

m4−3L
4
m4+3L

4
m4+2 · · ·L4

3 r
4, (75)
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where fast computation goes from right to left.
Procedure (75) is implemented in Algorithm 6 in Appendix A in O(m2

4) oper-
ations. The input is M = M4; m = m4; r = r4; Lk = L4

k, k = 3, 4, . . . ,m4 + 3;
Uk = U4

k , k = 1, 2, . . . ,m4 − 3. The output is u = u4.

6.4. Solution of M5u5 = r5

We let m5 = p− 1 as defined in (27).

(1) The elimination procedure of Subsection 5.1.1 is applied to M5 to construct
m5 ×m5 lower bidiagonal matrices L5

k, k = 2, 3, . . . ,m5 − 1, with multipliers

τi =
M5(2, k)

i− 1
= −L5

k(i, i− 1), i = k + 1, k + 2, . . . ,m5. (76)

The matrix L5 = L5
m5−1 · · ·L5

3L
5
2 transforms the coefficient matrix M5 into

the upper triangular matrix L5M5 in column 1 to m5 − 1 of the form (31).

(2) The elimination procedure of Subsection 5.2.6 is used to construct m5 ×m5

upper bidiagonal matrices U5
k , k = 1, 2, . . . ,m5 − 2, with multipliers

σi =
k

M5(2, i) −M5(2, i− k)
= U5

k (i, i), i = k + 1, k + 2, . . . ,m5 − 1. (77)

The right-product of the U5
k , k = 1, 2, . . . ,m5 − 2, will transform L5M5 into

a diagonal+last-column matrix W 5
1 of the form (63).

(3) A factored Gaussian elimination, L5
m5+1L

5
m5

, will transform W 5
1 into the iden-

tity matrix I5 = L5
m5+1L

5
m5
W 5

1 as follows. First, W 5
1 (m5,m5) is set to 1 by

the diagonal matrix L5
m5

whose entries are zeros, except for,

L5
m5

(i, i) = 1, i = 1, 2, . . . ,m5 − 1,

L5
m5

(m5,m5) = 1/W 5
1 (m5,m5).

Then the non-diagonal entries in the last column of L5
m5
W 5

1 are zeroed by the
unit diagonal+last-column matrix L5

m5+1 whose entries are zeros, except for,

L5
m5+1(i, i) = 1, i = 1, 2, . . . ,m5,

L5
m5+1(1 : m5 − 1,m5) = −(W 5

1 )(1 : m5 − 1,m5).

This procedure transforms M5 into the identity matrix

I5 = L5
m5+1L

5
m5
· · ·L5

2M
5U5

1U
5
2 · · ·U5

m5−2.
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Thus we have the following factorization of M5 into the product of elementary
matrices:

M5 =
(
L5
m5+1L

5
m5
· · ·L5

2

)−1 (
U5

1U
5
2 · · ·U5

m5−2

)−1
,

and the solution is

u5 = U5
1U

5
2 · · ·U5

m5−2L
5
m5+1L

5
m5
· · ·L5

2 r
5, (78)

where fast computation goes from right to left.
Procedure (78) is implemented in Algorithm 7 in Appendix A in O(m2

5) oper-
ations. The input is M = M5; m = m5; r = r5; Lk = L5

k, k = 2, 3, . . . ,m5 + 1;
Uk = U5

k , k = 1, 2, . . . ,m5 − 2. The output is u = u5.

Remark 1. Formulae (2)–(4) can be put in matrix form. For instance, (3) can be
written as

yn+1 = F 1.v1

where

F 1 =
[
hn+1f(tn + h, yn+1), yn, yn−1, . . . , yn−(p−3), hn+1F2, hn+1F3, hn+1F4

]
,

and

v1 = [b5, α0, α1, . . . , αp−3, b2, b3, b4]T ,

It is interesting to note the three decomposition forms of the system Fv:

F (ULr) (generalized Lagrange interpolation),

(FU)Lr (generalized divided differences),

(FUL)r (Nordsieck’s formulation).

The first form is used in this paper, the form similar to the second form for Van-
dermonde systems is found in [18], and the third form is found in [21].

7. Regions of absolute stability

The regions of absolute stability, R, of constant step HB(p), p = 4, 5, . . . , 10, listed
in Appendix B, with coefficients ci, i = 1, 2, . . . , 5 given by (14), can be obtained
by applying formulae (2)–(3) of the predictors Pi, i = 2, 3, 4 and the integration
formula IF with constant h to the linear test equation

y′ = λy, y0 = 1.
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Table 2: For each given step number k, the table lists the order p, the α angles of
A(α)-stability for HB(p), MEBDF(p) and BDF(p), respectively.

HB(p) MEBDF(p) BDF(p)
k p α k p α k p α

1 1 90.00◦

1 2 90.00◦ 2 2 90.00◦

2 3 90.00◦ 3 3 86.03◦

2 4 90.00◦ 3 4 90.00◦ 4 4 73.35◦

3 5 90.00◦ 4 5 88.36◦ 5 5 51.84◦

4 6 83.65◦ 5 6 83.07◦ 6 6 17.84◦

5 7 80.52◦ 6 7 74.48◦

6 8 80.52◦ 7 8 61.98◦

7 9 78.68◦ 8 9 42.87◦

8 10 64.28◦

This gives the following difference equation and corresponding characteristic equa-
tion

k∑
j=0

ηj(z) yn+j = 0,
k∑
j=0

ηj(z) r
j = 0, (79)

respectively, where k = p − 2 is the number of steps of the method and z = λh. A
complex number z is in R if the k roots of the characteristic equation in (79) satisfy
the root condition (see [19, pp. 70]). The scanning method used to find R is similar
to the one used for Runge–Kutta methods (see [19]).

The stability functions ηj(z), j = 0, 1, . . . , k in (79) are rational functions of the
form

ηk(z) = 1, ηj(z) =

∑3
`=0 nj`z

`∑4
`=0 dj`z

`
, j = 0, 1, . . . , k − 1.

Here ηk−1(z) is of this form since the condition (13) is satisfied. Hence, in the
difference equation of (79), yn+k → 0 as z → ∞. This implies that HB(p), p =
4, 5, . . . , 10 are L-stable or L(α)-stable according to whether these methods are A-
stable or A(α)-stable, respectively.

Table 2 lists the α angles of A(α)-stability of HB(4–10), MEBDF(2–9) [14, p. 270]
and BDF(1–6) [14, p. 251], respectively. It is seen that α of HB(p), p = 4, 5, . . . , 10
compare favorably with α of MEBDF(p), p = 3, 4, . . . , 9 which decrease faster than
α of HB(p) for p ≥ 7.
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8. Controlling stepsize

The estimate ‖yn − ỹn‖∞ and the current step hn are used to calculate the next
stepsize hn+1 by means of formula [17]

hn+1 = min

{
hmax, β hn

[
tolerance

‖yn − ỹn‖∞

]1/κ

, 4hn

}
, (80)

with κ = p− 1 and safety factor β = 0.81.
The procedure to advance integration from tn to tn+1 is as follows.

(a) The stepsize, hn+1, is obtained by formula (80) with κ = p− 1.

(b) The numbers η2, η3, . . . , ηp−2, defined in (7), are calculated.

(c) The coefficients of integration formula IF, predictors P2, P3, P4 and step con-
trol predictor P5 are obtained successively as solutions of systems (15), (17),
(19), (20) and (24).

(d) The values Y2, Y3, Y4, yn+1, and ỹn+1 are obtained by formulae (2)–(4).

(e) The step is accepted if ‖yn+1 − ỹn+1‖∞ is smaller than the chosen tolerance
and the program goes to (a) with n replaced by n+ 1. Otherwise the program
returns to (a) and a new smaller stepsize hn+1 is computed.

9. Numerical results

The error at the endpoint of the integration interval EPE, endpoint error, is taken
in the uniform norm,

EPE = {‖yend − zend‖∞} ,
where yend is the numerical value obtained by the numerical method at the end-
point tend of the integration interval and zend is the “exact solution” obtained by
MATLAB’s ode15s with stringent tolerance 5× 10−14.

The necessary starting values at t1, t2, . . . , tk−1 for HB(p) were obtained by MAT-
LAB’s ode15s with stringent tolerance 5× 10−14.

We consider four following test problems:

(1) The Robertson chemical reaction [23, pp. 178–182].

Problem 1. Robertson chemical reaction:

y′1 = −0.04y1 + 104y2y3, y1(0) = 1,

y′2 = 0.04y1 − 104y2y3 − 3× 107y2
2, y2(0) = 0,

y′3 = 3× 107y2
2, y3(0) = 0,

(81)
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with tend = 400.

(2) The stiff DETEST problem D1 [10].

Problem 2.

y′1 = 0.2 (y2 − y1) , y1(0) = 0,

y′2 = 10y1 − (60− 0.123y3) y2 + 0.125y3, y2(0) = 0,

y′3 = 1, y3(0) = 0,

(82)

with tend = 400.

(3) The Oregonator equation describing Belusov-Zhabotinskii reaction [11].

Problem 3. The Oregonator model describing Belusov-Zhabotinskii reaction

y′1 = 77.27(y2 + y1 − 8.375 · 10−6y2
1 − y1y2), y1(0) = 1,

y′2 = (y3 − (1 + y1)y2)/77.27, y2(0) = 2,

y′3 = 0.161(y1 − y3), y3(0) = 3,

(83)

with tend = 20.

(4) The van der Pol’s equation [14, pp. 4–6], [16].

Problem 4.
y′1 = y2, y1(0) = 2,

y′2 = µ2[(1− y2
1)y2 − y1], y2(0) = 0,

(84)

where µ = 500 and with tend = 0.8.

Similar to Hojjati et al. [16], we numerically compare our new methods with
MEBDF(p), p = 7, 8, on the basis of the EPE, endpoint error as a function of
number of steps (NS).

Table 3, 4, 5 and 6 list endpoint errors (EPEs) as a function of number of steps
(NS) of HB(p), p = 9, 10 and MEBDF(p), p = 7, 8 for Robertson chemical reaction
problem (81), stiff problem D1 (82), Oregonator problem (83) and van der Pol’s
equation (84), respectively.

It is seen that, in general, HB(p), p = 9, 10, compare favorably with MEBDF(p),
p = 7, 8, at stringent tolerance.

The NS percentage efficiency gain (NS PEG) is defined by the formula (cf. Sharp
[24]),

NS PEG = 100

[∑
j NS2,j∑
j NS1,j

− 1

]
, (85)
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Table 3: Endpoint errors (EPE) as a function of number of steps (NS) of HB(p),
p = 9, 10 and MEBDF(p), p = 7, 8 for Robertson chemical reaction problem (81).

Error in Error in
number of steps HB(9) HB(10) MEBDF(7) MEBDF(8)

51 2.14e-07 2.42e-06 2.33e-05 1.02e-04
55 6.99e-08 4.05e-08 1.17e-05 4.19e-05
62 1.19e-08 5.33e-09 3.94e-06 1.02e-05
70 1.96e-09 6.17e-10 1.31e-06 2.43e-06
81 2.26e-10 5.91e-11 3.46e-07 4.33e-07
95 2.13e-11 9.37e-12 8.12e-08 6.60e-08
112 1.86e-12 4.05e-12 1.82e-08 9.45e-09

Table 4: Endpoint errors (EPE) as a function of number of steps (NS) of HB(p),
p = 9, 10 and MEBDF(p), p = 7, 8 for stiff problem D1 (82).

Error in Error in
number of steps HB(9) HB(10) MEBDF(7) MEBDF(8)

34 8.37e-07 6.21e-07 9.89e-05 5.83e-05
41 1.87e-07 5.08e-08 2.76e-05 1.53e-05
52 2.79e-08 8.09e-09 5.46e-06 2.78e-06
64 5.29e-09 3.87e-10 1.33e-06 6.29e-07
81 8.03e-10 6.43e-11 2.66e-07 1.16e-07

Table 5: Endpoint errors (EPE) as a function of number of steps (NS) of HB(p),
p = 9, 10 and MEBDF(p), p = 7, 8 for Oregonator problem (83).

Error in Error in
number of steps HB(9) HB(10) MEBDF(7) MEBDF(8)

31 8.77e-04 8.40e-04 3.12e-02 8.68e-02
38 1.79e-04 1.45e-05 1.00e-02 2.01e-02
51 1.79e-05 1.56e-06 1.94e-03 2.43e-03
78 6.48e-07 1.39e-07 1.82e-04 1.15e-04
125 1.63e-08 1.13e-08 1.31e-05 3.89e-06
158 2.61e-09 3.02e-10 3.56e-06 7.22e-07
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Table 6: Endpoint errors (EPE) as a function of number of steps (NS) of HB(p),
p = 9, 10 and MEBDF(p), p = 7, 8 for van der Pol’s equation (84).

Error in Error in
number of steps HB(9) HB(10) MEBDF(7) MEBDF(8)

35 6.60e-06 2.66e-06 5.52e-02 1.01e-02
41 2.54e-06 3.20e-07 2.15e-02 4.55e-03
46 1.27e-06 3.19e-07 1.08e-02 2.55e-03
56 3.87e-07 3.42e-09 3.35e-03 9.48e-04
61 2.31e-07 1.01e-09 2.01e-03 6.16e-04
81 4.17e-08 1.10e-08 3.72e-04 1.48e-04
146 1.19e-09 2.09e-09 1.11e-05 7.62e-06
185 2.86e-10 6.64e-10 2.71e-06 2.31e-06

Table 7: NS PEG of HB(p), p = 9, 10, over MEBDF(p), p = 7, 8, for the listed
problems.

NS PEG of HB(9) over: NS PEG of HB(10) over:
Problem MEBDF(7) MEBDF(8) MEBDF(7) MEBDF(8)

Robertson equation 93% 76% 93% 75%
problem D1 118% 91% 159% 127%
Oregonator equation 214% 108% 238% 233%
van der Pol’s equation 357% 401% 481% 537%

where NS1,j and NS2,j are the NS of methods 1 and 2, respectively, and j =
− log10 (EPE). To compute NS2,j and NS1,j appearing in (85), we approximate
the data (log10 (EPE) , log10 (NS)) in a least-squares sense by MATLAB’s polyfit.
Then, for chosen integer values of the summation index j, we take − log10(EPE) = j
and obtain log10(NS) from the approximating curve, and finally NS PEG.

Table 7 lists the NS PEG of HB(p), p = 9, 10, over MEBDF(p), p = 7, 8, for four
problems. It is seen that HB(p), p = 9, 10, win.

As an example, for van der Pol’s equation, HB(p), p = 9, 10 take 159 steps,
compared to 576 steps used by MEBDF(p), p = 7, 8 to obtain an EPE of 7.0e-10,
approximatively.
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10. Conclusion

Variable-step (VS) 4-stage k-step Hermite–Birkhoff (HB) methods of order p =
(k + 2), p = 9, 10, denoted by HB(p), are constructed as a combination of linear
k-step methods of order (p − 2) and a diagonally implicit one-step 4-stage Runge–
Kutta method of order 3 (DIRK3) for solving stiff ordinary differential equations.
Forcing a Taylor expansion of the numerical solution to agree with an expansion of
the true solution leads to multistep and Runge–Kutta type order conditions which
are reorganized into linear confluent Vandermonde-type systems. This approach
allows us to develop L(α)-stable methods of order up to 10. Fast algorithms are
developed for solving these systems in O(p2) operations to obtain HB interpolation
polynomials in terms of generalized Lagrange basis functions. The stepsizes of these
methods are controlled by a local error estimator. HB(p) of order p = 9 and 10
compare favorably with existing Cash modified extended backward differentiation
formulae of order 7 and 8, MEBDF(7-8), in solving problems often used to test
higher order stiff ODE solvers on the basis of number of steps and error at the
endpoint of the integration interval.

Acknowledgements. This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

A. Algorithms

Definition 1. Algorithm 1 constructs Lk(i, i− 1) entries of lower bidiagonal matrices Lk
(applied to IF, Pi, i = 2, 4, 5) as functions of ηj, j = 2, 3, . . . , p− 2.

For k = k0 : kend, do the following iteration:

For i = i0 : −1 : k + 1, do the following two steps:

Step (1) Lk(i, i− 1) = −M(i, k)/M(i− 1, k).

Step (2) For j = k : m, compute:

M(i, j) = M(i, j) +M(i− 1, j)Lk(i, i− 1),

where k0 = 2, kend = m−3, i0 = m for IF, k0 = 3, kend = m−1, i0 = m for P2 k0 = 3, kend =
m− 2, i0 = m for P4 and k0 = 2, kend = m− 1, i0 = m for P5.

Definition 2. Algorithm 2 constructs diagonal entries Uk(j, j) of upper bidiagonal matri-
ces Uk (applied to IF and P5) as functions of ηj, j = 2, 3, . . . , p− 2.

For k = 1 : kend, do the following iteration:

For j = j0 : −1 : k + 1, do the following two steps:

Step (1) Uk(j, j) = 1/[M(k + 1, j) −M(k + 1, j − 1)].

Step (2) for i = k : j, compute

M(i, j) = (M(i, j) −M(i, j − 1))Uk(j, j),
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where kend = m− 4, j0 = m− 3 for IF, and kend = m− 2, j0 = m− 1 for P5.

Definition 3. Algorithm 3 constructs diagonal entries Uk(j, j) of upper bidiagonal matri-
ces Uk (applied to P2 and P4) as functions of ηj, j = 2, 3, . . . , p− 2.

(Section 1: for initializing U1)
For k = 1, do the following iteration:

For j = j0 : −1 : 4, do the following two steps:

Step (1) Uk(j, j) = 1/[M(k + 1, j) −M(k + 1, j − 1)].

Step (2) for i = k : j, compute

M(i, j) = (M(i, j) −M(i, j − 1))Uk(j, j).

For j = 3, do the following two steps:

Step (1) Uk(j, j) = 1/[M(k + 1, j) −M(k + 1, j − 2)].

Step (2) for i = k : j, compute

M(i, j) = (M(i, j) −M(i, j − 2))Uk(j, j).

(Section 2: for Uk, k = 2 : kend)
For k = 2 : kend, do the following iteration:

For j = j0 : −1 : k + 1, do the following two steps:

Step (1) Uk(j, j) = 1/[M(k + 1, j) −M(k + 1, j − 1)].

Step (2) for i = k : j, compute

M(i, j) = (M(i, j) −M(i, j − 1))Uk(j, j),

where kend = m− 1, j0 = m for P2, and kend = m− 3, j0 = m− 2 for P4.

Definition 4. Algorithm 4 solves the systems for IF in O(m2) operations.

Given [η2, η3, . . . , ηp−2] and r = r(1 : m), the following algorithm overwrites r with the solution
u = u(1 : m) of the system Mu = r.

Step (1) The following iteration overwrites r = r(1 : m) with Lm−3Lm−4 · · · L2r:

for k = 2, 3, . . . ,m− 3, compute

r(i) = r(i) + r(i− 1)Lk(i, i− 1), i = m,m− 1, . . . , k + 1.

Step (2) This step forms the two matrices Lm−2 and Lm−1: it computes the coefficients Gm−2(i),
i = 1, 2, . . . ,m used to form the two matrices Lm−2 and Lm−1 which transform W 1

3 into a
diagonal+last-two-column matrix W 1

2 = Lm−1Lm−2W
1
3 :

First set Gm−2(1 : m),
Gm−2(1 : m) = M(1 : m,m− 2).

The following computation overwrites Gm−2(1 : m) with Lm−3Lm−4 · · · L2Gm−2(1 : m):

for k = 2, 3, . . . ,m− 3, compute

Gm−2(i) = Gm−2(i) +Gm−2(i− 1)Lk(i, i− 1), i = m,m− 1, . . . , k + 1.
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Step (3) The following computation overwrites the newly obtained r with Lm−1Lm−2r:

r(m− 2) = r(m− 2)/Gm−2(m− 2),

next, for k = m,m− 1,m− 3,m− 4, . . . , 1, compute

r(k) = r(k) −Gm−2(k)r(m− 2).

Step (4) This step forms the two matrices Lm and Lm+1: it computes the coefficients Gm−1(i),
i = 1, 2, . . . ,m used to form the two matrices Lm and Lm+1 which transform W 1

2 into a
diagonal+last-column matrix W 1

1 = Lm+1LmW
1
2 :

First set Gm−1(1 : m),
Gm−1(1 : m) = M(1 : m,m− 1).

The following computation overwrites Gm−1(1 : m) with Lm−3Lm−4 · · · L2Gm−1(1 : m): for
k = 2, 3, . . . ,m− 3, compute

Gm−1(i) = Gm−1(i) +Gm−1(i− 1)Lk(i, i− 1), i = m,m− 1, . . . , k + 1.

The following computation overwrites the newly obtained Gm−1(1 : m) with Gm−1(1 : m) =
Lm−1Lm−2Gm−1(1 : m):

Gm−1(m− 2) = Gm−1(m− 2)/Gm−2(m− 2),

next, for k = m,m− 1,m− 3,m− 4, . . . , 1, compute

Gm−1(k) = Gm−1(k) −Gm−2(k)Gm−1(m− 2).

Step (5) The following computation overwrites the newly obtained r with Lm+1Lmr:

r(m− 1) = r(m− 1)/Gm−1(m− 1),

next, compute
r(m) = r(m) −Gm−1(m)r(m− 1),

and for k = m− 2,m− 3, . . . , 1, compute

r(k) = r(k) −Gm−1(k)r(m− 1).

Step (6) This step forms the two matrices Lm+2 and Lm+3: it computes the coefficients Gm(i),
i = 1, 2, . . . ,m used to form the two matrices Lm+1 and Lm+2 which transform W 1

1 into the
identity matrix I1 = Lm+3Lm+2W

1
1 :

First set Gm(1 : m):
Gm(1 : m) = M(1 : m,m).

The following computation overwrites Gm(1 : m) with Lm−3Lm−4 · · ·L2Gm(1 : m):

for k = 2, 3, . . . ,m− 3, compute

Gm(i) = Gm(i) +Gm(i− 1)Lk(i, i− 1), i = m,m− 1, . . . , k + 1.

The following computation overwrites the newly obtained Gm(1 : m) with Lm−1Lm−2Gm(1 :
m):

Gm(m− 2) = Gm(m− 2)/Gm−2(m− 2),
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next, for k = m,m− 1,m− 3,m− 4, . . . , 1, compute

Gm(k) = Gm(k) −Gm−2(k)Gm(m− 2),

The following computation overwrites the newly obtained Gm(1 : m) with Lm+1LmGm(1 :
m):

Gm(m− 1) = Gm(m− 1)/Gm−1(m− 1),

next, for k = m,m− 2,m− 3,m− 4, . . . , 1, compute

Gm(k) = Gm(k) −Gm−1(k)Gm(m− 1).

Step (7) The following computation overwrites the newly obtained r with Lm+3Lm+2r:

r(m) = r(m)/Gm(m),

next, for k = m− 1,m− 2, . . . , 1, compute

r(k) = r(k) −Gm(k)r(m).

Step (8) The following iteration overwrites r = r(1 : m)

with U1U2 · · ·Um−4r:

For k = m− 4,m− 5, . . . , 1, compute

r(i) = r(i)Uk(i, i), i = k + 1, k + 2, . . . ,m− 3,

r(i) = r(i) − r(i+ 1), i = k, k + 1, . . . ,m− 4.

Definition 5. Algorithm 5 solves the systems for P2 in O(m2) operations.

Given [η2, η3, . . . , ηp−2] and r = r(1 : m), the following algorithm overwrites r with the solution
u = u(1 : m) of the system Mu = r.

Step (1) The following iteration overwrites r = r(1 : m) with Lm−1Lm−2 · · ·L3r:

for k = 3, 4, . . . ,m− 1, compute

r(i) = r(i) + r(i− 1)Lk(i, i− 1), i = m,m− 1, . . . , k + 1.

Step (2) The following iteration overwrites r = r(1 : m) with U2U3 · · ·Um−1r:

For k = m− 1,m− 2, . . . , 2, compute

r(i) = r(i)Uk(i, i), i = k + 1, k + 2, . . . ,m,

r(i) = r(i) − r(i+ 1), i = k, k + 1, . . . ,m− 1.

Next, the following iteration overwrites r = r(1 : m) with U1r:

For k = 1, compute

r(i) = r(i)Uk(i, i), i = k + 1, k + 2, . . . ,m,

r(1) = r(1) − r(3),

r(i) = r(i) − r(i+ 1), i = k + 2, k + 3, . . . ,m− 1.

Definition 6. Algorithm 6 solves the systems for P4 in O(m2) operations.
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Given [η2, η3, . . . , ηp−2] and r = r(1 : m), the following algorithm overwrites r with the solution
u = u(1 : m) of the system Mu = r.

Step (1) The following iteration overwrites r = r(1 : m) with Lm−2Lm−3 · · ·L3r:

For k = 3, 4, . . . ,m− 2, compute

r(i) = r(i) + r(i− 1)Lk(i, i− 1), i = m− 1,m− 2, . . . , k + 1.

Step (2) This step forms the matrix Lm−1: it computes the coefficients vector H(1 : m) used to
form the matrix Lm−1 which transforms W 4

3 into a diagonal+last-two-column matrix W 4
2 =

Lm−1W
4
3 :

First set H equal to the last row of M ,

H = M(m, 1 : m).

The following computation overwrites H with HU1:

for k = 1, compute

H(i) = (H(i) −H(i− 1))Uk(i, i), i = m− 2,m− 3, . . . , k + 3,

H(k + 2) = (H(k + 2) −H(k))Uk(k + 2, k + 2).

The following computation overwrites H with HU2U3 . . . Um−3:

For k = 2, 3, . . . ,m− 3, compute

H(i) = (H(i) −H(i− 1))Uk(i, i), i = m− 2,m− 3, . . . , k + 1.

Step (3) The following computation overwrites the newly obtained r with Lm−1r:

First set PrH ,
PrH = 0.

Compute the product PrH and, next, compute r(m):

PrH = PrH + r(i)H(i), i = 2, 3, . . . ,m− 2,

r(m) = −PrH + r(m).

Step (4) This step forms the two matrices Lm and Lm+1: it computes the coefficients vector Gm−1(i),
i = 1, 2, . . . ,m used to form the two matrices Lm and Lm+1 which transform W 4

2 into a
diagonal+last-column matrix W 4

1 = Lm+1LmW
4
2 :

First set Gm−1(1 : m),
Gm−1(1 : m) = M(1 : m,m− 1).

The following computation overwrites Gm−1(1 : m) with Lm−2Lm−3 · · · L3Gm−1(1 : m): for
k = 3, 4, . . . ,m− 2, compute

Gm−1(i) = Gm−1(i) +Gm−1(i− 1)Lk(i, i− 1), i = m− 1,m− 2, . . . , k + 1.

The following computation overwrites the newly obtained vector Gm−1 with Lm−1Gm−1:

First set PGH ,
PGH = 0.

Compute the product PGH and, next, compute Gm−1(m):

PGH = PGH +Gm−1(i)H(i), i = 2, 3, . . . ,m− 2,

Gm−1(m) = −PGH +Gm−1(m).
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Step (5) The following computation overwrites the newly obtained r with Lm+1Lmr:

r(m− 1) = r(m− 1)/Gm−1(m− 1),

next, for k = m,m− 2,m− 3, . . . , 1, compute

r(k) = r(k) −Gm−1(k)r(m− 1).

Step (6) This step forms the two matrices Lm+2 and Lm+3: it computes the coefficients Gm(i),
i = 1, 2, . . . ,m used to form the two matrices Lm+2 and Lm+3 which transform W 4

1 into the
identity matrix I4 = Lm+3Lm+2W

4
1 :

First set Gm(1 : m):
Gm(1 : m) = M(1 : m,m).

The following computation overwrites Gm(1 : m) with Lm−2Lm−3 · · ·L3Gm(1 : m):

For k = 3, 4, . . . ,m− 2, compute

Gm(i) = Gm(i) +Gm(i− 1)Lk(i, i− 1), i = m− 1,m− 2, . . . , k + 1.

The following computation overwrites the newly obtained vector Gm with Lm−1Gm:

First set PGH ,
PGH = 0.

Compute the product PGH and, next, compute Gm(m):

PGH = PGH +Gm(i)H(i), i = 2, 3, . . . ,m− 2,

Gm(m) = −PGH +Gm(m).

The following computation overwrites the newly obtained Gm(1 : m) with Lm+1LmGm(1 :
m):

Gm(m− 1) = Gm(m− 1)/Gm−1(m− 1),

next, for k = m,m− 2,m− 3,m− 4, . . . , 1, compute

Gm(k) = Gm(k) −Gm−1(k)Gm(m− 1).

Step (7) The following computation overwrites the newly obtained r with Lm+3Lm+2r:

r(m) = r(m)/Gm(m),

next, for k = m− 1,m− 2, . . . , 1, compute

r(k) = r(k) −Gm(k)r(m).

Step (8) The following iteration overwrites r = r(1 : m) with U1U2U3 · · ·Um−3r:

(8.1) The following iteration overwrites r = r(1 : m) with U2U3 · · ·Um−3r:

For k = m− 3,m− 4, . . . , 2, compute

r(i) = r(i)Uk(i, i), i = k + 1, k + 2, . . . ,m− 2,

r(i) = r(i) − r(i+ 1), i = k, k + 1, . . . ,m− 3.

(8.2) Next, the following iteration overwrites r = r(1 : m) with U1r:

For k = 1, compute

r(i) = r(i)Uk(i, i), i = k + 2, k + 3, . . . ,m− 2,

r(1) = r(1) − r(3),

r(i) = r(i) − r(i+ 1), i = k + 2, k + 3, . . . ,m− 3.
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Definition 7. Algorithm 7 solves the systems for P5 in O(m2) operations.

Given [η2, η3, . . . , ηp−2] and r = r(1 : m), the following algorithm overwrites r with the solution
u = u(1 : m) of the system Mu = r.

Step (1) The following iteration overwrites r = r(1 : m) with Lm−1Lm−2 · · · , L2r:

for k = 2, 3, . . . ,m− 1, compute

r(i) = r(i) + r(i− 1)Lk(i, i− 1), i = m,m− 1, . . . , k + 1.

Step (2) This step forms the two matrices Lm and Lm+1: it computes the coefficients Gm(i), i =
1, 2, . . . ,m used to form the two matrices Lm and Lm+1 which transform W 5

1 into the identity
matrix I5: I5 = Lm+1LmW

5
1 .

First set Gm(1 : m):
Gm(1 : m) = M(1 : m,m).

The following computation overwrites Gm(1 : m) with Lm−1Lm−2 · · ·L2Gm(1 : m):

For k = 2, 3, . . . ,m− 1, compute

Gm(i) = Gm(i) +Gm(i− 1)Lk(i, i− 1), i = m,m− 1, . . . , k + 1.

Step (3) The following computation overwrites the newly obtained r with Lm+1Lmr:

r(m) = r(m)/Gm(m),

next, for k = m− 1,m− 2, . . . , 1, compute

r(k) = r(k) −Gm(k)r(m).

Step (4) The following iteration overwrites r = r(1 : m) with U1U2 · · ·Um−2r:

For k = m− 2,m− 3, . . . , 1, compute

r(i) = r(i)Uk(i, i), i = k + 1, k + 2, . . . ,m− 1,

r(i) = r(i) − r(i+ 1), i = k, k + 1, . . . ,m− 2.

B. Coefficients of HB(p), p = 4, 5, . . . , 10.

The appendix lists the coefficients of HB(p), of order p = 4, 5, . . . , 10, with coeffi-
cients ci, i = 1, 2, . . . , 5 given by (14) and considered in this paper. It is to be noted
that, in Table 8–10, since a22 = a33 = a44 = b5, only a22 are listed.
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Table 8: Coefficients of the implicit predictors Pi, i = 2, 3, 4 and of the integration
formula of HB(4).

k 2
coeffs\p 4
a22 4.6349043784767707e-01
a21 1.2661672524404526e+00
α20 5.4950392168197382e-01
α21 4.5049607831802618e-01

a32 -1.8530834291876901e-02
a31 -2.1887246599062252e-01
α30 1.1616817724748036e+00
α31 -1.6168177247480350e-01

a43 9.2532001902408567e-01
a42 -1.2991041785648558e-01
a41 -1.1719553264875242e-01
α40 1.0580323817860031e+00
α41 -5.8032381786003208e-02

b4 -5.8502664620919764e-01
b3 7.3620641073684356e-01
b2 3.6285323782546275e-01
α0 1.0224765597992143e+00
α1 -2.2476559799214289e-02
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Table 9: Coefficients of the implicit predictors Pi, i = 2, 3, 4 and of the integration
formulae of HB(p), p = 5, 6, 7.

k 3 4 5
coeffs\p 5 6 7
a22 4.6349043784767707e-01 4.6155581379386562e-01 4.4584126788465805e-01
a21 1.4003497954748405e+00 1.2821415800023641e+00 1.1809598520943367e+00
α20 3.4823010713039193e-01 5.7502414183048167e-01 9.1481034721048538e-01
α21 7.1886116438680214e-01 3.4131085592548177e-01 -4.3812261641398953e-01
α22 -6.7091271517193962e-02 1.2777008083146502e-01 8.5659166780677842e-01
α23 -4.4105078587428515e-02 -4.0569638322242141e-01
α24 7.2416984619147140e-02

a32 -3.0849563760214662e-02 -3.4791032567112530e-02 -3.0417325207035724e-02
a31 -2.3979061907940127e-01 -2.0114174241918126e-01 -1.7570780227865077e-01
α30 1.2272947421546210e+00 1.1821653030018511e+00 1.1468949085655049e+00
α31 -2.5967082927732166e-01 -2.0042250866454406e-01 -1.2131102878253612e-01
α32 3.2376087122700813e-02 1.6494979555944228e-02 -5.8044015259916808e-02
α33 1.7622261067487407e-03 4.0494252246431703e-02
α34 -8.0341167694837432e-03

a43 8.6550584976656608e-01 8.5024803239176061e-01 8.9926334191083679e-01
a42 -1.2094398621868979e-01 -1.2632597125244538e-01 -1.2382213043693883e-01
a41 -9.5828504441028375e-02 -6.6163354324848211e-02 -1.3840058562750060e-01
α40 1.1139780059745155e+00 1.1381648831163653e+00 1.2213905025684662e+00
α41 -1.4044292075102807e-01 -2.1560838560463660e-01 -3.9512851149057066e-01
α42 2.6464914776512558e-02 9.7144489404372855e-02 2.6050923462671782e-01
α43 -1.9700986916101452e-02 -1.0433995063411622e-01
α44 1.7568724929502764e-02

b4 -4.4932378943708634e-01 -3.9309941410892663e-01 -3.3680433035369617e-01
b3 7.0309903482509495e-01 6.8674782107319698e-01 6.8053670737153726e-01
b2 2.4792697121265941e-01 2.0229434482024061e-01 1.6361881436910350e-01
α0 1.0380122948604162e+00 1.0495685791492901e+00 1.0572992300634656e+00
α1 -4.1217244169177658e-02 -5.7458711632632553e-02 -7.0102502172306555e-02
α2 3.2049493087613640e-03 8.7131202390179352e-03 1.5387946419020668e-02
α3 -8.2298775567559324e-04 -2.8577658465862143e-03
α4 2.7309153640663492e-04
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Table 10: Coefficients of the implicit predictors Pi, i = 2, 3, 4 and of the integration
formulae of HB(p), p = 8, 9, 10.

k 6 7 8
coeffs\p 8 9 10
a22 4.2533683882410295e-01 3.8669248231767694e-01 3.5644917896211648e-01
a21 1.1691175426503642e+00 1.8068140479185923e+00 2.5399256921202902e+00
α20 1.1820658725415993e+00 2.2585956016814793e-01 -1.0676245134148956e+00
α21 -1.3457907856374380e+00 -3.9202677101680204e-02 2.1897810218978102e+00
α22 2.1897810218978102e+00 2.1093991104430829e+00 8.8466046491689831e-01
α23 -1.4600218816659654e+00 -2.1897810218978102e+00 -2.1897810218978102e+00
α24 5.0824170797589130e-01 1.2116697568163834e+00 1.8736987013081039e+00
α25 -7.4275935111897506e-02 -3.6508178347831965e-01 -9.0533024426837816e-01
α26 4.7137055050195838e-02 2.4285835102429823e-01
α27 -2.8262759566026571e-02

a32 -2.7820033747103474e-02 -1.8268922342457146e-02 -1.2644364453523351e-02
a31 -9.4495480223432252e-02 -1.4283473085755846e-01 -1.7206642996978982e-01
α30 1.0148354422389918e+00 1.1658484444977595e+00 1.2895079102810389e+00
α31 1.5741558417488954e-01 -9.9141780515115380e-02 -3.5161810938268645e-01
α32 -3.3031526045982507e-01 -2.0690958345228419e-01 -1.7232691644707614e-03
α33 2.2529826789821539e-01 2.4091961693981062e-01 1.5871739214940811e-01
α34 -7.8742717125058329e-02 -1.3701582178785510e-01 -1.5342353763525574e-01
α35 1.1508683272786733e-02 4.1709443076754824e-02 7.7139532052879739e-02
α36 -5.4103187590702640e-03 -2.1077864145246719e-02
α37 2.4779458443329057e-03

a43 8.9538742002184812e-01 1.0954037811396611e+00 1.3231666530204849e+00
a42 -1.2088516509822729e-01 -1.0848858678504342e-01 -9.9919961109895900e-02
a41 1.2342483090987948e-01 -1.1810131700162743e-01 -5.0145251499123311e-01
α40 8.2624798878744277e-01 8.3103215300350552e-01 9.8854551131180979e-01
α41 2.1951979318994586e-01 3.6702700935554078e-01 3.5619383494601842e-01
α42 -2.7622002080726051e-02 -3.2129860931787940e-01 -7.3962838738604464e-01
α43 -3.5784041350335596e-02 1.7120416512594636e-01 6.7541016661566800e-01
α44 2.1587935740775669e-02 -5.8539351153030231e-02 -4.0752380683909584e-01
α45 -3.9496742871028313e-03 1.1563207882864681e-02 1.6050895203004736e-01
α46 -9.8857489694740381e-04 -3.7433269662979912e-02
α47 3.9269989845767796e-03

b4 -2.8478390776767987e-01 -2.0711184580076136e-01 -1.5094507140981844e-01
b3 6.8006098992011321e-01 6.8844479542865034e-01 6.9747851629196012e-01
b2 1.3073344134353643e-01 8.5129921834428163e-02 5.3103287011206937e-02
α0 1.0615542018171131e+00 1.0596434936095855e+00 1.0549616923905276e+00
α1 -7.8442822347043528e-02 -7.7046772382444131e-02 -6.9806707506548230e-02
α2 2.1782023749097362e-02 2.3441103972377812e-02 1.9864711237223571e-02
α3 -5.9010736889115135e-03 -7.7722557134681704e-03 -6.5456198489904126e-03
α4 1.1089941130658875e-03 2.0658402730010452e-03 1.8785469224632662e-03
α5 -1.0132364332147836e-04 -3.6178282039571599e-04 -4.0536116900096033e-04
α6 3.0373061343575776e-05 5.6492230588381594e-05
α7 -3.7542562630236547e-06
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