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ABSTRACT. For certain meromorphic p-valent functions ¢ and v, we study a

class G(b, ¢, ) of functions f (z) = & + > ey @2, (an > 0), defined in the punc-
(m)

%(M—IN <1l (0<a<1,zeU"), coef-

(fx)(2)™)
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1. INTRODUCTION

Let >, denote the class of meromorphic functions f (z) normalized by
1 oo
f(z):§+2anz” ((an>0; peN={1,2,3,.....}), (1)
n=p

which are analytic and p-valent punctured unit disk U* = {2 : 0 < |z] < 1}. A func-
tion f € Zp is said to be meromorphically p-valent starlike of order p (0 < p < p)
in U* if and only if

%{—Z}fl(g)} >p (2€U%0<p<p) . (2)

On the other hand, a function f € Zp is said to be meromorphically p-valent convex
of order p (0<p<p)in U*if

éR{— <1+ZJ{,N(S)>}>;) (zeU0< p<p). (3)
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The Hadamard product (or convolution) of the function f defined by (1) with the
functions g given, by

9(2) =2P+> bu2" (b2 0;pEN),
n=p
can be expressed as follows:
(fx9)(2) =27+ anbnz" = (g% [)(2).
=p

Suppose the functions ¢(z) and 1(z) are given by

1 < .

¢(z) = Zp+z)\nz
n=p

_ 1 - n

"tb(z) = ZP+ZM”Z
n=p

We now introduce a new subclass G(b, ¢, 1) of meromorphiclly p-valent functions
Zp, which inclosed functions f(z) satisfying the following inequality:

1 (((f*¢> () _1>

- (F ) (Z))(m) <1 (z € U*,m € Ng,b € C\ {0}), (4)

b

where
((f =) ()™ #0,
and .
F (@) = (=) (0) == 4S8 (0,m) a2
nomy——" 1 (m=0)
b (n,m) (n—m)! {n(n—l)...(n—m—i—l) (m #0)

and («a); is the Pochammer symbol (or shifted factorial) defined, in terms of the
Gamma function, by

CT(@+j) (1 if (=0
(X)jr(l.){g;(x—i—l)...(x—Fj—l) (J €N)

Suitably specializing the parameters we note that
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(i) G (b,2¢',9) = G(b, g) where G(b, g) is defined as follows:

{f > L((f % 2g) (2)) " <1}

CON
((f *9)(2)
(i) G(b,z27P+> 22, <€+/\(Ek+P)>makz ) = G(b, €, \)where G(b, £, \) is defined by

L (Gapoose)) "

(IO f ()™
(zeU*,meNy=NU{0},beC\{0},A>0,¢{>0),

where I}*(A, £) introduced by El-Ashwah [4].
(iif) G(b, 2P+ Y52 4 (14 p+n)"apz?) = G(b, n)where G(b, n) is defined as

:

where the operator D} was introduced and studied by Aouf and Hossen [1], Liu and
Owa [6] and Srivastava and Patel [12].

The object of the present paper is to investigate coefficient estimate, distortion
theorem, radii of convexity and starlikeness, we also apply the familiar concept of
neighborhood of analytic functions to meromorphically p-valent functions in the

class 3.

-1 <1

G, 0\ =< fe Z

2(DRf(2)))"™

{f Z D"f( )

zeU*,meNo,beC\{O},)\>0,

-1

2. COEFFICIENT INEQUALITIES

In this section we begin by proving a characterization property which provides a
necessary condition for a function f € »_, belong to the class G(b, ¢, 1)) of mero-
morphically p-valent functions with positive coefficients

Theorem 1. Let f € 3, be given by (1). If
D Bnm){ [An = pnl + B pn} an < [0 (P - (5)
n=P

then f € G(b, ¢,v).
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Proof. Suppose that (5) is true. Then we have

‘(Lf*¢>@o%m>
((f %) (2))t™

_ Zzo:p 5 (na m) ()\n - :un) anzn+p
(=)™ (@), + Z;;o:p B (1, m) pnanz"+P
Zzo:p B (n,m) [An — pn| an .
- [(p)m - Z?I,o:plﬁ (n7 m) Nnan]

The last expression is bounded above by |b| provided

-1

> B (n,m) {|An = pil + [0] i} < 18] (),

n=p

which is true by the hypothesis. Hence f € G(b, ¢, ).

3. DISTORTION THEOREM

We denote é(b, ®,1) to be the class of functions f € G(b, ¢,1) whose coefficients
satisfy the condition (5).

Theorem 2. If the function f (z) defined by (1) is in the class é(b, @,1), then for
0<|z|=r<1, u, >0 and the sequences < p, >, < ;%1 > are nondecreasing, we
have

1 bl (P)m » 1 bl (P)m
—— P <|f(2)| < =+ rP.
B ) { Py gl ] ) |(lrpﬂmm)ﬁ%—wHWé§
The bounds in (6) is attained for the functions f (z) given by
1 b m n
F =L o] (p) )

22 T Bpm) { o — pn] 10 pin}

Proof. Since f € G(b, ¢,1)) from the inequality (6). We observe that [\, — jun| -+ |b|
tn, nondecreasing we have

N B (P)m
nz:;an! =B | IAp — pip| + [b] p1p} (8)
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Thus for 0 < |z| = r < 1, and making use of (8) we have

IF ()] <

+ ) lan| |2[" 9)
n=p

1
o
1 oo
< > lan]

n=p

1 1b] (P)m v

+ T
r? - Bpm) { [Ap — ppl + (B pip}

IN

and

1 > "
7|~ Z |an| |2] (10)
n=p

1 o
> =) anl
n=p

7 Bm) { Py — il + 0]}

which readily yields the following distortion inequalities. This completes the proof
of Theorem 2.

4. RADII OF STARLIKENESS AND CONVEXITY

We next determine the radii of meromorphiclly p-valent starlikeness and meromor-
phiclly p-valent convexity of the class G(b, ¢,1),which are given by

Theorem 3. Let a function f € Zp of the form (1) belong to the class G (b, ¢, ). Then

(i) f is meromorphiclly p-valent starlike of order v (0 < 7 < p) in the disk |z] <
r1, where

R (0 =) bl (D) -
R e Ok a wemes el 4D

(ii) f is meromorphiclly p-valent convex of order v (0 < v < p) in the disk |z| < rq,
where

1

. (=)l (P)m e
m_nzgo{n(wr’y)[ﬁ(n,m) { [An = pn] + 0] Mn}]} '

(12)
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Proof. To prove (i), we observe from the inequality that the function f of the form
(1) is meromorphiclly p-valent starlike of order v (0 < v < p) if for

§ <1 (0<y<p;peN).

For |z| = r, the inequality is true if

(0.)
3 <W> anr™P < 1. (13)
p—7

n=p

Comparing with coefficient inequality , we conclude that the function f is mero-
morphiclly p-valent starlike of ordery (0 < v < p) in the disk |z| < 1 with 1 given
precisely by .The proof of (ii) is similar to that of (i) detailed above ;it is , therefore,
being omitted here.

5. NEIGHBORHOOD THEOREM

Next, following the earlier investigations by Goodman [5], Ruscheweyh [8] and At-
lantis et al.[2] (see also [3],[7] and [11]), we define the (n,J)- neighborhood of a
function f(z) € 3 by (see, for details, [2])

Ns (f) = {g € Z 1g(z) = Zip + anz" and Bn,m) H|2|n Zp/)inl L) |an — by| < ’Y} .
P m

n=p n=p
Theorem 4. Let § >0 and f(z) € >, given by (1)satisfies the inclusion property
f(z) +ex7®
1+e€
for any complex number € such that |e| <, N5 (f) C G(b, p,).

€ G(b,p,v) (14)

Proof. 1t is easily to seen from (4) that f(z) € G(b,¢,v) if and only if for any
complex number ¢ with |o| = 1,we have

L[ ((f *9) (2)™ .
b (((f*¢) ()™ _1> roo et 1)
which is equivalent to
VQC) g ew, (16)

z
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where

Q(z)=zP+ chz"
n=p

(an §(n,m) { —U(b)\r(z;):n)‘f‘bU Mn}>

(17)
It is follows from (16) that

’ﬁ(n,m) { A= pn| +0 |0 pn} B(n,m) { [An—pnl+ [b| pn}

len| = =
o bl (P)m bl (P)m
if f (2) € 3, given by (1) satisfies the inclusion property (14), then (16) yields
(f*Q)(2) ]
o > (z€U") . (18)
Now , if we suppose that
9(2) =277+ bn" € N5 (f), (19)

n=p
we easily see that

(9= 1) (2)*Q(2)

—-bp

[o¢]
> (b — an) cnz™
n=p

(o)
< Z b, — anl |cnl 2P
n=p

B nm) { sl + 0] )
< B2 bl (Do

X by, — apn| <9

then
'(9)(2)*62(2) _|fr9—T (2)*Q(2)
[{r20)) (6= r20),

thus, for any complex number ¢ such that |o| = 1, we have

(9) (2) * Q@ (2)

- £0 (€U

which implies that g (z) € G(b, ¢, ).
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6. PARTIAL SUMS OF FUNCTION CLASS G(b, ¢, )

In this section, applying methods used by Silverman [9] and Silvia [10], we investigate
the ratio of a function of the form (1) to its sequence of partial sums fy,4p—1 (2) =

-1,

Theorem 5. If the function f of the form (1) be in the class é(b, ¢,1), then

1
%(‘f(z)>>l— (zeU* ,meN), (20)
fm+p71 (Z) Cm+p
and
1 k=23,4,....m
Cp =
Cm+p kK=m+pm+2p,..
where \ .
o B { Do il 4 [b] g} o
6] ( P)m
The result in (20) is sharp for every m, with the external function
ZMTP
f(z)=2"+ (22)
Cm+p

Proof. Define the function w(z), we may write

1+ w(z) f(2) 1
1 —w(z) N Cm+p{f+ 1()_ 1_C+ (23)
m+p— m+p
B 1+ Zm+p 1 akzp—i—k + Crmtp Zzozm—i-p akzp-l—k
B 1+ Zm+p L g 2otk .

Then, from (23) we can obtain

T 242 Zm+p Yap2Pth 4 e D sy AR ZPTF

and ~
Crntp D amtp |Ok]

1 :
— 253 ag] = Cmap Dty |l

w2 <7

Now |w ()| < 1if
m+p—1

2Cm4p Z |ag| <2 -2 Z |ag] ,

k=m-+p
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which is equivalent to

m—+p—1 00
D lakl+emip Y lal <1 (24)
k=p k=m+p

It is suffices to show that the left and hand side of (24) is bounded above by
ZZOZP ¢k lag| ;which is equivalent to

m-+p—1 oo
S (ee—Dlarl+ D (k= cmip) lar] > 0.
k=p k=m+p

To see that the function given by (22) gives the sharp result, we observe that for

i#
2 =re mtp,

m-+2p
GO 42 7 (25)
fmtp—1 (2) Cm+p
then we have
fE 1
fm+p71 (Z) Cm+p

This completes the proof of Theorem 5.
We next determine bounds for fy,4,—1(2)/f (2).

Theorem 6. If the function f of the form (1) be in the class é(b, ¢,1), then

Jm+p—1 (2) Cm+p *
§R< ) >>1+Cm+p (zeU" ,meN) . (26)

The result is sharp with the function given by (22).

Proof. We may write

1wl _ ‘ fmap=1(2)  Cmyp
1—w(z) (L emiz) ( f(2) 1+ cm+p> &)

m+p—1 k 0o k
L+ 3500 ap2P™ = Cimap D e p 20T

k=p
1+ Z;n:;)p_l agzPtk

and - N
(14 cmap) Zk:m+p apzP*

242 ZZZZ)_I apzPtE + (14 cpyp) Zzozmﬂo ayzPTk

w (2)
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where -
(1 + cm+P) Zm+p |ak|

fw (2)| < — N (28)
2-2 Zk:p |lak| + (1 — cmp) Zm+p |ag|
The last inequality is equivalent to
m—+p—1 00
D lakl+empp Y lal <1 (29)
k=p k=m+p

It is suffices to show that the left and hand side of (29) is bounded above by
> hep Ck |ak| ;which is equivalent to

m+p—1 oo
S (e —Dlarl + > (ck = cmp) lax] > 0.
k=p k=m-+p

This completes the proof of Theorem 6.
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